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Abstract

The separation of the cylindrical tearing mode stability problem
into a resistive resonant layer calculation and an external marginal ideal
mhd (A') calculation is generalised to axisymmetric toroidal geometry.
The general structure of this separation is analysed and the marginal
ideal mhd information (the toroidal generalisation of A') required to
discuss stability is isolated. This can then, in principle, be combined
with relevant resonant layer calculations to determine tearing mode growth
rates in realistic situations. Two examples are given: the first is an
énalytic treatment of toroidally coupled (m =1, n=1) and (m = 2,
n = 1) tearing modes in a large aspect ratio torus; the second, a
numerical treatment of the toroidal coupling of three tearing modes
through finite pressure effects in a large aspect ratio torus. In
addition we discuss the use of a coupling integral approach to determining
the stability of coupled tearing modes. Finally, the possibility of using
initial value resistive mhd codes in realistic toroidal geometry to
determine the necessary information from the ideal mhd marginal solution
is discussed.
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I. Introduction

The stability of tearing modes in the cylindrical limit of a toroidal
pinch can be determined directly by numerically solving the resistive mhd
eigenvalue equations1 or, in the limit of large Lundquist number (magnetic
Reynold's number) S, by a semi-analytic asymptotic matching
procedure.z'3 In this latter approach one identifies a narrow layer of
width §—2/5 near the resonant surface g(r) = m/n, where m and n
are the poloidal and toroidal mode numbers and gq is the safety factor,
in which resistivity plays an important role. Elsewhere marginally stable
ideal mhd equations are appropriate. The growth rate vy of tearing modes
follows from matching the ideal mhd solutions to the resistive layer

solutions and takes the form

At =AY . (1)
Here AR(Y) can be calculated analyticallyz'3 from the resistive layer
equations while A' 1is calculated numerically from the solution for the
perturbed magnetic flux function ¢ in the ideal region.4 This
perturbation satisfies the correct boundary conditions at the centre and
edge of the plasma column but has a discontinuity A' in its logarithmic
gradient across the resonant surface. Thus the entire role of the ideal
solution is represented by a single quantity A'.

Furthermore the separation of the problem into a resonant layer
calculation and a calculation of A' means that the resistive mhd physics
used in calculating AR can be replaced by more realistic models for high
temperature plasma (involving diamagnetic effects,5 collisionless and

. . . 6 _. . , BT
semi-collisional electron dynamics, finite larmor radius effects, '



etc.) without changing the significance of A' in equation (1}).

Whereas the cylindrical problem is clearly solved in principle, and
largely in practice too, this is not the case in an axisymmetric torus
where a single eigenmode contains a number of poloidal harmonics. Recent

developments in initial value resistive mhd codes have allowed direct

8,9 0,11

attacks on tearing mode stability of large and tight1 aspect ratio
tokamaks at moderate values of &5 ~ 10%. Extension to higher values of §
makes great demands on computing resources and the prospects for treatment
of more realistic plasma dynamics than resistive mhd appear to be limited.
Thus a breakdown of the problem into separate treatments of resonant
layers matched to ideal mhd solutions in between, as in the cylinder,
would be desirable.

The main concern of this paper is the effect of toroidicity (and
hence the presence of a number of poloidal harmonics) on the ideal
solutions between resonant surfaces and the consequences for the nature of
the matching problem at those resonant surfaces. However we note that
toroidicity also affects the solution within the resonant layers, namely
AR(Y). Thus the stabilising influence of favourable average
curvature on tearing modes has been examined analytically12 (and even used
to interpret the behaviour of initial value codes11). Similarly the
effect of toroidally trapped particles on the dynamics near the resonant
surface has been discussed.1

In Section II of this paper we describe the general structure of the
axisymmetric toroidal problem involving a number of resonant surfaces,
providing definitions of the quantities that replace the single object A'

of the cylindrical case. (Appendix B gives a more detailed and precise

discussion similar in terms to that used in the Resistive PEST Code.14)



This information can then be associated with appropriate realistic
descriptions of the physics at the resonant surfaces by imposing the
relevant asymptotic matching conditions at these surfaces to determine the
dispersion relation for toroidal tearing modes.

As a first application of the formulation we discuss in Section III
the special case of the toroidal coupling of (m = 1, n = 1) and
(m =2, n=1) tearing modes in a large aspect ratio tokamak. In this
case it is possible to derive a completely analytic dispersion
relation.15

In Section IV we derive the structure of the dispersion relation for
toroidally coupled tearing modes with principal poloidal harmonics
m=1 m and m + 1 in a large aspect ratio tokamak and relate this to
the coupling integral approach applied to the case of zero pressure
gradient.16

The Resistive PEST code14 is an ambitious example of the asymptotic
matching approach and has been successfully used to examine the stability
of tearing modes in arbitrary toroidal configuratiohs at zero pressure.
However some difficulty has been experienced in dealing with finite
pressure since the ideal perturbations at the resonant surface then become
more singular. 1In Sectiop V we apply the dispersion relation of
Section IV to a case involving finite pressure, namely a large aspect
ratio tokamak in which the toroidal coupling arises through finite
pressure gradient terms. 1In order to calculate the appropriate quantities
from the ideal mhd solutions we use a shooting code with appropriate
prescriptions for dealing with the singularities at the resonant surfaces
caused by the pressure gradients. This contrasts with earlier

17 - ;
calculations from which such effects are absent. Choosing a simple



resistive mhd model for the resonant layer (this model excludes the
Glasser effect) we examine the influence of finite pressure on stability.
In Section VI we discuss ﬁhe possibility of using our general
formalism in conjunction with a resistive mhd initial value code10 to
produce results for arbitrary resonant layer models in fully toroidal

geometry. Finally we draw conclusions in Section VII.

II The Structure of the Toroidal Tearing Mode Eigenvalue Problem

In this Section we describe the structure of the toroidal tearing
mode eigenvalue problem in axisymmetric toroidal gecmetry. For a tearing
mode with toroidal mode number n there will, in general, be a number of
so called resonant surfaces labelled by a radius rm at which the safety
factor q(rm) = m/n , with m an integer. Between these resonant
surfaces non-ideal effects are negligible and, because tearing modes
evolve on a much longer timescale than Alfvenic, the plasma can be
described by marginal ideal mhd equation for the perturbed poloidal flux
¢ (see Appendix A). However, at a radius ro the mth poloidal harmonic
of the toroidal tearing mode will be resonant and non-ideal and inertial
effects become important in a narrow layer surrounding rm. The solution
of the appropriate non-ideal equations in this resonant layer must be
matched to the ideal mhd equations on either side. In order to simplify
the discussion we restrict ourselves in this Section to cases in which the
ideal solutions behave as & = Cy, + Cl(r—rm) in the vicinity  of By
where C, and C, are constants. This limits us to situations in which
the Mercier indices12 are zero and unity, but as shown in the more
precise formulation of Appendix B, the present discussion exhibits the

essential features of the general problem. With this caveat the matching



can be represented as a prescription for a discontinuity in the radial

derivative of ¢h across the resonant layer at r
m

R o _
o' = Lig (g lr:rm+‘°‘ T Ir=rm_s) = 4 (w (2)

where prime denotes a radial derivative and w 1is the mode frequency.
The quantity %n(m) depends on the model for the dynamics in the resonant
layer. Thus, for example, with a low pressure, resistive mhd model for

the layer12

5 3/4 172
rh (w) = Y/YTT g A (4nr ) L__;iE_E___ (3)
r'c1/4) n m(dBe/dr)

where Yy = -iw 1is the growth rate, p the density and n the
resistivity.

The procedure we adopt is to expand the perturbed flux function ¢ of
the toroidal tearing mode as a Fourier series of poloidal harmonics.
These satisfy the ideal marginal equations between resonant surfaces but
the mth harmonic 4h suffers a discontinuity q; in its radial
derivative at the resonant surface rm if this lies in the plasma. As we
shall see below, imposing appropriate boundary conditions on the set {¢m}

at the centre and boundary of the plasma column leads to a relation

£F(AY , A vee ) =0 (4)
oy Mg

between those p' where My, Mo, etc. are the harmonics which are
m



resonant within the plasma. Inserting a set of matching conditions

A' = A (w i=1, 2¢eeaes (5)

into Eq.(4) yields an eigenvalue equation for (. While this eigenvalue
equation depends on the details of the particular layer models invoked in

determining Am‘(w) of Eq.(5), the fundamental relation (4) is generic,
1

depending only on the marginal ideal mhd solutions - it is this relation

we wish to emphasize in this paper.

In order to establish the nature of relation (4) we first consider a
specific example in which the tearing mode is represented by three
poloidal harmonics m-1, m and mt+1, of which only m and mt+1 possess
rational surfaces within the plasma at rm and rm*1 respectively. The
generalisation to an arbitrary case is straight forward and is presented
in Appendix B. The ideal marginal mhd equations for the quantities
¢mﬂ1(r), 4h(r) “and ¢h+1(r) take the form of three coupled radial

differential equations (see Appendix A) which can be represented

schematically as

I _ m & Km+1
m-1 llJm-1 T m-1 LA m=1 qJm+1
m=1 m+1
= +
I"rn ¢m Km q’111—1 Km ¢m+1 ) (6)
5 = @ + R
mrl Y1 T Nk b1 m+1 'm

where L and K represent second order radial differential operators.

The solution for the tearing mode perturbation satisfies Eq.(6)



between rational surfaces. At each rational surface ) . ¢ and ¢
m=1 m m+1

are normally continuous, but discontinuities A& and A&+i in the

logarithmic derivatives of %n and ¢h+1 are permitted at their

respective resonant surfaces Lo and rm+1. Thus the ideal

solutions in the region 0 < r < a, where a is the edge of the plasma,
can be spanned by the following set of basis solutions of Eg.(6). Each

solution QL, 1 €1 £5 forms a vector

i i i i
L= Uhpoqr byr 9peq) (7)

m

¢l, $2 and $3 are linearly independent solutions regular at r = 0

~

and continuous in value and derivative at r and rm+1. ¢“ is defined
m ~

on r <£r €a with ¢“(r ) =0 and ¢*'(r ) =1 and together with its
m m'm m m

derivative, is continuous at r (as we shall see later, ¢” (r ) and
m+1 m-1"m

%;+1(rm) are determined from Eq.(ﬁ)). Similarly QS is defined on

- 5 = 1. L 5
) 0 and ¢h+1 (r ) 1 %n and ¢ﬁ+1

i 5
<
r €z a with ¢ +1(r _—

m+1 m+1

1
will be recognised as 'small' solutions in the sense of Newcomb. . Fig.1

summarises this structure.

In the region 0 < r < rm the toroidal tearing mode eigenfunction

must be a linear combination of solutions gl, ¢2 and $3 since these are

~~

the only three independent solutions which vanish at the origin. Thus
= 1 2 3 :
Yr) = a, oir) + @, ¢Ax) + ay¢i(r) (8)

In the region r < r < rm+1 the discontinuity in slope at rm is
m

introduced by setting

Q) = g glr) + 2]+ g g3(x) + g, ¢(x) (9)



where, from Eqg.(2),

@, = A (r ). (10)

with ¢m(rm) given by
(11)

= 3
G () = aygl(r )+ apel(x )+ age(r)

Similarly in the region . £r <£a

Wr) = aygllr) + apg?(x) + azgi(r) + a,gHr) + agg>(x) (12)
and

65 = Mg Yneq e (13)
where

= 1 2 3
¢m+1(rm+1) al%ﬁ+1(rm+1) ® a2¢h+1(rm+1) * a3¢h+1(rm+1)

n
a1 Taer? (14)

At the wall, r = a, the boundary condition ¢(r) =0 holds, so that, in

matrix notation,

1 (15)

u?
IR
1]
1
a?
IR



where

wH

and

2o

IR

(¢L1(a)J

m-

3
gﬁa)

m+1(a)

Egs.{(11) and (14) &an_be expressed as

where

ae>
aH

(16)

{17}

(18)

(19)



g = (20)
1
0 m+1
and
i a1 2 3
o lx ) Um0 UM E)
% = (21)
1 2 3
Ll’m+‘|(rm+1 q”’m+1(ru'|.-t-1) q)m+‘l(r +1)
0 0
. * (r 0
4ﬁ+1 m+1
Eliminating o between Egs.(19) and (15) we obtain, assuming |%| + 0,
(L + A".E). a' = (23)
=~ = ~ ~
where E = C.A"1.B - D. (when |a| = 0, there exists a solution with
= = /= = = =i
a' =10 corresponding to a ¢ which is continuous at ro and rm+1.)
The condition for a non-trivial solution is
L+ A.E|l = 0 (24)

- 10 -



Eg.(24), can be written as a relationship
| I ] e - =
(Am a)(Am+‘l B) Yy=20 (25)
between A' and A' ;, where
m m+ 1

-E -E E,,E

||

Eq.(25) describes a hyperbola in the A&+1 - A; plane (shown in
Fig.(2)) on which all eigenmodes must lie. Any resonant layer calculation

leads to a matching condition

A = A (w)
m m
(27)
AI'n+1 = Am+1(W)

where the forms of Ah(w) and Am+1(w) depend on the resonant layer

physics considered. Combining Eq.(25) with Eq.(27) yields a dispersion
relation for w . Graphically, w can be regarded as parameterising a
curve in the AA - Aé+1 plane through Eq.(27), whose intersections with
the hyperbola yield the frequencies of the tearing modes. With the simple
form Eg.(3) for Am(w) and Am+1{m) this curve is a straight-line through
the origin and instability corresponds to an intersection in the first

quadrant. Simple geometrical considerations imply that the upper branch

of the hyperbola does not enter this quadrant if



a<0, B<O, af > vy (28)
or Ej; >0, Egp >0, |E| >0
The result Eq.(28) constitutes a stability criterion for the layer model
of Eq.(3). In Appendix B we develop this theory in a formal manner for an
arbitrary number of poloidal harmonics and rational surfaces.

For non-linear layer applications it is more convenient to express

equation (23) as

(L +E.4 ) w=0 (29)

where W can be interpreted in terms of island widths:

¢h(rm)

=
[

(30)
)

(r

¢

m+1" " m+1

When the size of the island produced at a rational surface is comparable
with the linear layer width, non-linear effects become important in the

layer. Non-linear layers typically obey equations of the form19’20

dwm
AT Ah(¢h' —) 7 (31)

dt

and substitution of Eg.(31) into Eg.(29) yields coupled non-linear

equations for ¢m and qh#1.



In the following sections we apply the general linear theory to a
number of interesting cases. We also describe analytic and numerical
techniques for obtaining the information that determines the matrix E

~

governing the stability of toroidal tearing modes.

III Toroidal Coupling of the m=1 n=1 and m=2 n=1 tearing modes

It is commonly believed that the (m=1, n=1) and (m=2, n=1)
tearing modes are particularly significant in a tokamak. The interaction
between these modes due to toroidal coupling may well play a role in
sawtooth oscillations and disruptions, the most obvious manifestations of
mhd activity in a tokamak.

In the tokamak limit of a cylindrical plasma the resistive (m=1, n=1)
mode has a particularly large value of A'.21 Indeed A; is inversely
proportiocnal to the potential energy, 6WC, of the ideal internal kink

mode

Mo o~ g2 (32)

A similar feature occurs for a large aspect ratio B ~ g2 tokamak when

6Wc+ 826WT, where ¢ is the inverse aspect ratio of the g = 1 surface
1 1 P

and 6WT, a truly toroidal quantity, involves coupling of m=1 to m=0
and m=2 harmonics.

It is possible to develop a systematic expansion to 0(e2) which
describes the coupling of the m=1 and m=2 modes and involves the m=0
but excludes the m=3 harmonics. One can then apply the three mode, two

resonant surface formulation of Section II directly to this problem.



It should be noted that the ‘'continuous ¢' approximation implicit in
Section IT is still valid for the m=1 mode, despite the large value for
A; (see Appendix B).

To discuss this problem we require the explicit forms of Eq.(6) for
three coupled poloidal harmonics in a large aspect ratio tokamak
equilibrium with £ ~ g2. The details of this equilibrium configuration

have been given in Ref. 22 and the appropriate marginal ideal mhd

mt+1 1

equations are derived in Appendix A. The operators Lm’ Km and Km?—
appearing in Eg.(6) then take the form given in Egs.(A.18) to (A.20). It
should be noted that these equations differ from those of Ref. 17 which

did not allow for a perturbation in the toroidal field.

In order to describe the 0, 1 and 2 harmonics we set m=1 in
2q.(6) and (A.18-20). As a convenient set we choose the basis functions
of Eq.(7) . gl, QQ and ga to be the regular m=0, 1 and 2
solutions at r=0, &“ to be the small (in the Newcomb sense) m=1
solution at the g=1 surface and $5 the small m=2 solution at the
q=2 surface. Toroidal coupling, of course, generates other harmonic
components in the g}.

The calculation of « B and vy appearing in relation (25)
requires integration of Eg.(6) and (A.18-20). An analytic solution,
though rather tedious, is possible because of two special properties of
the m=0 and m=1 Fourier components. To be specific, since the m=0
solution regular at the origin is a constant in leading order in g, it
is clear from Egs.(6) and (A.18-20) that the m=0 component does not drive

any m=1 or m=2 harmonics to 0(€). Furthermore ¢$(rl) ~ 0(52), since

the reqular m=1 solution at r=0 is ¢12 = r(1/q - 1)c + 0(e?) where ¢



is a constant, and thus is almost entirely the small solution at aq=1.
The remaining quantities needed can be calculated analytically by
integration of Eqs.(G,A;18—20) with appropriate boundary conditions.
Since the result is not novel we do not reproduce the details.

We find that relation (25) can be expressed in the compact and

physically meaningful form used in Ref. 15.

Ll 2 ) =0 (33)

2
r4)! 31 Sy
2. T i . . . 23
Here g, W is the potential energy of the ideal internal kink mode

8a(b-c) + 9/4(b=-1) (1-c)-6(b=1) (c+3) (B _+0)-4(c+3) (b+3) (B _+0) 2
ST = P P (34)
16 (b-c)

c
Aé is the cylindrical A' for the m=2 mode, &W,, is a coupling

integral
. (b_(rl) 3
Sy, =~ ____[(13P+ N(b+3) +2 (b-1)] (35)
2 ¢ (ry) 4
where
T Ty
2 3
sz_g'z'“— ERE) 5 oae= [EETL-1) (36)
Be(rl) . rldr r, . ry ry q

- 15 =



s, = (r/q) (da/dr) g, = "1/, (37)
1 1 R

— ’
r rl

and the quantities b and c¢ are given by

a
b=r§1._1ng_ c=r—_1n g (38)

dr dr
ry- i+

~-1
with £ = [r[1/q - 1/2)J Gy v where (_ is a cylindrical m=2

solution vanishing at r=0 and ¢+ one vanishing at g=2.

The structure of the relation Egq.(33) between Al' and Az' depends
on the parameters AQ'C, elzéwT/sl2 and 512(6W12)2/512. The eigenvalue
equations result from inserting appropriate layer models for Al' and

Az'. Rewriting Eq.(33) in the form of Eg.(25),

2 2 2
s, &y o sy OW,,
(£10)" - ———)(zoty' = xp8,"" - ) - (— ) =0 (39)

T T T
5126w oW €1 oW

we can identify analytic expressions for «, f and Y. Eg.(39)
indicates that, at least for resistive layers (3), coupling of the m=1

and m=2 tearing modes is unimportant, although coupling to an m=2

Fourier component is an important ingredient in the calculation of 6WT

and therefore in the stability of the m=1 resistive mode. For typical
tokamak parameters, and a simple resistive layer, the 'm=1 mode' is

unstable with a growth rate scaling as g—1/3

when q, < 1. However
as observed in Ref.15, Eg.(39) also suggests that at tight aspect ratio

and for low shear at the g=1 surface, coupling of the m=2 and m=1



tearing modes should become significant. Nevertheless an unstable
resistive tearing mode remains in a large aspect ratio tokamak even when
o oL . . ’ . ;

6" > 0 (i.e. the ideal internal kink is stable), since the hyperbola

(39) still has at least one branch in the first quadrant.

Iv Two Coupled Tearing Modes

In this section we consider the toroidal coupling of two tearing
modes, m and mt1, in a large aspect ratio tokamak. We can again apply
the formalism of Section II for three modes and two resonant surfaces so
that the m-1 harmonic is non-resonant. The relevant equations for the
large aspect ratio tokamak are again (A16-A20) of Appendix A.

The relation (25) between Aﬁ and Aé+ will, in general,

1

approximately decouple into A& =a A = B since the coupling term

'
m+1
¥ oo e2. However a significant interaction between m and m+1 will
occur if either a or B ~ €2 or if q ~ B ~ e. We focus on this latter
situation and obtain a dispersion relation involving coupling integrals in
terms of the m and m+1 cylindrical tearing mode solutions.16
Again we define solution gl to be pure mt1 harmonic at the

origin, %2 to be pure m and 93 entirely m-1, while EH and $5

are the small m and m+1 solutions starting from rm and rm+1,

respectively. Clearly cylindrical values of A' obey the relations
2 ' C 2 L - )
¢h (a) + Am L (rm) ¢h(a) 0 (40)

T C R R L C

5 _
o1 Yme1Fmer?) Ve (@) =0 (at)

so that the case we are considering corresponds to a special ordering

- 17 -



¢§(a) ~ %i+1(a) ~ g. This is complemented by the results

1 ~ 13 o 45 = 2 ~ ~ 1 -
q:m(r) ¢m(r) cbm(r) £ . ¢m(r¢a) wm(r) 1 ;

1 & il e 2 ~ M ~ 3 el
¢m+1(r#=a) qJrrl+1| () 1. ¢m+‘l (x) qJm+1 (el € g = o
(42)
1 P . e 2 ~ b oy 3 Y
¢hr1 (r) th1 (x) €% 4 45?1 (r) ¢h—1 (x) € s ¢h_1 (r) 1
generated by the couplings in Eg.(6) and Eq.(A.18-20).
Inserting this ordering into the relation (25) results in
] - 1 c L} - lc ==
[Am b )(Am+1 Bt ) = Iyl (A3
where
2 1
¢= . (a) gr(a) .
T, = m+1 , 1, = m (44)
roo(r ) ¢ (a) $2 (r ) ¢* (a)
m+1 m+ 1 m+1 m m m

%; (a) and ¢ﬁ+1 (a) can be evaluated by solving Eq.(6) and Eg.(A.18-20)
using the method of variation of parameters. This requires solutions to
the homogeneous equations for ¢ﬁ and qﬁ*1 which are of course
cylindrical equations. As the two independent homogeneous solutions in
each case we choose one vanishing at r=0 and the other at r=a. The
resulting integral expressions for ¢$ (r) and ¢§+1 (r) 1involve a
principal part prescription at the resonant radii T and r o1

respectively. [The apparent second order poles in the integrands arising

from pressure gradient terms in Egs.(A.18-20) are reduced to first order



by cancellation of the numerators at the resonant points-] These provide
expressions for I, and I, (which are related by the self-adjointness

property of the ideal mhd equations) leading to

- c 1 _ mC = 12
(Am 4; J(Qw+1 Am+1 ] . {43)
] a
:- (f elzatggar,
¢m(rm)¢h+1(rm+1) 0

1
+ = (za" + A+ f_)((m+1)¢;n¢m - mg )
2 R
m(m+1) ¥
T T (a1 +'§§) %n%n+1]
2 Rp'q r ¢'¢ r ¢ ¢ (1+s)¢ ¢
+ P f ar [ m mt1 + m m+1 e l m mt1 ]} (46)
2 (C-2) (C-2) 2-3)d-2
v g mFT g m g m’'g  mtil
where P denotes a principal part integration, ¢ and 4h+1 are the

cylindrical tearing mode eigenfunctions, prime denotes a radial derivative
and A' 1is the conventional notation for the Shafranov shift. In this
expression 4h is defined in the range 0 € r < r, as the cylindrical
solution which vanishes at r=0 and in the range rm £r ¢ é as the one

which vanishes at r=a, and similarly for ¢

L] ]
e Because Ah and %w+1
are 0(g), ¢m and %w+1 have almost continuous derivatives at rm and
Lo respectively. The result, Eg.(46), is a finite pressure (BP ~ 1)



generalisation of that given in Ref. 16, and can be computed using only
cylindrical solutions.

The only toroidal effect in Eq.(45) is the quantity I which
measures the displacement of the hyperbola from the cylindrical
asymptotes. Since 12 > 0 this displacement produces a branch of the
hyperbola in the upper righthand quadrant relative to these asymptotes.
At least for the simple layer model (3) we can conclude therefore that

toroidicity has a destabilising influence in this limit.

v Toroidal Coupling of Tearing Modes at Finite Pressure

The Egs.(6) with the results (A.16)-(A.20) can be used to investigate
the effect of toroidal coupling in the presence of a finite pressure
gradient. Indeed, for simplicity, we retain only toroidal effects
due to pressure, i.e. we assume € < EBP < el/3 yhere the upper limit
allows us to ignore coupling to elliptic distortion of the magnetic
surfaces induced by pressure-z4 Egns.(A19)-(A20) describing the L, and

K operators then simplify:

ek 1 d ad g m(m+1) m+1 d
o e = — e ] e — [ 0 D]
dr dr pix 2 dr
m dd d Rp'q (m+1)g¢
e (rA" + A ) m+1 B s m+1
2 dr dar rBy? (m+1-nq)
' 1 2
i Rp'q ng d [qcbmH ] - Rp'q ¢ .4 (m+1)ng
502 m - ng dr m+1-ng 502 r (m-ng) (m+1-ng)
(47)

= 50 =



d dp__.  mlm-1) m-1 d

m=1
K ¢ o= — [xa ]+ AT e . T
m m-1 ar ar " m—-1 2 ar m-1
m d¢ d Rp'q (m-1)g ¢ _
s ) e ok
2 dr dr rBO2 (m-1-nqg)
' ' 20 m—
. Rp'q ngq d [q L i Rp'q ¢, na®(m-1)
BU2 (m-ng) dr m-1-ng 302 r (m-ng) (m-1-nq)
(48)
d da 2 1 v
Sa a2 m%g2 Rp'q Rp'g ]
L,¢ =—224 - + (=) AY]
dr 2 dr (m—nq)2 r B02 BU
¢ mg d Rp'q 272
+ 2 {aa + +%r(_1..)lﬁ'2}
(m-nq) dr By? g 9
m? . 1
2 ¢m_ '_2A'Z+§IA"(I'A" o 2Al)] (49)
r

It is evident that the pressure gradient introduces higher order
singularities near the resonant surfaces than occur in the absence
of pressure (or in the cylindrical limit). The nature of the
singularities can be understood by expanding the equations around the
resonant surfaces rm+1, rm and rm_1. We find that near the surface rm

the solutions behave as

¢ ~x X =r-r (50)

-~ 21 =



where p(p-1) ~ O[(EBP)“], consistent with Ref. 24. Thus the Mercier
indices12 are p = 1 and p_=0 since our equations are accurate only
to 0[(EBP)2]. As computation is simplified by having By = 1 and

p_=20 exactly, we add an 0[(5Bp)“] term to Lm to ensure that this is

so; this modification will not have any other significant effect on the

solutions. Near the other surfaces «r however, we find

m+1’

(51)

where p(p-1) ~ D[(sﬁp)z], inconsistent with the correct result.24 This
is because the truncation at three harmonics leads to a lack of symmetry
between rm and rmt1 which can only be recovered by includ%ng m*2
harmonics. By examining the influence of these near the resonant surfaces
rmt1 we find that their effect on the Mercier indices can be simulated

by appropriate modifications of Lm+1 in 0[(559)2], with the result

that Eg.(51) is replaced by the correct form. Further modification of
Lmi1 in 0[(£BP)“] again ensures B, * 1 and p_ = 0 exactly. The
details of these modifications will appear in a later publication.

The resulting equations have been solved numerically. The three
second order equations are first written as a set of six first order
equations for ¢k, a, = r¢k', with k = m-1, m, and mt+il. The three

basis solutions ¢1, gz and $3 correspond to the following boundary

conditions at p = r/a = 0.
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| | R L 1l = 1 _ 1 = 1 =
q’ P« um mp , ¢m+1 0, um+1 0, qu'l'l""l 0, um_1 0

2 22 o 2 o 2 - 5 _ 2 _
¢h—1 P * Y- (m=1)p ! qﬁﬁ1 0, Yt o, qh 0, Y g

R Y L, S < R 3 = 3 -
q)m+1 L e (m+i)p ¢m—1 R Y1 B by = 0s e = A

(53)

However the resulting equations for uk' are driven by combinations
of terms which, individually, are singular as (p - pm_1)‘2 near the
resonant surface Pra=1 but cancel to produce a weaker singularity
~(p - pm—1)-1' It eases the numerical integration near Pr=1 to achieve
this cancellation analytically rather than numerically by introducing, in
place of L and u . quantities which make it explicit. Thus we
switch to new dependent variables at a point Py before reaching pm_1,
to further new variables at a point py between Pra=1 and Py and
finally to yet further ones at a point p3 between pmand Prte? These
rather tedious details will be described fully in the later publication.
The results are of course independent of the precise positions of P1s Po
and p; as has been verified numerically.

With these procedures the eguations have been integrated by a
shooting method and the quantities %n(1) ¢m_1(1) and %n+1(1)' which
contain the information for constructing the hyperboloids, evaluated. In
particular we show in Fig.3 the hyperbola for Az' and A3' for a case
with a q profile given by g = 1.1(1 + 2p2), possessing two rational

surfaces when n=1, and a pressure profile P = 90(1 - pz) with

BDR/a = 0.08 where By = 290/32. As an illustration we have used the

simple resistive mhd layer theory of Eq.(3) and, assuming the resistivity
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profile varies inversely with the current profile, have calculated the
variation in growth rate with 50R/a the results being shown in Fig. 4.
This shows that increasing toroidal coupling due to pressure gradients
further destablises the m=2 cylindrical tearing mode. In fact the
asymptotes of the hyperbola A& = a and A&+1 = B both show
destabilising trends as BGR/a is increased, in addition to the
destabilisation inherent in vy as discussed earlier in the context of 12

of Eq.(45).

VI The Use of Initial Value Resistive MHD Codes to Compute the

"Toroidal A'"™

Recently several codes have been developed which solve the resistive
mhd eguations in full toroidal geometry with no ordering

10,1
011 These codes have been very successful in studying a

assumptions.
range of problems. However they implicitly treat the resonant layers in a
simple resistive mhd approximation which is, of course, inappropriate for
a high temperature plasma. In this section we describe a method of
extending the validity of these codes to a more realistic description of
the resistive layer.

We exploit our understanding of the structure of the toroidal tearing
mode eigenvalue problem described in Section II to obtain the structure of
relation (4) from the output of an initial wvalue resistive mhd code. To
elucidate the method we consider a situation with two rational surfaces
labelled by m and m+1 so that our objective is to determine a, B and

y which relate A& and A&+1 in Eq.(25). Since we employ a resistive

mhd code these quantities must match the corresponding quantities Am(m)

and Am+1(m) appropriate to resistive mhd layer models at the two
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resonant surfaces (given by Eg.(3) at low f or the finite p formulation
discussed by Glasser et al in Ref. 12). A calculation with an initial
value resistive mhd code for a particular equilibrium and a given
resistivity profile mn(r) will yield a tearing mode fregquency  , though
only the wvalues of 1 near the two rational surfaces affect the value of
w « Then evaluating Am(w) and Am+1(w) for the appropriate resistive

mhd layer model, equating them to A; and A&+ respectively and

1
substituting them into Eg.(25) provides one equation for a, B and ¥y .
Two more relations can be obtained by repeating the process for two

different resistivity profiles, while retaining the same mhd equilibrium.

These three relations are sufficient to determine o, f and vy .

Geometrically the procedure is equivalent to finding three points on a

hyperbola, which are then sufficient to construct the whole curve. As a
check on the accuracy of the method the resistivity profile can be varied
once more to confirm that the values obtained for a, B and vy produce
the correct eigenfrequency. The essence of the method is that changing
the resistivity profile affects the layer response and the eigenvalue but
not the values of «, B and y which are determined by ideal mhd
properties. Of course the equations used in‘the initial wvalue code should
reduce to the marginal ideal mhd equations outside the layer. Furthermore
the form they take in the resistive layer should allow w to be sensitive
to A' and not to be completely dominated by the properties of the

layer.

To test the method we have used the initial value code FAR,11 which
solves the incompressible resistive mhd equations in full toroidal
geometry, with no ordering assumptions. The equilibrium for the case
described here, has an aspect ratio of 10, zero (B, and a current profile

as shown in Fig. 5 with 1.3 < g € 3.6. For this situation the layer
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results A(w) are given by Eg.(3). The hyperbola relating Aé and Aé

for this equilibrium, which can be expressed as

(Aé = 7.11)(63 - 8.73) - 0.45 = 0, (53)

is shown in Fig. 6. The crosses in this figure are the three points
determined in the manner described above and used to fit the hyperbola,
while the open circles are determined using other profiles of resistivity
n(r) ; the extent to which they lie on the hyperbola is a test of the
validity of the method. We are able to obtain points on the lower left
branch of the hyperbola because the FAR code can also calculate
subdominant eigenvalues.10 The greater deviation of data points from the
lower hyperbola is almost certainly related to the increased difficulty in
obtaining converged results for these subdominant eigenvalues. We note
that the equivalent cylindrical equilibrium yields Aé = 7.15 and

Aa = 9.1 and thus the asymptotes have decreased slightly due to the
toroidal effects. However the toroidal coupling effect arising from

Yy = 0.45 1is destabilising. The net toroidal effect on stability is seen
to be a competition between these two opposing effects so that no general
conclusion can be drawn.

It is clear from Fig. 5 that the case considered above had a current
profile with 'shoulders' in order to make both asymptotes positive. This
allowed us to examine the structure of both branches of the hyperbola with
the initial value code, whose range for growing solutions is limited to
the upper right quadrant of the Aé - Aé plane. However the Aé
asymptote is negative for more typical tokamak equilibria and we are
presently examining methods of extending the range of the FAR code in the

Aé - Aé plane. We also avoided many of the problems associated with
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evaluating the average curvature etc., in the dispersion relation of Ref.
12 by considering the case of zero f§; for finite f these quantities
will also require numerical evaluation. Finally we note that aithough we
have only considered a two rational surface case the extension of the

method to three or more surfaces is straight forward.

VII Discussion and Conclusions

In Section II we discussed the general structure of the axisymmetric
toroidal tearing mode problem for those circumstances in which it can be
separated into a matching problem between marginal ideal mhd solutions and
resonant layer solutions. This discussion was simplified for clarity but
possessed the essential features of the more detailed analysis in Appendix
B which resembles the approach employed in Resistive PEST.14 For k
resonant surfaces our description of the ideal mhd aspect leads to a
single relation (a k-dimensional hyperboloid) between the k quantities
Aﬁ representing discontinuities at those surfaces. Insertion of
realistic resonant layer expressions into the matching conditions Aﬁ =
Ak(Y) then leads to the appropriate dispersion relation for the growth
rate +vy. In this paper we have emphasized the structure of the ideal mhd
aspect and discussed procedures for calculating the appropriate quantities
defining the hyperboloid.

In particular, as an illustration, we have described the example of
three poloidal fourier harmonics, m=1, m and m+1, with two resonant

surfaces at r and r a situation relevant to a large aspect ratio
m

m+1’
tokamak - in this case a simple graphical representation of the hyperbola
for A' and A is instructive.

m m+1

The toroidal coupling of the important (m=1, n=1) and (m=2, n=1)

modes (a situation previously discussed in Ref.15) is covered by this
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case. Because of the typically large values of A; ~ g2 there can be a
strong interaction between the two modes when there is low ‘shear at the
g=1 surface even though € << 1, as shown in Section III. For other
pairs of tearing modes the coupling is weak unless AA and Aﬁ+1 are
both 0(g), In Section IV we obtained a semi-analytic description of the
properties of the hyperbola for such a case. This involves coupling
integrals over cylindrical eigenfunctions and generalises the results of
Ref.16 to finite pressure. Toroidicity is seen to be destabilising in
this limit. More generally we must resort to numerical solution of the
ideal mhd equations and in Section V we give an interesting example
involving finite pressure gradients. This feature introduces additional
singularities at the resonant surfaces and we have manipulated the
equations in such a way that a numerical shooting scheme can be used
successfully. BAn example of the stabilising influence of finite pressure
is given.

These examples have all referred to a large aspect ratio tokamak
equilibrium. Though conceptually easy and in some ways practically
relevant, this is clearly not entirely adequate. Nevertheless, our
formulation has indicated how one might use initial value resistive mhd
codes in realistic geometry to deduce the information needed for our
hyperboloids, as described in Section VI. This can then be used in
conjunction with realistic representations of the physics in the resonant
layer to provide a correct description of tearing modes in a- torus. An
example, using a finite aspect ratio, low f equilibrium, is given to
illustrate the construction of the hyperbola in a case with two resonant

surfaces. 1In this example it was seen that the net effect of toroidicity

on stability arose as a competition between stabilising effects from «
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and B and a destabilising effect from y so that a general conclusion
cannot be drawn.

In summary we have described the structure of the asymptotic matching
approach to tearing modes in an axisymmetric torus. We have given a
number of illustrations of the calculation of those properties of the
ideal mhd solutions needed to discuss this problem. These technigques,
combined with a realistic model for the physics in the resonant layer,
provide the equipment for a complete solution of the tearing mode

stability of a toroidal plasma.
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Appendix A

Marginal Ideal MHD Equations

In this appendix we derive the linearised marginal ideal mhd
equations, displaying both the exact equations in the appropriate
coordinates and the large aspect ratio limit of these equations retaining
corrections to second order in the inverse aspect ratio.

The coordinate system, r, 6, ¢, where $ 1is the toroidal angle, ©
is an angle like variable in the poloidal plane and r is a flux surface
label with dimensions of length, is chosen so that the magnetic field
lines appear straight. The Jacobian for these coordinates is given by23

2
7 v (A.1)

Ry

where R is the major radius and R is a conveniently chosen average
major radius. The axisymmetric equilibrium magnetic field satisfies

Vp = J x B so it can be written

B = B RolE(x) Vo x Vr + g(r) Vo] - (B.2)

The safety factor, the slope of the field lines in the 6 - ¢ plane is

then given by,

rg(r)
Rof(r)

. (A.3)

glr) =
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The equilibrium Grad-Shafranov equation takes the form

2 2
10 (we]we| )+ 12 (wroveewr)+ @4 RD Ry

2 2
r Or r 06 £ R,“ B f

' (A.4)

where primes denote differentiation with respect to r.

Assuming that an axisymmetric equilibrium solution of Eq.(A.4) has
been cobtained, we consider ideal perturbations of this equilibrium with
toroidal mode number n satisfying Vp = J x B. We eliminate the
poloidal and radial perturbed magnetic field by some lengthy algebra and

we obtain the coupled equations,

o} .
3_. [(_ - 1nq)y] = a_[Q_a.E] + Sz - 6_ [T(_a._. = inq)y + Uy] (A.5)
or 06 06 26 06 26
and
(6_ - ing) B . (a_ - ing) T PR 4 52 - (a_ - inq)V(_a_. - ing)y
20 or 20 00 26 00 06
+ w(@ - ing)y + xy La-6)

09

for the dependant wvariables vy = Rof E.Vr and z = Rz&i. \7(15/3(J where g
and GE are the displacement and perturbed magnetic field respectively.
*

Q, S, T, U, V, W and X are equilibrium quantities (with T being the

complex conjugate of T )
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Q =
in r[Vr'2
s = in r
Ry
o = ve-W_Lﬁ g'
IVr|2 in r flVr12
g - 1 p' R2
‘vr!2 BUZEQ RL]2
rlvr|2 RZ in f
g = 29 @ 1 B _3
£ 32f2|Vr|2R2 or £
. 2 2 2
g = mpt @ gt Ry D RN RE Oy g 2] @
B,22 Ry 088 Ry or Ry2° Ry?fdrr R,?

An important observation is that Egs.(A.5) and (A.6) are both first order
differential equations in the radial variable.

In many cases it is more convenient to write Egs.(A.5) and (A.6) as
an infinite coupled set of equations for the poloidal fourier harmonics.
Each poloidal fourier harmonic obeys an equation of the form

©

®lm-nqy ] = F (8" 2z +c" v} (2.8)

m k
or k===
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k
(m - nqg) E;E = E-w { D z + E myk} (A.9)

k k k k .
where the coefficients Bm' Cm, Dm and Em can be derived in a straight

forward manner from Egs.(A.5), (A.6) and (A.7).

In a large aspect ratio (i.e. & = r/R << 1) tokamak equilibrium with

circular surfaces and § ~ 0(52)22

M2 32 A
[Vc|2 =1 - 20800088 + (= + 25 4+ 2 )4 g(ed) (A.10)
2
2 4R2 R
Ve v8 =1 (ra" + A" + T) sin6 + 0(ed) , (A.11)
r R
0
R2 2r 2A _ rA' | 1 22
_2.=1-__.cose-(__+___+____2.)+0(g3), (A.12)
R, R, Ry B; 2R
1 _ 2R, p' 3 1,
A = - Q P q2 - [_ + Zq(_) ]A' (A-13)
R, r BU2 r q

The two arbitrary functions p'(r) and q(r) specify the equilibrium and
A(r) is obtained from Eg.{(A.13). In lowest order the Grad-Shafranov
equation yields g = 1 + 0(g2), since f ~ 0(g) and p'/BU2 ~0(e?). To

0(e?) Egs.(A.8) and (A.9) simplify since

m m m m
Bm P Cm . Dm i E ~ 0(1)
(a.14)
+ + + +
Bm_1 ) Cm_1 ) Dm_.1 ) Em_1 ~ 0(e)
m m m m
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After some lengthy algebra using Eg.(A.4), we obtain from Egs.(A.8) and

(A.9),
_m+1 m-1
Lo Y0t Pm2 0 T ¥ et T S i1 (#-13]
where
= - A.1
b, = (m nq)y (A.16)
m+1 m- .
and the operators L , L _, K and K are defined by
m m2 m
a dg m?2 mg ¢ a 14 r2
m m
Lo Y= — R I P M. N (S (A.17)
dr dr r (m - ng) dr r dr g
A d dd 1 m(m+1) r. m+1 d r
n bniq = A ——F (8 + =gt — —[leam + o v =]
dr dr r Rg 2 dr Ry
m r d¢ d Ryp'g_ (m+l)q ¢
0
B (I'A" + A"+ —_) m+ 1 e : m+1
2 R, dr dr rB [m+1 = nq)
L} ]
) Rgp'q ng d  ad .4 ) Rep'q ¢ ., nalmtliq
302 (m - ng) dr (m+1 - ng) BO2 r (m - ng)(mtl - ng)
(A.18)
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d d¢ 1 m(m-1) r m-1 r

Km—1¢m—1 = —[rar "]+ (" + —)o,_4- "“E-[¢m-1(m" + A —)]
m dr dr r RO 2 dr : RU

i rod¢ d  Rgp'a (m-1)q ¢__

- —(ram + 2+ ) i I [ i
2 R, dr dr r302 {(m-1 - ng)
R p' n d R.p' ng(m=1

. oP'd a [q b4 ) (L O qa(m=-1)q
8,2 (m - nqg) dr (m-1 - nq) B,22 r (m- ng)(m-1- nq)

(A.19)

and finally
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d 1 A r?2 3 n? aq

Lo = — (- a2r—+— (- —)]r
o2 dr 2 Rg RQ2 4 m2 dr
¢m m2q2 ZRUp'q Rop'q 1 r 1
= { rr(=) st — (= - 1)}
(m - ng? = B,2  B,2 q R g
¢ mg d Rup'q 2 r 3 n2 r? A
P — {22 e et = B2 8 [ + —]
(m - ng) dr 502 a Ry 2 m?2 R02 Ry
1 A 3 3 n2 r?
~r( ) - -2 - =) =)
q Rl} 2 4 m RU
¢ 1 Rgp'q Rp'q r2 1
- s [(m + nq) + (') 2n(R0g'q2)]
(m - ng) r 502 BU2 Ry g
b (m + nqg) 1
- (rg')rq[_.)'
(m - nq) r q

2 2
- b B j2a'2+ Toramear + 28" + 2 (ap' + ram) + A &2 LJ
r 2 RO R, 4 0
q)m ) d
- T [Rog'q] - ¢ —(rg") (A.20)
r dr
- - 2 m+1 . m=1 -
Clearly Lmo 0(1), Lm2 0(e=), Km 0(e) and Km 0(€e).

Eqs.(A.16) to (A.20) provide the equations discussed in Sections III-V.
As a check on the complicated algebra we have also derived Eqgs.(R.16) to

(A.20) from a minimization of the energy integral &W for these modes.
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Appendix B

General Theory of A' in a Torus

In this appendix we develop the general theory of A' in a torus
and show that the simplified cases treated in the text illustrate the
essential generic properties of the problem. This theory encompasses all
modes for which the perturbation can be described by the marginal ideal
mhd equations at all points in the plasma except in the vicinity of the
rational surfaces. Boundary layers at the rational surfaces are assumed

to permit discontinuities in the small and large solutions of the ideal

equations. The matching of the ideal solutions across the boundary layer
determines a relationship that these discontinuities must satisfy. This
relationship (like matching to A' in a cylinder) contains all the
external information needed to determine linear stability; stability can
then be discussed for a variety of layer models without recalculating the
external solutions. The structure of this relationship between the
discontinuities and how it can, in principle, be calculated, is the
subject of this appendix.

The marginal ideal mhd equations, obtained from the linearization of
VP = J X B, are given in Egs.(A.5) and (A.6) of Appendix A. The poloidal
variations are represented there by a Fourier series which is truncated at
N poloidal harmonics, the accuracy increasing with N . These poloidal
harmonics obey the first order equations, Egs.(A.8) and (A.9).

First we consider the behaviour of the solutions to Egs.(A.5) and
(A.6) near a rational surface rs where m'/n = q(rs). Ordering
r-xr_=x~ 0(8 with 8<< 1, so that dy/dr and 03z/dr ~ 0(5 1),

Egs.(A.5) and (A.6) are expanded in & to obtain
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y = (CLsignxlxlp- + Cslxlp+]eim'e + y(8) + 0(8) (Be1)

and similarly for =z . ;(9) is a solution which is finite and
continuous through the rational surface, but discontinuities are allowed
in CL and CS' the coefficients of the large and small solutions. The

Mercier indices p_ and p_ are,

1
p,=- - + v =D (B.2)
x M
2
where
' 2 2 ' 2
DM=-l+q_ P° (R ' >3 (2 2R 12
4 q' Bo2f2 R02 Ivrlz q|2B02f2 RU2 Ivr|2
Ry r)21<a(R2 _®2 o £y, . R%WZ R
22 2 2 2 2 2R .2 2
B2 q'? Ry £° 0 Ry Rg2 £ & x B (%R 2| Vx|
' 2 b 2 2
+ L; 2 1 v (_R > g 2R LI (B.3)
2 2 4 2 2 o 2 2
By’ 2 q'? Ry Rg"| ve| By2 Ry? | V2|
with
1 27
¢<A> = — [aea. (B.4)
2n -

The behaviour near the rational surface differs in some respects from the
cylinder. The resonant poloidal harmonic (i.e. the m' harmonic) has

contributions from the small, large and the continuous solutions. The
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contribution to the resonant harmonic from the continuous solution is
present because of toroidal coupling to non-resonant poloidal harmonics
and is therefore a purely toroidal effect. The presence of the continuous
solutions means that the solutions of Egs. (A.5) and (A.6) on either side
of a rational surface are not independent.

It is convenient to represent the discontinuities at the rational
surface in terms of their odd and even parts since layer equations are

usually parity conserving and therefore separate naturally in this way.

Let

|iTT’o v = {|x[P- + ,3_ [x|P+} sign x (B.5)
and

]irio Yoyen(X) = {ﬂ ]x‘|P- + ,xjp+} - (B.6)

A series of basic solutions is defined in essentially the same way as
in Section II. We consider a problem with rational surfaces at «r and
m

rm+1 where q(rm) = m/n and q(rm+1) = (m+1)/n. The basic solutions are
th

represented as N dimensional vectors x(r), where yk(r) is the k
poloidal harmonic. We define the first N basis solutions x}(r)
(1 €£i <€ N) to be independant and regular at r=0 and to have no

discontinuities in large, small or continuous solutions at the rational

; . . + ;
surfaces. Four more basis solutions are defined thus: yN 1 ymS(r) is

Y]

zero for r 1less than rm and propagates from rm as the small solution

N+2 L
only (i.e. no large or continuous solution); X =y (r) is zero for
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r less than rm and propagates from L with the large solution only.
+ + +4 + i .
XF = x? 1S(r) and XF = x? 1L(r) are similarly defined for the
th
(m+1) rational surface.

When 0 < r < rm we represent the solution as a linear combination

i
of the N basis solutions y

N

(x) = ) H B.7
wr) = ) a g () . (B.7)
i=0
In the region r < r < r the solution is
m m+1
N
. i mL msS
glr) = ] ey (r) + oL g (F) + ey (r) (B.8)
i=0

We define CmL to be the amount of large solution and CmS the amount

i ;
of small as r »r_ =-0. If C is the amount of large and Cl the
m mL msS

. . i
amount of small solution in Yy (r) at rm , then

N
Co = ) & Coo (B.9)

In the neighbourhood of the rational surface the large and small solutions
in Egs.(B.7) and (B.8) can be written as linear combinations of the odd
and even solutions of Egs.(B.5) and (B.6). Comparing these two

representations yields «a and « in terms of C C ' and
P ¥ L mS anf et S
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L )
- Am 0 0 1 @ s _, Am 0 CmL (5.10)
- ] - 1 *
0 T 1 0 amL 0 Iﬁ cmS
where I 1is the unit matrix. The solution for rm+1 < r < a, where a

is the radius of the wall, is

=]

_ v i mL mS
) = ) oa ) ey +oa o (r)
i=0
m+1L m+1S
oL L (£) + & . g (r) (B.11)
Proceeding at rm+ 1 in the same manner we find
1 ]
A'm+1 ¢ e 1 am+1S A'm+1 0 cm,+1L
I 10 "2l c 12y
m+1 %1, m+ 1 m+1S

and
=Jaq ct o ™ 4 g ™
m+1L i % “m+1L mL 1L mS m+1L
(B.13)
i mL msS
+ +
Cut1s E % Cne1s %1 Crr1s T %s Caris
i . ; ; .th ; ;
where cm+1L is the amount of large solution in the i basis solution
i= d CmL is th t of 1 luti i rr|I'( ) t
a r .q an 1L TS e amount o arge solution in y (r a

roe1” At the wall we impose the physical boundary condition Y = 0 which
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can be written in the matrix form

(B.14)

u?
IR
]
1
uto
R

where a is the vector with components ai(1 <i<N), A is the square

matrix

- j

E is a matrix with 4 columns and N rows

mS mL m+1S +1L
B, = (y (a), y (a), y (a), XT (a)) (B.16)
and
amS
v
at = mL (B.17)
%n+1S
{_a
mt+1L
Defining
T A" 0 0 oj
0 T& 0 0
g' = (B.18)
]
A 9 m+1 0
1
0 0 o m+1

Egs.(B.9) and (B.13) can be cast in matrix form
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Crrl.l'..

C

o = ¢ g + D o (8.19)

m+1L

cm+1S_J

i i i i

WRers Cap = Car' S ™ % P~ Cpanr gy = Gprgg 20 the

§ i mS mL
non-vanishing components of D are D31 = cm+1L' D32 = Cm+1L’
D, =c% 4 p,, =c™ From Eqs.(B.10), (B.12), (B.14) and (B.19
41 = Ca+1s an a2 = Spr1s° rom Egs.(B. i .12), «14) an «19)

we obtain

B+ 4-8)- -0 (5.20)
with
E = -F+C.a"l.B-D (B.21)
~ ~ ~ k=1 = =

where F has non-vanishing elements = F =F =F = 1/2. Thus

F12 21 34 43
the layer guantities satisfy the equation

(B.22)

uH
+
w;
a
Il
o

Eg.(B.21) summarises all the external ideal mhd information needed to

calculate the growth rate from a variety of layer models. The layer

. : [ — 1 = 1 =
physics yields %n %n(w), Am+1 Am+1(w), Pﬁ Iﬁ{w) and
F%+1 = ﬂw+1(m); substituting these expressions into Egq.(B.22) completes
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the dispersion relation.

For the frequency range of interest it is often possible to set
['= 0. In order to see this we consider a layer in which the
characteristic scale length and frequency are & and W and we define
scaled variables X = x/8 and @ = m/wo. In these variables the layer
equations have no large or small parameters and we obtain odd and even

solutions with asymptotic behaviour

p_  4.(Q) P

Yoaat®! = {jx| + || +} sign X (B.23)
2
- -
5(Q)  p_ P,
YoyenX) = | |x| T+ |x| 7} (B.24)
EE

in the notation of Ref. 25. Matching to Egs.(B.5) and (B.6) yields

A (Q)
&= +p - )
& T
(B.25)
(e, - 2_)
' = A(Q) &

where P, - P_ > 0. Since we expect that Q ~ 0(1) and A+ 3 0(1),
we see that A' is large and I' small. In fact, in resistive mhd2

Q <« 1 for A' ~0(1) and A is usually small, implying that TI' 1is
doubly small. Although one should examine the particular layer theory

involved to determine whether ['' is indeed small, we will assume the
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behaviour above. Of course, close to ideal instability boundary A' » =

and I" can become important, but, as this limit is experimentally

indistinguishable from the ideal mode, we do not consider it. Egs.(B.10)
. i ' = ield = d =

and (B.12) with T 0 yie @ 1 0 an . 0 and the

dispersion relation reduces to

I+ A'. E“I = 0, (B.26)

with E a 2 x2 matrix and Q' given by Eg.(20). Eg.(B.26) is
precisely the same as Eg.(24) of Section II, so that the hyperbolic
structure, Eg.(25), is generic to the two rational surface problem. Thus
the simplified problem treated in Section II, where only three poloidal
harmonics are considered, reproduces the correct form of the relation
between the A''s, Eg.(24), although the matrix E 1is only approximate.
The generalisation to M rational surfaces is straight forward. The
first N basis solutions are defined as before and at each of the M
rational surfaces two basis solutions are launched, one of which is purely
a small solution X?S(r) and the other is purely a large solution
ZjL(r). While the matrices A and c retain their earlier definitions,
B is redefined as a 2M column, N row matrix with the 2j-1th column
being xjs(a) and the 2jth being ij(a). The vector a' is such that
azj_1 = ajs and azj = ajL where a_s and ajL are the factors
multiplying xjs and ij in the eigenvector. The elementé of 2 are

is iL is

given by D2j-1,2i-1 = ch' D2j~1,21 = and

= Cnr P2j,2i-1 T Cys
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. L. .
D_. .. = C%L, where, for example, C% is the amount of small solution at
23,21 js ]S

.th ; ; . L .
the Jj surface in the basis solution Z? (r) which was launched at the

h
it surface as a large solution. Similar definitions hold for the other
- : : is _ _iL _ iL _ _is _ : : ; .
quantities, implying st = CjL = st = CjL =0 if 1 2> J. E and é

are 2M by 2M matrices where

1

F_. . =F_ . . =
23-1,23 25,231 2
(B.27)
F.. =0 otherwise
1]
] __.6 Al
i,23-1 i,23-1 j
(B.28)
A', , = 6, R i
i, 23 i,2j Jj
With these definitions we recover the expression
(L+ A'. E)e a' =0, (B.29)
= ~ = ~
where E = - F + c.a—l.B - D. The determinantal equation I+ A'. E| =0
= ~ == ~ = = ~ =~

now defines a hyperboloid in the 2M dimensional A'j. P'j space.
Again setting F'j = 0 reduces Eg.(B.29) to a hyperboloid of M
dimensions.

The definition of A' given in Eg.(B.5) is not the familiar
definition of Ref. 3 where A' 1is the jump in the ratio of large to small

solutions across the rational surface, although the two definitions
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coincide when I' 1is zero. However our definitions, Egs.(B.5) and (B.6),
simplify matching to parity conserving layer equations. Finally it is
interesting to note that the regions separated by a rational surface are
not physically independant in a torus since they are connected by the

continuous solution, whereas in.a cylinder they are disjoint.
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Fig.1 The radial structure of the main components of the five basis

solutions for the case of three poloidal harmonics and two

rational surfaces.
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Fig.2 The hyperbolic relation between A$+1 and A' showing the
m

- _ .
asymptotes Am = a and A;+1 = B and the coupling parameter vy.
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Fig.3 The hyperbolic relation between and AA when the toroidal

1
Arr|+1.
coupling is due to finite pressure in a large aspect ratio torus
with PpR/a = 0.08. Growth rates for the layer model of Eq.(3) are

given by an intersection of a line through the origin with the

hyperbola.
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Fig.4 The variation of normalised growth rate Y/Y0 with pR/a where

Yo is the growth rate in a cylinder.
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Fig.5 A current profile for an equilibrium with B =0, R/a = 10 and

1.3 < g < 3.6.
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Fig.6 The hyperbolic relation between and Ar:'t for the

1
Am+1
equilibrium of Fig.5 calculated using the FAR code. Crosses are

the points used to construct the hyperbola and circles are checks

on the validity of the method.






