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Abstract

One of the most striking features of the H-mode, in contrast to the
L-mode, is the existence of very steep pressure gradients in a narrow
layer just inside the plasma boundary. In this paper we show how the
existence of H- and L-régimes, together with their characteristic
profiles, is a natural consequence of the modified ballooning stability

properties near a magnetic separatrix.
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I. Introduction

An apparently universal feature of the H-mode in tokamaks is the existence
of very steep gradients of temperature and density over a narrow region
just inside the plasma boundary [1,2]. The corresponding pressure
gradients lie well above the usual (circular tokamak) threshold [3] for

the onset of ideal MHD ballooning modes.

Recently, however, it has been shown [4] that close to a magnetic
separatrix MHD ballooning stability properties are strongly modified. The
most important effect is that whenever the local current density (or
equivalently the temperature) exceeds some critical value the first and
second regions of ballooning stability coalesce. The plasma is then
stable at all values of the pressure gradient. These results are
summarised in section II, and may provide a prototype for other curvature

driven, shear stabilised modes in the vicinity of a separatrix.

In Section III we use a simple description of transport in the edge region
of the plasma to construct those temperature -profiles which are everywhere
stable to ballooning modes. They fall automatically into two classes.

The first class is the usual L-mode in which the whole profile lies in the
first stable region. In the second class, which we identify as the
H-mode, the edge gradient is in the second region and is connected to the
rest of the profile, which is in the first region, above the critical
temperature for coalescence. In this way the existence of the H-mode,
with itsréharacteristic shape, follows naturally from the modification of
the ballooning stability properties due to a magnetic separatrix. Some
quantitative comparisons are made between the predicted profiles and

experimental results.

The effects of different X-point locations are discussed in Section IV and

conclusions are drawn in Section V.

II. Ballooning Stability near a Separatrix.

In Ref. [4] a model equilibrium was used to study the effects of a

magnetic separatrix on the stability properties of ideal MHD ballooning



modes. Here we give a brief description of the model and a summary of the
stability results. The equilibrium was introduced in Ref. [5] and a

detailed account of the methods used to construct it can be found in Ref.

(6]

The equilibrium can be regarded as a generalisation of the large aspect
ratio s=-a model [3] frequently used to describe ballooning stability in
circular tokamaks. It is constructed by a local solution of the
Grad-Shafranov equation around a single flux surface, and requires a
specification of both the shape of the surface and the distribution of
poloidal field BP around the surface. For the s-a model the surface
is a circle and B is a constant. To model tokamaks with a separatrix
we take instead thg flux surfaces surrounding a pair of parallel wires.
(Note that this straight system is used only to provide the shape of the
surface and BP; the equilibrium itself being calculated in toroidal
geometry). The flux surfaces are characterised by a shaping parameter

k € [0,1] with k = 0 being a circle (the equilibrium is then precisely
the s—-q model) and k = 1 being a separatrix with the corresponding
modulation of BP around the surface. Example flux surfaces are shown in
Fig. 1, which also defines the parameter Yy controlling the poloidal

location of the x-point.

The equilibrium contains two other parameters, the first of these being

the usual pressure gradient parameter «a given by

d
a = ﬁii_ b (1)
B d
joly ¥
where p 1s the pressure, ¢ 1is the poloidal flux, and r and BPo are

the values of the minor radius and the poloidal field opposite the
X-point. The other parameter is taken to be the current
density A defined by

[ R I (2)
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where X, 1is the major radius, V 1is the loop volts, and n is the
plasma resistivity on the flux surface. This parameter is appropriate
for flux surfaces close to a separatrix and replaces the global

shear s of circular tokamaks. The ballooning equation corresponding to
this equilibrium was solved in Ref. [4] to give the marginally

stable a as a function of k,y and A.

In this section and the next we consider vy = 3m/4 which is the X-point
configuration corresponding to the PDX tokamak. (The effects of varying

Y will be studied in Section IV ). 1In Fig. 2 we plot a against A for
a flux surface close to the separatrix (k = 0.95). At small or negative
values of the current density A there is a range of unstable pressure
gradients separating the first (small « ) from the second (large a )
stable regions. As A is increased the unstable region shrinks, and at a
critical value A.c = 0.7 the two regions coalesce. For A > Ab all
values of the pressure gradient are stable. The dependence on flux
surface is shown in Fig. 3 by a plot of g against k for A= 0.8. The
unstable region disappears for values of k sufficiently close to 1, i.e.
for flux surfaces sufficiently close to the separatrix. Clearly the
critical value of A will depend on k and a plot of Ab(k) is given in
Fig. 4. This diagram will form the basis of the graphical construction of

temperature profiles presented in the next section.

IITI. Construction of Temperature Profiles.

The stability results described in Section II have important implications
for the types of temperature profiles which are stable to MHD

ballooning modes. 1In this section we give a simple graphical construction
of such profiles and show that they fall into two classes having many
features characteristic of the L-mode and H-mode régimes. These results
follow primarily from the topology of the stability diagrams and are

largely insensitive to details of the transport processes in the plasma.

To describe the effects of the ballooning mode on transport we adopt the
procedure used by Connor,- Taylor and Turner [7]. This reqguires that in

the ballooning stable regions the temperature profile is governed by a



simple heat conduction equation, while in the ballooning unstable region
the transport coefficient is substantially increased so that the pressure

" gradient is reduced to the marginally stable value.

We begin by relating the ballooning stability parameters (a,X,A) to the
temperature profile. To do this we must make some assumptions about the
plasma density. We shall follow [7] and take n = constant; although this
is not an accurate representation of the density we shall see that the
principle qualitative and gquantitative results are the same for any
reasonable choice for n(r). We choose a specific representation for the
density only in order to construct example profiles. (We shall take ni =
ne and Ti = Te so that p = 2neTe.) The pressure gradient parameter o can
now be related to the temperature gradient, and this is done for
parameters of the PDX tokamak [2]. Similarly the current density A
can be related to temperature assuming Spitzer resistivity. Finally the

flux surface label k can be related to minor radius using the original

straight-wire field configuration [5]:

YTFE -1
r o ¥ivx- (3)

VZ = 1

where a 1is the radius of the plasma boundary. Fig. 5a shows
schematically the ballooning unstable zone in (a, A, k) space. There is
a corresponding unstable zone in (4T/dr, T, r) space as shown in
Fig.5b. We now seek trajectories through this space satisfying the

following conditions;

(i) consistency, i.e. T(r) has a derivative which everywhere matches

dar/dr,

(ii) T(r) satisfies the background transport equation in the

ballooning stable region,

(iii) dT/dr takes the marginally stable value whenever the trajectory

enters the unstable zone,

(iv) appropriate boundary conditions are satisfied.



The required profiles may easily be found using a simple graphical
construction, as follows. Consider a region close to the edge of the
plasma, say 0.8 <r/a < 1.0. We now make use of Fig. 4 for Ac(k).
Using the above procedure this corresponds to a graph of critical
temperature TC against r, as shown (for parameters corresponding to the
PDX tokamak) in Fig. 6. This graph has the following meaning. If T < 'I'c
there is é range of values of dT/dr which is unstable to ballooning
mocdes. As T = Tc this range shrinks to zero, and for T > Tc all

values of temperature gradient are stable.

The appropriate boundary conditions follow from the fact that the
temperature at the separatrix is small, i.e. much less than Tc(a). We
therefore take T(a)=0. We also know that the bulk of the plasma lies in
the first stable region, so we require dT/dr at r/a = 0.8 to be at or

below the ballooning threshold.

As a specific model of the background transport we follow [7] and choose
the thermal conductivity y to be constant in the ballooning stable
regions. Neglecting power deposition and radiative losses in the edge
zone the profile in the stable regions will be a straight line whose slope
is proportional to the total power PT deposited in the plasma. Again, a
more sophisticated transport model would give somewhat different profiles

but would not change the essential results.

We can now construct the required profiles. In Fig. 6 we have also shown
the marginally stable values of dT/dr at the separatrix (for T(a)=0).
There are clearly two classes of profile which can be constructed
according to the wvalue of PT- Low values of PT give profiles whose
edge gradient lie in the first stable region (below curve I in Fig. 6)
while at large values the edge gradient lies in the second region (above
curve II in Fig. 6). At intermediate values of PT the edge gradient

will by assumption be reduced to the marginally stable value and hence lie

along curve I.



Profiles in the first class (edge gradient in the first region) are
constrained by the unstable zone to be at or below the ballooning
threshold. The profile therefore lies everywhere in the first region, and

can be identified with the L-mode.

In the second class the edge gradient lies in the second region. However,
we require the profile in the interior of the plasma to be in the first
region. The modified stability properties close to the separatrix allow
the two parts of the profile to be connected, in a way which is everywhere
ballooning stable, at T 2 Tc. Such a profile is shown by curve B in
Fige 7. The edge gradient is in the second stable region while further
into the plasma the profile is held at the marginally stable value. To
see why there is a sudden discontinuity of gradient on the Tc curve
consider Fig. 8 which shows the trajectory plotted on a graph of dT/dr
against T/Tc. Point (i) corresponds to r/a = 0.8 and the gradient is
limited to the marginal value. As we move closer to the separatrix

so T approaches 'I‘c at point (ii). The gradient is then no longer
ballooning limited and can jump to the value determined by the background
transport at point (iii). Finally the section from points (iii) to (iv)

corresponds to the steep edge gradient lying in the second stable region.

This second class of profile automatically has a very steep edge gradient
extending a short way into the plasma. We identify these profiles with
the H-mode. There exists a minimum PT required to get an H-mode, this
being the value at which the background transport gives a gradient
corresponding to curve II in Fig. 6. (The existence of a minimum power
threshold for H-mode is well known experimentally). If the power is
increased above this wvalue adiabatically the profile will remain in the
L-mode, with the edge gradient constrained to the marginal value.
However, if the edge temperature can be momentarily raised (e.g. by the
passage of a sawtooth heat pulse) then the transition into H-mode can
occur. There is a bifurcation of the temperature profiles so that L- and

H-mode can both occur at the same value of PT.

As well as predicting the shape of the profiles this picture of the H-mode

is also in quantitative agreement with experimental results. The



temperature T* at the top of the steep H-mode edge gradient, from Fig.7,
is around 350eV in good agreement with PDX data published in Ref.[z].
This prediction for T* comes from the dimensionless parameter Ab and
depends only on the assumption of Spitzer resistivity. We can also
compare theoretical values of « with data from Ref. [2]. Note that
because it is values of « rather than dT/dr which are used this
comparison depends only on the stability calculation results and not on
any assumptions about density profile, background transport etc. For the
L-mode of Ref. [2] o = 0.35 in the edge, which from Fig. 3 is clearly in
the first stable region. For the H-mode the steep edge gradient gives

@ = 3.6 which is well into the second stable region. Away from the

edge « = 0.52. Comparison with the coalescence point in Fig. 3 shows

that this agrees well with the theoretical value.

IV. Effects of X-point location

So far we have considered a tokamak with a particular X-point location,

Yy = 135°. The effects on the stability properties of changing <y are
shown in Fig.9 for 90° < y < 180°. The first ballooning boundary is
essentially independent of <y . This is because the ballooning mode
eigenfunction for the first boundary is large only on the outside of the
torus (i.e. in the bad curvature region). When the X-point is on the
inside of the torus its exact location is unimportant. The second
stability boundary, however, shows a strong dependence on X-point
location, with the unstable zone shrinking as <y is increased. Note,
however, that Ab has the opposite dependence and increases slightly with

increasing vy .

When the X-point is on the outside of the torus then, as shown in Ref.[4].
the ideal interchange mode can be unstable, as well as the ballooning
mode. For vy =0, which represents the separatrix configuration in
JT-60, the interchange mode is dominant, and Fig.10 shows the
corresponding « - A _stability diagram for k = 0.95. At A= 0 there
are again first and second stable regions separated by an unstable region.
However, although there is a critical A beyond which the mode is

completely stable, there also exists a A at which the marginally stable



value of «a is zero. Any profile-which reaches Ac must also pass
through this point and any pressure gradient there, no matter how small,
will drive the mode unstable. This is in marked contrast to the stability
properties with the X-point on the inside of the torus, and is reflected

by the difficulty of obtaining H-mode operation in JT-60 [8].
V. Conclusions

The presence of a magnetic separatrix has a significant effect on the
stability properties of the MHD ballooning mode; in particular a finite
current density is able to stabilise the mode completely. We have shown
how this effects leads naturally to two classes of ballooning stable
profile which we have identified as the L-mode and the H~mode. The
predicted H-mode profile has the characteristic steep edge gradient, and a
temperature at the top of this gradient which fits well with the
experimentally observed values.. Pressure gradient values are also in
agreement with experiment. The existence of a threshold heating power
Tcrit to achieve H-mode arises autogatically, as does the existence of
both L-mode and H-mode for PT > PTcrlt. Finally we have shown that the
X-point on the outside of the torus is a special case and leads to
interchange instabilties. This is in accord with the difficulties

experienced by JT-60 in achieving the H-mode.

I am indebted to R.J. Hastie, S.C. Cowley and J.B.Taylor for numerous
valuable discussions. I would also like to thank L.Allen for assistance

in plotting Fig.9.
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Fig.1 . Example of flux surfaces used in the construction of the model
equilibrium.
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Fig.2 The unstable zone in the g - A plane showing the existance of

a critical value of A . (y = 135°)
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Fig.3 Stability diagram in the a - k plane at A= 0.8 (y = 135°)
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Fig.4 Plot of Ac as a function of k (y = 135°)
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Fig.5a The ballooning unstable zone shown schematically in (a, k, A)

space.

Fig.5b The stability diagram corresponding to Fig.5a but plotted in
(T, r, 4T/dr) space.
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Fig.6 This shows the graph of Fig.4 converted to a Tc{r) curve.

Also shown are the first and second marginally stable

temperature gradients for r =a , T = 0.
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Fig.7 Examples of class I (A) and class II (B) temperature profiles.
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Fig.8 The ballooning unstable zone projected onto the (dT/dr, T/TcJ

plane showing the trajectory of a class II profile.
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Fig.9 . This shows the dependence of the stability boundaries, and Ab'

on the X-point location Yy - (k= 0.95)
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Fig.10 Stability diagram in the o - A plane of the ideal interchange

mode for y = 0 corresponding to the X-point configuration in

JT-60.









