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1.Introduction

This paper describes the construction and use of a numerical simulation
code ('MERCURY') that models 3-dimensional, non-linear, resistive,
incompressible magneto-hydrodynamics (MHD) in a periodic cylinder. 1Its
purpose is to discuss the considerations of algorithms, implementation and
optimization involved in such a code, to point out the strengths and
weaknesses of the choices adopted here, and to indicate the scope of the
calculations that may be performed.

The cantext of the present work is that of Controlled Thermonuclear Fusion
research, in particular the study of processes that occur in laboratory
devices for plasma confinement using magnetic fields in toroidal geometry
[1]. The principal application [2] of the code has been to the classic
problem of the spontaneous reversal of the magnetic field in the Reversed
Field Pinch [3]- The code has also been used [4] to investigate certain
aspects of internal instabilities (sawtooth oscillations) in the JET

tokamak [5].

A fundamental problem for such numerical calculations is the enormous
range of time scales (10-115 - 1s) and length scales (10—6m - 1m) involved
in a real plasma. This puts an all-inclusive simulation beyond
computation and forces the use of a model plasma, simplified appropriately
for the phenomenon under investigation. In particular, for macroscopic
motion it is conventional to adopt the simplest description (the MHD

model), in which the plasma is regarded as a single electrically



conducting fluid. Although this simplification is often hard to justify

formally, it is widely accepted as a convenient basis for discussion [6].

The main feature of the present MHD model is the further assumption of
incompressibility. The reason for this choice was not directly that of
simplifying the numerical problem, but rather that of providing a
particularly clean physics system with which to discuss the field reversal
problem, under the assumption that it is a gross electromechanical effect,
not essentially altered by detailed plasma properties. Insofar as
incompressible codes do give field reversal, this hypothesis appears to be
justified, at least for the present purpose of gaining physical insight.
Further general justification is the fact that many plasma instabilities

are essentially incompressible.

Tt should be noted, however, that there are certainly detailed differences
between incompressible and compressible MHD models._ These have appeared
in comparison calculations [7] of field reversal (a paper open to
mis-interpretation in the view of the present author) and in calculations
[8] of non-linear m = 1 tearing modes, in which the incompressible model
shows saturation but the compressible model is known to reconnect

completely.

The assumption of incompressibility leads to a simplification of the
numerical problem because there is then no separate equation for the
pressure. Moreover, magnetosonic waves are completely excluded from the
system, thereby eliminating the corresponding numerical timestep
restriction, most significantly that from fast magnetosonic waves

propagating in the poloidal direction near the origin of a polar mesh.



Formerly, such restrictions were severe and forced compressible codes to
use significantly shorter timesteps than incompressible ones, which

therefore had a considerable operational advantage.

This picture has been completely changed by the recent introduction [9,

10, 11, 12] of the semi-implicit method [13] from meteorology into MHD
simulation. This practical technique now provides unconditional numerical
stability of magnetosonic and Alfvén waves and allows the timestep to be
determined solely by consideration of accuracy. It may therefore be
expected that future MHD codes for plasma simulation will be compressible
and semi-implicit. Since the current version of the present code does not
use the semi-implicit method, it will not be discussed further in this

paper.

A principal feature of the numerical approach is the use of a spectral
method in 6 and 2z, implemented using Fast Fourier Transforms (FFTs) .
This means that all harmonics are included in the calculation, up to the
inevitable limit imposed by the finite mesh. This is in line with the
application e.g. [14] of spectral methods in hydrodynamics. The use of
FFTs is then fundamental since the computational cost is O(N log,N) rather
than O(N2) for the direct interaction of N harmonics. FFTs have been used

previously in MHD calculations in [15].

It should be noted that this approach is different from that widely used
in plasma MHD simulations, namely the direct interaction of particular
Fourier harmonics ('modes') selected a-priori from an ordering tree. This
has arisen because it is often physically meaningful to study individual

modes, and this can be done simply by carrying only the required mode and



those that can be generated from it by the (usually quadratic)
non-linearities. The weakness of this approach is the difficulty of
extending it to the general case. For, if all modes are included, the
computational cost may become prohibitive. Conversely, if some modes are

excluded to reduce cost, the calculation has been biased from the outset.

Many 3D non-linear codes have been written over the years, starting with
the TRINITY code [16] of Roberts and Boris in 1969, and it is not the
intention to produce a complete list here. A review of such codes to 1981
may be found in [17]. Notable amongst these is the NONLIN code of Sykes
and Wesson, used to simulate field reversal [18] and tokamak sawtooth
oscillations [19]. Exgmples of later work may be found in [7, 10, 20, 21,
22, 23, 24]. Apart from the use of FFTs, the present approach is somewhat

similar to that of Aydemir and Barnes [20].

A strategic weakness of most of these codes, and the present one, is the
use of straight geometry on grounds of simplicity, instead of correct
toroidal geometry. This approximation may be acceptable for the
simulation of pinches (g < 1), but is probably less so for tokamaks

(g > 1), depending on circumstances. Non-linear codes using toroidal

geometry €.g. [23] are however becoming available.

The contents of the paper are as follows:
Section 1: Introduction
Section 2: Basic equations
Section 3: Numerical methods
Section 4: Diagnostic facilities
Section 5: Program optimization and testing
Section 6: Typical simulations
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2. Basic equations

The basic equations are those of single-fluid, scalar pressure, resistive
MHD with the assumption of constant uniform density and isotropic

resistivity and viscosity. They may be written in non-dimensional form

ov
+ (YWY =- % + j xB + i (1)

= T]‘

E+ 2B 5d (2)
%8

VXE = T o (3)

VxB = ]

po= 1

V'E= 0.

Elimination of E and j from (2) gives

= -1
— Vx(vxB .S.VXE). (4)

Here, dimensional quantities have each been expressed as the product of a

dimensional characteristic value and a dimensionless variable.



The characteristic values for length (xo), magnetic field (BO),
resistivity (np), and density (po) are regarded as primary values,
specified as input in S.I. units. The derived characteristic values are

then

current density: j0 = BO/(xOpO)
electric field: E, = xOBO/t0
velocity: By - B[]/(p,opo)l/2
time: ; t0 = xo/v0
pressure: pg = p0v02
viscosity: Vg = x02/t0
resistive timescale: tR = uﬂxUQ/nO

n
I

Lundgquist numbex: tR/t0 .

Note that the code runs on the Alfvén timescale. 1In this model, the
resistivity n is not a calculable quantity and must be specified
arbitrarily. Provision for a radial dependence m = n(x) has been included
for compatibility with experimental conditions. The use of an isotropic
resistivity (chosen on the grounds of simplicity) rather than the more

correct anisotropic form nl = 2n“ means that the paramagnetic effect [25]



is absent from the model. This may make field reversal harder to obtain

than it would otherwise be.

Equations (1) and (4) are the basic eguations for the present
calculations. There is no separate equation for the pressure since it is
fixed by the condition V.v = 0 and is determined by taking the divergence
of the momentum equation (1). Although viscosity is probably physically
unimportant for present purposes, as discussed below it has been included

to ensure the non-linear numerical stability of the code.

Even though the MHD equations are known to give only a very simplified
model of a real plasma; their use on the field reversal problem seems
eminently justified. For, given the robust nature of this remarkable
phenomenon, it is very likely that even a simple model will help clarify

the mechanism in a real experiment.

3. Numerical methods

This section contains a description of the numerical techniques used to

advance equations (1) and (4).

As stated above, a feature of the present approach is the use of a
spectral method and FFTs in the periodic directions 6 and z. The use of
spectral representations is motivated by the results of Orszag in
hydrodynamics calculations [26] which suggested that for smooth flows a
reduction of 1/2 in computational effort could be obtained, compared with
finite differences, for the same accuracy. Comparisons for MHD seem to

confirm this view [15].



The initial approach adopted in the code was pseudospectral. In this
method, equivalent to a truncated series expansion with a collocation
approximation, the emphasis is on the grid point representation and the
Fourier transform is viewed as an accurate means of computing derivatives
by transforming to k-space, multiplying by ik and then transforming back

to grid point.

The disadvantage of the method is its susceptibility to aliasing error
[27]. in which unresolvably short wavelengths, generated by non-linear
terms, re-appear erroneously as long waveiengths. In the present low
dissipation MHD simulations, these errors can lead to the rapid onset of

numerical instability.-

As a result of this experience, the spectral method was adopted. 1In this
method, equivalent to a truncated series expansion with a Galerkin
approximation, the discrete equations are obtained by minimizing the mean
square truncation error. An important consequence of this approach is
that the aliasing effect is excluded. The method has been implemented

by proceeding as for the pseudospectral method, but then setting to zero

at every timestep the top 1/3 of the available Fourier harmonics.

Conventional second-order finite differences are used in the radial
direction for reasons of simplicity. Since the flexibility of a variably
spaced mesh is largely unusable in a general simulation, an equally spaced
mesh has been used from the outset. As described below, the aliasing
error associated with the radial finite differences can lead to the rapid

failure of non-linear simulations due to the growth of an explosive



numerical instability. The viscosity term is needed for its suppression

in the present case.

This behaviour represents a considerable deficiency of elementary finite
difference methods for low dissipation MHD simulations and points to the
importance of non-linear numerical schemes that conserve quadratic
invariants identically. This has traditionally been ignored in plasma MHD

codes, despite its long recognition in other fields [28].
The sections below contain a discussion of the following topics:

1. coordinate system

2. time advancement scheme

3. linear numerical stability analysis

4. Fourier representation and spatial derivatives in 6 and z
5. radial mesh.and differencing in r

6. regularity conditions at the origin

7. boundary conditions

8. solution of the pressure equation

9. implicit treatment of resistivity

10. de-aliasing in 6 and z

11. radial aliasing and additional velocity smoothing

3.1 The coordinate system

The calculation is performed in a straight periodic cylinder using
cylindrical polar coordinates {r,e,z}. By choice of normalization,

r = 1 is the wall. The poloidal and axial ('toroidal') mode numbers are



denoted by m and n respectively. L is the periodic length in the =z
direction. The permitted axial wave-numbers k are therefore given by

kn = (2w/L)n. L/27 is the equivalent toroidal major radius.

The primitive variables (3 components each of B and v) are stored as

functions of {r,e,z}.

3.2 The time advancement scheme

There are 4 specific considerations in choosing a time advancement scheme
for the present problem: complexity of implementation; maintenance of
V.B = 0 and V.v = 0; rumerical stability at large S, i.e. small physical

dissipation; numerical stability at the origin of the polar mesh.

Considerations of complexity clearly favour explicit methods and implicit
methods that produce only linear tridiagonal equations. Although fully
implicit, non-lineax, 3D MHD calculations have been attempted [29], this
difficult approach does not appear to hold any obvious advantage,

especially with the availability of the semi-implicit method.

The requirement of solenoidal v may be met by the use of the standard
MAC method [30] for incompressible flow, in which the pressure is
corrected at each timestep. The requirement of solenoidal B may be met
either by the use of the vector potential or, as in the present code, by
the use of numerical operators such that V.V x B = 0. The need to enforce
V.B = 0 by some means is well illustrated by the recognized [31] failure

of MHD codes in astrophysics in which this is often ignored.



The presence of only small physical dissipation means that the hyperbolic
parts of the system must be made intrinsically linearly numerically
stable. For reasons of simplicity and familiarity, the choice of time
advancement for the present code has been deliberately limited to
traditional work-horse methods [32]. Accordingly, the code achieves this
stability by use of an elementary 2-step forward-time scheme [33]. A
property of the forward-time advance is the introduction of numerical
dissipation. For schemes requiring conservation propérties, a

centred-time advance may therefore be more appropriate.

The need for numerical stability at the origin of the polar mesh forces an
implicit treatment of resistivity. This follows from the familiar

timestep restrictions for explicit schemes, namely

At vAt
2 5 % S wy
52 1 wd R

Here v is a typical Alfvén velocity and Ax a typical mesh spacing. Near
the origin of a polar mesh, Ax ~ ArA8, vB “'BG ~ Ar, so that the ratio of
the parabolic timestep limit ko the hyperbolic one is S/(Nfﬂe). This

would be significantly less than unity for many cases of interest and

would present a restriction for practical use.

The same consideration applies to the viscosity term. In the current
version of the code, this term has in fact been treated 'explicitly, on the
assumption that the magnitude of the viscosity required will be small.
This is a weakness of the code (indicative of its development route) that

will be amended in a later version.

- 11 =



The basic equations (1) and (4) are advanced in time according to the 2-

step scheme as follows:

= n n n_ n -
B* = B +aVx (v xB g ¥ xB*) (5)
vk = v + At [—_?.Vz? + i? x BT - vp* + vV%En)

n+1 n

n
+ * B* S
5 ot ¥ ox (X ol | g

vV x Ef) (6)

+1 +1
; Ve (cyrTrt o+ 3F xBY - W+ Vi)

| <
I

A feature of this scheme is that resistivity need be treated implicitly

only in the first step.

The pressure is obtained at each step by taking the divergence of the
velocity equation and applying V.v = 0 at the new time but not assuming
this for the old v (this is the essence of the MAC approach). The
resulting Poisson equation may be written
1 n

Vi = -ggvﬁn 0w o+ 50 xEh o+ wAT) (7)

p n+1 ; ; i : ’
and similarly for p . The consistent implementation of this equation

leads to the use of a staggered radial mesh.
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3.3 Linear numerical stability analysis

This section contains a discussion of the linear numerical stability of
(5), (6) and related schemes. For tractability, the analysis is confined
to slab geometry. Furthermore, for simplicity, no account is taken of the
staggered radial mesh used in practice (section 3.5). Since numerical
stability properties are generic and generally independent of precise

details, such simplifications are not unreasonable for present purposes.

As stated above, the 2-step scheme is used to stabilize the hyperbolic

part of the equation; considering the 1D advection equation

n+1 . _ ¢ (u - )

Y5 % 2 T R P
has dispersion relation

exp(-iwAt) = 1 - ic sin kAx

{substituting u? ~exp i(kjAx - nwAt) with ¢ = vAt/Ax) and is therefore

unconditionally unstable; conversely the 2-step scheme



has dispersion relation
exp(-iwAt) = 1 - c2sin?kAx - ic sin kAx

and is therefore numerically stable for c?2 < 1. This scheme
('Brailovskaya-time, centred-space', BTCS) is analogous to the treatment

of the radial direction in (5), (6).

Before proceeding with the full stability analysis, it is a useful
reminder of the limitations of the numerical scheme to apply it to a
simple analytic test case. The performance of the 2-step scheme on the
advection of a Gaussian pulse is compared in Fig.1 with that of the

conventional forward-time, upwind-space scheme (FTUS),

n+1 n ) ) (c > 0)

the fully implicit forward-time scheme (IMPL),

n+1 n_ c(un+1 _ un+1
3 SHEA LI £

)

the Lax-Wendroff scheme (LAXW),

o = u %(c+1) + u?ﬂ-cz) + ul . =(c=1)



the centred-time, centred-space scheme (CTCS),

un+1 _ un-1 _ c(un -
] ] 3+1 31

)

and the Brailovskaya-time, spectral-space scheme (BTSS),

~k ~ ~n
u = u - ikvAt u

+1 ¥
Gn Gn - ikvAt a

in which the 1 are the Fourier coefficients of u. This scheme is
analogous to the treat@ent of the 8 and =z directions in (5), (6). These
results demonstrate that the centred-time schemes have less numerical
dissipation than the forward-time schemes, but can show greater over all
phase error. (For the case of BTSS, the entire error derives from +the
time discretization. If a recognized ordinary differentiai equation
solvexr, such as Rﬁnge—Kutta, is then used for the time advance, remarkably

high accuracy may be achieved).

The MHD numerical stability analysis may be made by noting that in the

present mixed finite-difference, spectral representation, all quantities

have the form

B(x.) = g(x,) exp i(k + k z),
__(] B, p(yy .

%
£



in which x is interpreted as the radial coordinate. Derivatives in vy
and z are obtained by analytic differentiation, those in x by centred
finite differences. Upon substitution of

B(x.) = B exp ilk x.- wt),

the Fourier transformed versions of the numerical vector operators may be

written
V.B = ik.B
VxB= ixxB
Vp = ik S

<
>
1l
1
A
a3

in which x (sin (k Ax)/Mx, k , k).
- X vy z

Wikh the notation,

E = exp(-iwAt) - 1
b = KEﬂEQ)At
c = (k.BAE
a = mk2at/as



£ = vi2 M,

substitution of these forms into (5) and (6) (linearized around

= const., B = Eﬂ = const.) and use of the solenoidal conditions

KsB = K.v = 0 leads to the simultanecus egquations

n
B*(1 + 4d) = (1-1b)B' + ic v"
v* = (1-ib-f)v=  + ic B"
n ¥ .
BE = 1c_£f - Ef(1b+4d)
n § ¥
v E = -(1b+f[zf + ic B*

and hence the dispersion relation

(ib+4d) (1-ib) _ 2} e + c?

T+4d Tyt (ABFE) (1-1b-£) }

(8)

(ib+4d)}{1-ib

el - db =g = N R - (bl ) = 0

It may be shown by a combination of analysis and numerical evaluation that
this implies numerical stability for all values of d and gives the
practical stability conditions f < 1, ,cl + 'b, < 1, the latter being the
familiar Courant condition based on the combined Alfvén and flow speeds.
The result is applied to the cylindrical case using the correspondance K
* (1/Ar, m/x,k), in which m and k are the largest values presént in

the simulation.
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Similarly, the dispersion relation for the case of implicit viscosity

(implicit only on the first step) may be written

(ib+4d) (1=-ib) c? (ib+£) (1-ib) c?
e T¥4d t el E T+F * 1rra!

czp‘ﬂi_ibﬁ}1'ﬂ>_ibMd}
1+4d 1+f ° Y1+£ 1+44

Additionally, this implies numerical stability for all values of £.

Although the forward-time, centred-space scheme has already been ruled out
on account of its intrinsic instability, it is nevertheless of interest to
examine its MHD dispersion relation. This may be obtained directly from
the first step of the 2-step scheme above. For the simplest case of a

fully explicit scheme with no viscosity, the equations reduce to

]

(E + ib + 4d) B" ic v

I

(E + ib) v" ic B
and the dispersion relation becomes

exp(-iwAt) = 1 - 2& t /(4d2 - c?) - ib.

For b = 0, it follows that the region of numerical stability is bounded by

the two curves



c? < 4d (0 <d<1)

c? > a(2a-1) (1/2 <d < 1)
and confirms the vanishing of numerical stability at large S (4 = 0).
Despite claims to the contrary, this behaviour is also apparent in hybrid
schemes [34] based on a forward-time advance to At/2 followed by a
centred-time advance to At. For b # 0 (non-zero equilibrium flow),

numerical stability further requires
c? > 2dp?

(approximately). This.shows an unexpected second weakness of this method,

namely destabilization by the plasma flow for all values of d.

The dispersion relation (8) also provides an expression for the numerical
damping rate for Alfvén waves. For the case b = 0 (no equilibrium flow)
and £ = 0, its real and imaginary parts are

2 2
c< + 2d(1+c“<)
- =
exp (-yAt) cos QEA 13

Il
-
I

2 2 2y211/2
, {c? - 4a2(1 + c?)2}
exp (-yAt) sin u&ﬂt g

(with notation w = wr - iy). Using d << 1, ¢ < 1 it follows that

2
(keBg) < &t

-
|

31
N =



The first term in this expression is the true physical damping rate. The
second term is the additional numerical damping rate and is proportional

to the timestep.

To understand the effect of time discretization more generally it is
useful to complement the detailed calculation with the following

discussion.

Suppose that a physical quantity Q varies as exp(-iwt), with physical

frequency w = mr - iy. The analytic time derivative is given by

g% = - iw exp(-iwt)

whereas the numerical approximation to it is

&8 _ exp[-iw(t+At)] - exp(-iwt)
: ot

, 1
= = exp(-iwt) (iw +.§ wzﬂt)
(assuming ]m|At ¢¢ 1). It is natural to describe the results of such time
discretization in terms of a frequency © am’ the numerical approximation

to the true frequency w, defined by

g% = i“hum exp(-iwt) .
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It follows that

1
iw = 1w+ — WAt
num 2

and hence that

(uk)num e mryﬁt (9)

1
Y =Yt (mﬁ - v?) at.

num

These results are gquite general, and do not depend on the nature of the

spatial discretization:

For the Alfvén wave at high S, w = k.B = 0(1), y = 0(1/8) so that

(w ) =

Y num X
Y =y + ! (k.B) 2At
num z ==

in agreement with the previous result.

3.4 Fourier representation and spatial derivatives in 6 and z

An equally spaced mesh is used in 6 and z. Derivatives in these
directions are calculated by performing an FFT from physical space to
Fourier space, multiplying by im (or ik) and transforming back to physical

space.
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The transforms are done using a highly efficient self-sorting, maltiple-

radix, multiple FFT routine for real data due to Temperton [35]°

If there are N distinct mesh points in the direction under consideration
(say ), the physical grid point values are stored in N + 2 locations, the
extra 2 locations containing copies of the periodic end values. This is

shown in fig. 2a.

I+ is convenient to write the finite Fourier transform of these data in

the form

(/2]
L

£(0,) C exp(imB,) (10)
1 m i

in which Cm = Am + iBm are the complex Fourier coefficients. Here the sum
has been written over the fundamental Brillouin zone. With the convention
that [N/Z] means division with truncation towards zero, this expression is

correct for both N odd and N even.

Upon transformation, the Fourier coefficients

1 N-1
A + iB = C = = T £(6.) exp(-im6,)
m m N i=0 i i

overwrite the original data and are ordered as shown in fig. 2b. Values
for negative m are not provided explicitly but may be obtained from the
hermitean relation C o = C; that follows from the assumption of real

data.
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The reason for writing the Fourier transform in the principal zone as (10)
rather than 0 <m <N - 1 is that this form is necessary to obtain the

correct value for the derivative by the process of multiplying by im.

For calculations that take place in transform space, notably the implicit
treatment of resistivity and the calculation of energy spectra, it is
necessary to follow the layout of the 4 numerical Fourier coefficients
that arise for each m,n when transforms in 6 and z are simultaneously in

effect. The following diagrammatic approach has proved useful.

Let f(@i, zj) be a doubly periodic real function. The Fourier transform

in © may be written

f(Bi, zj) = i {Am(zj) + iBm(zj)} exp imBi

or in diagram form

[a 8],

which also shows the ordering of the coefficients in computer memory. The

assumption of real f gives the relations

The transform in z is then written

A (zj) = f (amn + lbmn) exp (lknzj)

- 23 -



B (z.) = L (c +id ) exp (ik_=z.)
3 L mn nj

so that

with sign rules

a does not change sign

mn

bmn changes sign with n (12)
, ‘th

€ i changes sign with m

dmn changes sign with m and n .

As an example, if f = cos(mb * knz), the transform in O gives

1

f= i i. + a1 Ce

exp imb LZ exp( lknz)} c.C
= exp im6 {l cos k_z i.i sin k z} + c.C»
2 n 2 n
so that
[A B] = {1 cos k_z x ! sin k z].
Z n Z. n

- 24 -



The transform in z then gives
A = exp ik =z (1) + c
P ) "G

. 1
exp lknz (*I) + c.C.

B =
so that
b 4 _ 0 Fi/4
[ a «c ] B [ 1/4 0 ]°

The corresponding results for the transform of derivatives are obtained

from

Z im (A + iB ) exp imB
i m m

I m (-B + 1A ) exp imb
i m m

which may be represented as



i.e. a signed interchange in the © direction.

The derivative in z is obtained from

which may be represented as

oA OB
(& 2

Ma

The Fourier transform in z then gives

i.e. a signed interchange in the z direction.

The diagrams for second derivatives are obtained similarly:

2
P_]f._ _ _mg[b d]
202 a ¢ " mn

2
% . 2P 9
az 2 a c " mn
22 _ c -a
Jzab ~ae [ -d b ] m,n’
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3.5 Radial mesh and differencing in r

An equally spaced staggered mesh is used in the radial direction. The use
of a staggered mesh is a basic feature of the MAC method and arises from

the essential requirement that the numerical approximations to V., V and

v2 satisfy identically V2 = V.V. This ensures that the pressure is

calculated consistently in egns. (5), (6), (7).

If all quantities were defined on an unstaggered mesh and V., V used
standard central differences over 2Ar, Vzp would be defined over 4Ar

(e.qg. Pl 2pi + Pi-2) and would lead to decoupling of odd and even mesh
points. This is usually an invitation to non-linear numerical "splitting"
instability (formation of separate solutions on odd and even meshes) and
is therefore to be avoided. In contrast, a staggered mesh overcomes this
problem since V2 can be derived consistently whilst still operating on

neighbouring mesh values of p.

The layout of variables on the radial mesh is shown in fig. 3. The main

feature is that B and v are carried at odd mesh points whereas Be, Bz
r r

and v v, are carried at even mesh points.

el

In terms of the Fourier coefficients and with notation i~ = i + 1/2, the

fundamental numerical operators for point i on this mesh may be written

(V.8). = + (B, + ik (B, (13)
— L n Z 1

= BT =



—
i
<

x

| o
-

[ W)
H.

I
HIH
-1 8

w?

1

’.1.

-~
=]

-

e
D
,..I.

(B ), (B )
[(Fxm ). = ik (B, - z le z - (14)
(¥B,), (xB,),
- _ 8 i+1 'L _ im
[(Fx®) ]. = B T (B), .
r. . 2 2 L. .
~ _ 1~ : _o m“Ar I oy 1 °=1
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The further quantities needed to evaluate the right hand sides of (5) and

(6) are obtained from

(Ve)i (Bz)i = (vz)i (Be)i

T |
I<
K
|
1z
| S—
Ii

1

[(E 8 E)G]i’ - E'[(vz)i+1 * (vz)i] (Br)i’ -
1
z [(Bz)i+1 * (Bz)i] (Vr)i’

b _ 1
[(x xB), )i~ =5 [(Byyyq + By ) (v -

:
. [(ve)i+1 v (“'e’i] (B) -
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NeE)

(op/ az)i = iknpi
1 1
[(-v.w) ], . = P {g (v o # tev ) [tw 2, .+ (% Joeq]
1
¢ [(rvr)i’ﬂ - (rvr)i"][(vr)i’ﬂ 5 (vr)i’] J
16 1
T T8 ly (g + v ] v,
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1 1.
[(_v W) ] _ (rvr)i’-1 'Z[(ve)i * ("e)i-1] - (r\.’r)i,-zl_(ve)i_H + (ve)i]
- = e i - r.Ar
i
1 6 s _ &
- T, 50 (vg){ = [(v.) (ve)i]

: ; 1 . 1
I:(_J_ XE)r]i' (39)1» —z[(BZ)i'i"l * (Bz)i] - (jz)i,.z.[(Be)i+1 + (Be)i]

Z

; I 1 . . .
[Goxmgly =gl + Gl .+ o] - Gy By

. . 0 .
[ xm,) = (@, - glug.+ Gyl + @]
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It can be seen that an averaging procedure has to be employed in certain
places to obtain values on the appropriate mesh. The viscosity term vVZv
is calculated as VWX w w=V X v. The importance of the numerical form
of v.Vv has been stressed elsewhere [36].

An alternative approach to the calculation of v.Vv, and one which may have

some advantages is to evaluate it as V(v2/2) + w X V.

3.6 Regularity conditions at the origin

A feature of a polar mesh is the singular point at the origin. This
prohibits the application of the finite difference expressions and
forces a special treatment, based on the analytic properties of the

physical variables involved.

The first step is to identify the analytic conditions that must be
satisfied at the origin. This may be accomplished by the following
(widely used) arguments, based on considerations of regularity and

single-valuedness. For a scalar field such as pressure, with Fourier

representation

p(r,98,z) = £ p(r,z) exp imé,
m

the derivative 0p/8x exists and is given by
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op _ Op _ Op sin®
w - ®® T wm—x
aS mS aS mg
1 . m m ; m m
_Enillexp i(m+1)6 {_6}?_ ._I_:_}-i-exp i(m=1)0 {.&..+T .
Single-valuedness at the origin then requires
3p. lm,E
Lim (b 2 - m) = 0 lm| =1
¥ 0 r x
% mp.
Lim 5?2 = Lim _Eﬂ = 0 |m| %9
r -0 r=0 -
and hence
ain
-> = d
T 0 m 0 (15)
Pm + 0 m F 0. (16)

For a vector field such as B, the cartesian component Bz has properties
identical to those of p. The components Br and Be are investigated by

writing

B = Br cosB® - B,. sin®

1 , ~ e : ~ L
72 exp i(m+1)8 {B_ + iBy | + exp i(m-1)6 {B_- iB, }.

- 32 =



Single-valuedness of Bx then requires

E;m + im E&n > 0 lm, = 1
Erm > 0 [m] # 1 (17)
Eem > 0 [m| = 1.

The second step is to implement these conditions numerically. For m > 1
this is trivial since all quantities vanish at the origin. Some

discussion is needed however for m = 0 and m = 1.

For m = 1, condition (17) has been implemented by setting ES at the origin
equal to ﬁ; at the point r = Ar/2 (with the necessary change of phase).
This procedure is accurate to 0(Ar2) and has caused no problems in

practice.

For m = 0, the derivative condition (15) on p and Bz has been implemented
by setting 5(1) = 5(2) and g;(T) = E;(2), a conventional treatment.
However this has the result that aE}ar and ;6 are numerically zero for

m = 0 at the point r = Ar/2 and hence that the forces around this point
cannot be evaluated accurately for m = 0.

Probably as a result of this intrinsic inaccuracy, some numerical
difficulties have been experienced with m = 0 modes, particularly the
onset of a linear numerical instability with G; becoming singular near the

origin.
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The current resolution of this problem has been to set the radial force
'5; (Q E-v.Ww + j XB + vV%E) to =zero for m = 0 at the point

r = Ar/2. With the condition 6;76r = 0 there, this means that the m = 0

~

component of W is fixed (usually zero) for all time at that point.

Since 5; ~x, G; ~ 7y for m = 0 in the neighbourhood of the origin, the
accuracy of this procedure is consistent with the typical truncation error
there. The m = 0 modes ére generally well-behaved (but not perfect) when
this procedure is adopted. A tidy consequence of G; = 0 and ;G = 0 for

m = 0 at point r = Ar/2 is that the m = 0 component of ﬁ; there is also

fixed (usually zero) for all time.

Although the above procedure has provided a tactical solution, a full
resolution of the difficulty requires an improved strategy. At the
expense of some complication it is proposed to keep the current mesh but
calculate the central value of p. by quadratic interpolation. An
alternative approach which may offer some advantage is to change the
layout of variables at the origin such that dp/dr rather than p 1is to be

calculated there.

3.7 Boundary conditions

The following conventional, highly idealized boundary conditions are used.
The plasma is assumed to be bounded by a perfectly conducting impermeable

wall so that
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at r = 1.

The system is driven by imposing a uniform electric field at the wall

through
E, = (n/S)je (18)
E, = (W8)j,

in which Ee and Ez are given.

The r component of the momentum equation at the wall gives the (Neumann)

boundary condition on the pressure

op v62
k- - S o S v(V%z)r = Q- (39}

For the inviscid case, the conditions above are sufficient to give a well
defined problem and therefore no physical boundary conditions must be
specified for BB' Bz, ve,

staggered mesh, not even numerical values of these quantities are needed

vz. Furthermore, owing to the use of a

at the boundary.

The magnetic flux & in the cylinder is fixed by the initial conditions.

For the viscid case, extra boundary conditions are required and are

applied here by specifying values of we and ug at the walls consistent

w GE



with free-slip (an arbitrary choice, but one least likely to cause
unwanted viscous boundary phenomena). This choice leads to the

requirement

w = 2 ve/r.

It should be noted that the boundary condition n X w =0 sometimes used in
MHD calculations represents free-slip only in cartesian geometry.
Physically, the correctness of the above conditions may be seen by
considering a simple example of free-slip motion, namely that comprising a
rigid body rotation with angular fregquency Q and a uniform translation

with velocity vz. It follows that

ov
= - . = 0
Yo k-
2v
= 1B plni = -

in agreement with the above result.

3.8 Solution of the pressure equation

At each timestep, the pressure is calculated from the Poisson equation (7)

which in numerical form leads to the tridiagonal system

- 3 2
+ =
a, Py_4 bi P + ¢ Piiq di Ar (20)
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- - 'r
a = ¥ . . r.
i i™=-1
b, = - [2+ (m%/r2+ k2) Ar?]
i i n
ci = ri*/ri

and d is the source term given by

a = %E v.zn + v.g_“ (21)
in which
Qn = = w4 jn x B" + vV2vn-

As discussed above, the conditions at the origin are simply E& = 0 for

m # 0 (16) and 51 = 52 for m = 0 (15). These are implemented through the

equations

p; + 0. Py = 0 (m # 0)

(22)

~ ~

Pl - 1 . p2 = 0 (m=0)-

The case m = 0, k 0 is special since it is not possible to specify a
derivative condition simultaneously at the origin and the boundary.

Instead, 5 must be given a specific value at the wall. This 1is
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consistent with the fact that the pressure in an incompressible fluid is
known only to within an additive constant. The pressure gradient at the

wall then automatically takes up its correct value.

The Neumann boundary conditions (19) are constructed by introducing a

fictitious point at r and using centred differences to write

N+1

Pupq ~ Py = (Rp)g-8r -

Elimination of §g+ in (20) gives the final equation

1

+'CN)'SN = ENArQ - (0 ). A . (23)

An interesting cancellation occurs foxr Qr in the right hand side of (23).
On writing out the source term d from (21), the terms in Qr in (23) are

simply

showing that the term in (Qr)N, vanishes identically. This is a valuable
practical feature since this quantity is not actually calculable on the
present mesh. This property of the boundary conditions has been noted

elsewhere [37].
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3.9 Implicit treatment of resistivity

The first sﬁep of the time advancement scheme requires the solution of the

implicit system

B* + A&t (VxyVxB*) = D. (24)

Here Ef is to be found, y = 1/S (for notational convenience below) and

the source term D is given by

+ At V x (gé X E?)-

o
mn
|

Using the expressions (14) for the components of curl (and the equivalent
expressions for the alternative mesh points), the following linear block

tridiagonal equations are obtained for the complex Fourier coefficients

ig ’ E , and B :
r 5] %
m2 e, ¥y ~4E
[1 + v bt (— +x2)] (4B ), . + By,
r2, r?2 Ar
L 1
= T o ky, .At
# [mri”Yl (B.) [Y"“A](B)
2 8 i+1 At z' 1
Y <.Ar
=kvy, .At
# |fsss] (B ] = (iD )
—& 4 B2 i 2
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e ,~ i’=-1
I. ri!ﬁf] (lBr)l‘ + l. ri’_1 EEE] (lB ) 1
AP T »
+ (1 0+ At[kQYi PR X Sl ST N | (Bgly *
Y. . Ar2 r, A2
i“=1 i
T gq Ty e = 1—1Yi'-1At .
[ 2 9)i+1 [ ] 9)1-1
L0 r,, ,Ar?
i =1
Smky, A
L X, (Bz)l - (De)l
1
r, .y, kit - ST w o e o WEAE -
[ (2B 0 [ 2 Vi) G4E, .
ri r'i riAr r'i -1
sy kAe ml e ByeaWig e
+ . (Bg); + [1+ at( + + ] | (),
1 r2, LMQ x, Ar?
i i
-X ,Y.,At Y. . Y. - At
i1 i7=1"'1"-1 ~
+ [ (B ), [ 1 (8, , = (D)
riAr2 z it+1 & el z"i-1 z L

In accordance with the rules described in section 3.4, the complex Fourier
coefficients appearing in these equations must be interpreted as the

diagrams
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o~ _ 4 b
(lBr) = |:-c a]
~ - b a4
(By) = [a c] (25)
3, =[5 )

and similarly for the source term D.

At the wall, the boundary condition Br = 0 is implemented by the trivial
equation
1. (lBr)N' = 0.

Application of the electric field boundary condition (18) leads to

modified 6 and z equations for the point i = N:

-my._ . , At .Yy~

N™=1 e 2 N 'N~-1 o~

+ Sal +
) By + [T+ se(x W 2)] (Bgly
N™-1 r_ .  Ar
N -1
s = E ;
: rN_1‘YN,_1At] y e o G - G s A
R 6 N-1 I‘N z N 8°'N Ax
N -1
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-r . L kA -mky At
) e, ¢ ] By
N N
2
m <y . I . A PR -
o Heml P & N ANy 5 (LBl T i)
5 r, Ar? z N r Ar? o
N N N
_ (5 ; ) rN,EeAt
z N rNAr ’

Since the imposed electric fields are uniform, the contributions from
Ee and Ez apply only tom = 0, k = 0.
At the origin, the regularity conditions of section 3.6 are implemented by

means of the equations

(59)1 = 0 m # 1
(Bl - (1B ), . = 0 m =1 (26)
(B ), = 0 m#0
(), - (B,), = 0 m =0,
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correct to O (Ar 2].

The formulation of the linear system is completed by the calculation of

the source term D. Using the notation

13
]|
1<
X
| w

and the diagram rules of section 3.4, it may be written

(10 ),. = (B . - 25Ty . o+ kae (T,
ri ri ri, z i e°1i
~ _ ~ L~ At A
(De)i (Be)i * e ('LTr)i .3 [(Tz)t’ & )i‘-1:|
_ At ~ _ -~ _ mAt e
(D)4 = By ¢ qﬂf [(rTG)i’ (rTe)i’-—1] F— Wi

in which B and D represent the diagrams shown in.(25) and T represents the

diagrams
i'f"rz [‘i‘b_;]
Te = [475]
T [2 9.

The block tridiagonal system is solved by the block version of the

standard algorithm for tridiagonal systems.
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For efficiency the explicit form of the matrix inverse of the blocks

has been used and explicit account taken of their sparsity pattern.

3.10 De-aliasing in 6 and z

As described in the introduction to section 3, it is essential that
non-linear calculations are de-aliased to prevent the development of
numerical instability that would otherwise occur. This section gives more

detail to that discussion.

A simple view of the aliasing process relevant here can be obtained by
considering, for instance, the representation of the function v = cos 46
on a mesh with 8 points, and the calculation of the typical non-linear

texrm v2.

In a continuous system the result would be v2= (1 + cos 80)/2, reducing

to v2 = 1/2 if high mode numbers were discarded.

In contrast, on the mesh, the values of cos 40 are simply + 1, so that
v2 = 1. This discrepancy arises because although cos 86 has sub
grid-scale variation, it appears on the mesh as a constant. This
erroneous appearance of energy at low mode number from unresolvably high

mode numbers constitutes the aliasing error.

Furthermore, it is apparent that this effect opens the possibility of a
non-physical positive feedback loop in k-space and consequent numerical
instability. A detailed analysis [38] predicts the existence of an

'explosive' non-linear instability of the form B, v ~ 1/(tc-t), in which
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tc is an undetermined critical constant. This is in good agreement with

the results from a non-linear test case, presented in section 6.1.

A straightforward resolution of this problem in 6 and z is provided by
discarding the upper part of the Fourier spectrum of all field quantities.
In general, the aliasing interaction of mode numbers m, and m, to produce

a lower mode number m is described by the expression
m = (ml + mz) mod N

in which N is the number of mesh points. If m* is the largest m value

that is not a source of aliasing error, it satisfies

2m* = N < -m*
so that
m* < N/3. (27)

This shows that the calculation can be de-aliased in 9 (and similarly z)
by setting to zero all Fourier coefficients with m > N/3. It corresponds
to using only 2/3 of the available Fourier modes for each dimension and is

equivalent to a Galerkin approximation.

3.11 Radial aliasing and additional velocity smoothing

In the inviscid case, the velocity field in the present code can develop

non-physical radial spikes (even when de-aliased in 6 and z) if the
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calculation becomes sufficiently non-linear. Such a calculation may
eventually fail with an explosive numerical instability, identifiable as

non-physical by the gross non-conservation of energy.

This behaviour is attributed to aliasing error in the radial (finite
difference) direction driving an unstable positive feedback loop in kr
space. Experience shows that the velocity is always less numerically

robust than the magnetic field.

The presence of aliasing error is a fundamental weakness of elementary
finite difference methods for low dissipation non-linear simulations.
Unfortunately, the problem is harder to treat than in the spectral
directions 6 and z since the same easy access to the troublesome

wavenumbers is not available.

The resolution adopted here, as in similar finite difference codes, is the
addition of a small amount of viscosity (typical magnitude v < 1/S) in
order to smooth the velocity spikes. This approach appears to be
satisfactory for the simulations of immediate interest (the Reversed Field
Pinch), but more generally raises the obvious question of the effect of

this additional viscosity on the physical processes being simulated.

4. Diagnostic facilities

The code has been equipped with a considerable number of diagnostics. In
addition to various 1D, 2D and 3D plots of current, magnetic field and
velocity field, there are facilities to monitor the following quantities:

V.E_and Vii ; longitudinal flux, total z-momenta, total energy (conserved
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quantities); energy spectra; mean fields at the wall, total current, j"
and jl,‘z X B, f A.B (for RFP simulations); magnetic island growth rates

(for tearing mode simulations). These quantities are usually plotted

versus time ('history plots').

Many of these diagnostic quantities involve elementary numerical
evaluation, which will not be described further. Some topics of wider

interest are discussed below.

4.1 Radial integration method

Many of the above quantities involve integration in space. For the 0 and
z directions the standard theory of numerical integration of periodic

functions indicates the use of the trapezoidal rule [39].

A 3-point integration.rule is used in the radial direction. Excluding the
origin (for quantities defined on odd -mesh points) or the boundary (for
quantities defined on even mesh points), the mesh is equally spaced and
the 3-point scheme is simply Simpscen's rule

£ ar = ffCoy + af(ar) + s£2am) ).

IZAr Ar
T
However, where appropriate, integration to the boundary or origin involves
the mesh spacings (Ar, Ar, Ar/2). Calculation of the integration
coefficients in the standard way [40] gives the integration rule

£ar = 2 [10g(0) + 258(8r) + 25£(24r) .

0 24
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Multiple application of the 3-point rule covers the case of Nr odd. For
Nr even, the extra point is absorbed by one application of the 4-point

rule

34r 3Ax
[o & Ear = [floy + 3f£(ar) + 3f(240) + £(34r)}.

Fig. 4 shows the final layout of the integration coefficients.

4.2 V.B and V.v

The divergence is computed on even mesh points from (13) and is displayed
by plotting the maximu@ absolute value. Fig. 5 shows typical results.

Vov is maintained at an almost constant roundoff level by the MAC
algorithm by virtue of the intrinsic correction of v at each timestep. 1In
contrast, V.B drifts slowly upwards owing to the accumulation of rounding

error (but is still extremely small).

4.3 Conservation properties

As a check on the global accuracy of a simulation run it is important to

monitor the numerical conservation or otherwise of invariant gquantities.
The simplest invariant quantity is the total longitudinal magnetic flux
® = fszrdrde

which from (3) satisfies the exact conservation relation
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e + 2m [ Ee dt = const.

and is therefore conserved when E_ = 0 {(a common case).

e

Two further quantities monitored in the code are the total z angulaxr

momentum

L, = J PEV 4 ds

and the total z linear momentum

Pz = f PV, dt.

These satisfy the equations

oL
z =
5 + f ,:)._’r:x.re z.éﬁ frBe _13.53_5 vf (:I'T'mz - 2Ve) ds 0
apz
. ' 2 - =
5= * | pv, v.ds | B, B.ds + J (p + B%/2) z.ds vfmeds 0

and are thus conserved in the present system of a periodic cylinder with

free slip and vr = Br = 0 at the walls.

The most important invariant quantity monitored by the code is the total

energy. This satisfies the conservation law

o _ D 2 2 - i
E_,&Efua/z+v/2)<1=c+Eejazds E,J By as
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+ (ws) [j2ar - V[ v.V% dz = 0.

Here U is the total energy and comprises the total magnetic energy, the

total kinetic energy, the total Poynting flux at the wall, the total Joule

heating and the total viscous dissipation.

The importance of the energy conservation law is that it gives an
unambiguous check on the presence of numerical instability for then the

energy is not conserved even approximately but grows without limit.
Even in a simulation that is numerically stable, the total energy will not
be conserved exactly but will decay to some extent owing to the effect of

non-physical numerical dissipation.

4.4 Calculation of energy spectra

One of the most useful diagnostics in the code is the calculation of the
energy spectrum (the energy in each of the Fourier modes of any component
of B or v) since it provides a clear picture of the MHD activity in any

simulation.

Although the calculation of the energy spectrum is simply an application
of Parseval's theorem, its implementation is somewhat more complicated.
In particular a convention has to be chosen for the region of mode number

(m,n) space in which the results are to be presented.

The version of Parseval's theorem needed here may be demonstrated in 1D.

Starting from the Fourier representation (10), it follows that
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N-1 [v/2 ] [v/2] N-1
z ]f(ﬂi)|2 = z L C AL expilm-mIe, ..
{=0

i= N-1 N-1] i=

m=-fym] moe-[ -
Using the relation

N=-1

ii; exp i(m = m )Gi = N 6m,m’+aN (28)

and noting that a=0 is the only accessible zone, this reduces to

N-1 [n/2]
T |f(e.)|2 = N g ccx .
i=0 #8:3) =1 Ll
2

For the application below, this result is needed in terms of a sum over

non-negative m. Using C; =C - for real data, the expressions are

; N-1 , , [v/2]
= *
5 lf(Bi}, cg + 2 I cc* for N odd (29)
i=0 =1
, [v/2 ]-1
= Cc2 + 2 cC c* + for N .
0 H ™l CN/2 CN/Z or even

=1

The convention about the region of interest in (m,n) space may be

illustrated as follows. Although the double Fourier %transform

f = I C  exp i(mfB + k z)
mn n

formally involves 4 types of term (all combinations of



exp i(i'mle + Iknlz)), these may equally well be written as

exp ti(lm]G * Iknlz), showing that only 2 (those.of opposite helicities)
are physically distinct. For present purposes the following convention
has therefore been adopted: m is taken to be non-negative but n has

either sign; in the case m = 0 the helicities are degenerate and n is

restricted to non-negative values.

The expression for the energy spectrum is then obtained by approximating

the guadratic integral

L 27 1 2
I =
IO fo IO |£] % xr ar a8 az
by trapezoidal sums in © and z and using Parseval's theorem above to give

the result

[N e/z] [NZ/Z]
I = 3 o} I .
m=0 N -1
- [_2_2_]

Here,

-
1

(2) 27 f; |c ] % x ar

is defined to be the energy spectrum value for helicity (m,n). The
selective factor 2 enters according to (29). The sign rules (12) are used
to calculate the Fourier coefficients for negative n. The results are

usually displayed as I$£2 .
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4.5 Calculation of Iﬁiﬁ

The gqguantity

is of interest owing to its central position in the relaxation theory of
field reversal [41]. The method of calculation is based on an idea by

M.K. Bevir [42].

The two basic features. of the approach are first that the gauge is chosen

such that Ai = 0 and A has zero mean, and secondly that A is not computed
2 =

explicitly, but is expressed in terms of B.

The formal expression for K in the discrete system is obtained by
expressing A and B in terms of their double Fourier transforms, using the
trapezoidal rule to approximate the integrals in 8 and z, and then using

(28) to obtain the expression

[Ng2] [v /2]

K = 2m L z K (30)
N -1 N -1 ™
e[ 2] nee[ 2]
in which
Kn = Jo (A% By + a* B ) r dr. (31)
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For n # 0, (31) is simplified by first using the condition V.B = 0 to

eliminate E; through

= S e} o e 1
xB, = IE: {BF (rBr} + im Be} '

and then eliminating A through the relationship

B* S pee— A* + J.k A * .
¥ r z n ©

The result is

For n = 0, m # 0, (31) is simplified in a similar way using

~ 1 d ~
By = ~“mmm 5B
to give
k= [V E(F B - B*B)rar.
mn 0 1m r¥r z r =z
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To complete the calculation, the abstract expressions for the Kmn have to
be evaluated in terms of the practical Fourier coefficients of the field
B. If fmn denotes the integrands of the expressions above for the Kmn'

(30) may be written in general form

K = ZTrI.f;rdrEZ £
mn

and the process of folding the sums onto non-negative m and n (cf. (29))

beéomes
[vy2]
b3 o = f + z (f + £ ) for N odd
m 0 m -m
m m=1
[wy2]-1
= + + + f
fo b (fm f_m) fN/2 for N even

and similarly for index n.

If the Fourier coefficients are introduced from (11) in the form
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w2
i

(ar - dr) + i(br + cr)

we
]

6 (ae - de) + i(be + ce)

use of the sign rules (12) gives the following explicit expressions for

the folded elements above. Case n # 0:

4
£ + £ = - d - b +
mn -mn En (bear ce r ae r decr)
£ - 2 (b.a - a.b ) (N . even)
'Ne/Z,n T kX e rx 8 x 6
n
Case n =0, m # 0:
f + = EE (c a - ac ).
mn -m,n m r z r z

Folding the elements in n merely doubles these results.

5. Program optimization and testing

The code (some 30,000 lines over all) has been written to the Fortran 77

standard and has been run on several different computers.

calculations described here used CRAY-1 and CRAY X~MP machines with an

assembly language FFT package. The code has also been benchmarked on the

CRAY-2.
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Execution efficiency, an important requirement for practical 3-dimensional
calculations, has been a primary programming consideration. In
particular, it has been ensured that important loops are fully vectorized

over long vectors with no memory bank conflicts.

A good vector length has been achieved by storing the data in the order
(8, z, r) and vectorizing over {8} x {z}, (Ne+ 2)(NZ+ 2) points. This
approach follows naturally from the use of spectral methods in 6 and z,
which serves to decouple these directions from r. For instance, the
tridiagonal equations for p and B* contain m and k only as parameters. 1In
order to allow complete vectorization of these systems, the special cases
-(boundary conditions eéc.) have been formulated as trivial equations e.g.

(22) and (26).

A second example of vectorization is the calculation of products of the
form imB (with diagram [—mB mA]) arising from differentiation. Using an
(Ne+ 2)(Nz+ 2) array of signed m values in the sense [m —m], the required
operation is simply a vectorized element-by-element multiplication of the

Fourier coefficients [A B], followed by an interxchange.

A third example of vectorization is that of interchanging and transposing
8,z values when stored in the order (6,z,r). For the present case in

which Nr usually satisfies Nr > N Nz, this is done most efficiently on

el‘
the CRAY machines (which allow arbitrary fixed strides through memory) by

vectorizing over r rather than 8. For instance on the X-MP, when

Ne = 15, Nz = 15, Nr = 64, a O - z transpose takes 1.12 ms (33 Mflops

equivalent) when vectorized over 8, but only 0.45 ms (82 Mflops

equivalent) when vectorized over r . For Nr = 128, the times are 2.27 ms
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(33 Mflops equivalent) and 0.77 ms (96 Mflops equivalent) respectively.

Typical timings for the code are given below:

l
lmesh size CRAY memory words CRAY-XMP
| )
N XN_. . XN (Mwords) CPU time/step
r 0 z
(seconds)
32 x 15 x 15 0.27 0.21
64 X 12 X 25| 0.66 0.57

A flowtrace analysis shows that 33% of the CPU time is spent in the FFT

package, 65% in the numerical Fortran code and 2% in graphics:

The validation of scientific research codes is a subject rarely discussed,
surely a significant omission considering their great complexity and
diversity. In the view of the present author it is compounded by the
rather poor level of presentation that has become common in this field, to
the extent that, for instance, the omission of the offending region from
the published results is sometimes perceived as an acceptable resolution

of numerical problems around the origin.
Validation should be seen as important for two reasons. First, it

increases the probability that the code does what is intended; there is

no avoiding the fact that significant errors in large Fortran programs are
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not uncommon, even in production versions. Secondly, it is essential if
the results from the code are to be received as credible by outside
observers. Unlike analytic calculations, numerical calculations
(involving so much more than the basic equations) are largely unamenable

to independent checking.

The following is an outline of the tests applied to the component modules

of the code.

Using compiler options, the code has been checked for the common
programming errors of out-of-range array indexing, the use of

un-initialized variables and mismatched subroutine argument lists.

Each module has been tested on artificial data and numerical results
confirmed by comparison with the analytic result for that operation. The
appropriate scaling of error norm with mesh size (in particular 1/N2 in

radius) has been verified.

An extensive check on the advancement of E_has been carried out, based on
the use of implicit and explicit treatments of resistivity. If, using the
n+1 . . .

code to calculate B from Ef in (6)'.E is set to zexo, At is set to some
arbitrary negative value -AT and some arbitrary values used for B* (say
B +the result is
—O)'

n+1

= B, + Aer[:;lvxgo).

+1 . , p ¢ p
If this Bn is then used in the source term in the implicit calculation

of B* in (24) and At set to +AT, the equation to be solved is
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B* + Atvx(.SDVx_B_*) = B, + bt 9 x (g V xB)

with trivial solution B* = EO' This is a thorough test since it includes
the treatment of the boundary and the centre and the consistency of the

1st and 2nd steps of the numerical scheme.

As described below, testing of the code as a whole has been done using

several test problems with known solutions.

6. Typical simulations

This section contains the following examples of MHD simulation with the

code:

(1) Linear and non-linear torsional Alfvén waves.

(2) Linear instability with uniform Bz and jz.

(3) Linear instability with parabolic jz-

(4) Linear m = 1 cylindrical tokamak tearing mode with parabolic g.

(5) Field reversal in the pinch.

The first 4 of these constitute test problems since the results are known

exactly or numerically with high precision.

6.1 Torsional Alfvén waves

The first test problem is that of torsional Alfvén waves [43], [44].
Solutions of (1) and (4) for m = 0, n = 1 and zero viscosity are sought in

the form
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| <

= (0, ve(r.z.t). 0)

| o
]

(0, Be(rrztt)r 1).

The governing equations are

0B 0B

o n e 8 m1 0
5= = {veBz + T z.} + e {'S_'f'af(rBB)}
ave aae

= T BRw

with exact arbitrary amplitude solution

Be = J,l(?\r) exp i(kz + wt)
Vg = (k/w) JT(?\r) exp i(kz + wt)
in which

A2 ;ﬁ (~0 + k%/w) - k2

m

and

corresponding to the boundary condition Ez = 0.

- 61 -



As a simple diagnostic, the mean Be and ve in a given z plane have been

computed through
1 2t 1
> = = [§ [y Bg ¥ ar aé.

The real and imaginary parts of the frequency (mr and mi) are calculated

by assuming a form
< = > - i +
Be(t)> <Be(0) exp( wit) exp 1 (u&t kz)

and then performing a non-linear least squares fit to the numerical

results.

Fig. 6 shows the results for the case S = 103, L =3, n =1 for Nr = 32.
Here <Be> is plotted vs. time for a small amplitude wave, using the exact
eigenfunction as the initial condition. The analytic solution is also’

shown (dashed line) and demonstrates the presence of numerical dissipation

in the simulaktion.

Fig. 7 shows mr and mi vs. timestep. The damping rate shows the linear
dependence on timestep expected from the theoretical expression (9). The
analytic values of W, and w, are 2.094389 and 5.080 10-3. In the limit

At + 0 the simulation values are accurate to 0.005% and 12% respectively.
This problem also provides an exact non-linear test of the code and

furnishes a particularly clear demonstration of the effect of aliasing

error on non-linear simulations.
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Fig. 8 shows log 10 of the energy spectrum of ve‘plotted vs. time when all
field amplitudes are O(1) and there is no de-aliasing in z. In this case
the simulation fails, v and B suddenly tending to infinity. Fig. 9 shows
the corresponding radial eigenfunctions with the alternating spikes

characteristic of numerical instability.

This behaviour is an example of the non-linear explosive instability
discussed in section 3.10, arising from the aliasing error in z. (In this
example - an exact non-linear solution with fixed k - the aliasing error
occurs because of a cascade of numerical errors to high k. However, this
is no different in its effect from a cascade of physical energy, as would

generally be the case);

The detailed behaviour of this numerical instability may be understood
f;om the analysis given in [38], which predicts the explosive time
dependence B, v ~ 1/(1:.c - t) in which tc'is an undetermined
characteristic singular time. It follows from this theory that log plots
of kinetic energy, magnetic energy and timestep («1/B from the Courant
timestep condition) against —log(tc- t) should have gradients +2, +2 and
-1 respectively. (In practice, tc is taken to be the final time in the
calculation and to preserve numerical accuracy, tc- t is computed by
accumulating the values of the timestep backwards from the end of the
calculation). Fig. 10 shows such plots for the present calculation, with
the theoretical scaling.lines (dashed). There is clearly very good

agreement between the observed and predicted numerical behaviour.

In contrast, Fig. 11 shows the energy spectrum plot of the successful

simulation obtained when the same calculation is de-aliased in z according
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+o (27). (The m=0, n=3 mode is present as numerical error). Fig. 12
shows the corresponding radial eigenfunction for BG' indistinguishable

from the analytic profile.

6.2 Linear instability with uniform Bz and jz

The linear instability with a uniform Bz and jz is another useful test of
the code on the Alfvén timescale. The problem has most recently been

discussed by Storer [45].

The equilibrium fields for this problem may be written

Xﬁ = 0
B = 0
X
By = rjz/Z = (2n/L)(x/q)
B = 1
zZ
E, = (W8],

in which 1= 1 and g is a constant.

The linear eigenfunctions given in [45] may be written

% - .k : - Yt
b = LI?; (o + k) Jm(hr) < Jm_1(hr)] sin (m8 - kz) e
m a t
by = [5-(a+k) I () - g3 _ ()] cos (n6 - kz) el
Nx
b = Jm(kr) cos (m@ - kz) eYt
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in which
2 2

a = AZ + k .

The eigenvalue A is fixed by the boundary condition br =0 and is a

solution of

(k % |a) mJ (O = kxJd (N = 0.

The growth rate y 1s then determined from

2 22 B. 2
— B 2 g L2
v et @) - ) lm - e 2m - ng 5]

The real part of the frequency is zero for an unstable mode.

1; q=1-4,S=

The values used for the simulation were L = 3, m = 2, n
103, with analytic results A = 4.291575, a = -4.775365 and growth rate Y =

0.598770. Only the fundamental eigenfunction is unstable for this choice

of parameters.

Fig. 13 shows a plot of log10 of the m = 2 energy spectrum value of ve VS,
time, starting from a small perturbation but nokt the eigenfunction; The
mode grows exponentially until non-linear effects become important. The
linear growth rate is accurate to 1%. Fig. 14 shows a comparison of the

simulation radial eigenfunction and the analytic profile.
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Note that the analytic solution given above and the corresponding
simulation described here are not absolutely identical, owing to a slight
difference in the boundary conditions (the analytic solution has a non-
zero perturbation current at the wall whereas the simulation does not).
For a strongly unstable global mode, this difference should have only a
small local effect and no doubt accounts for the slight difference in the

analytic and simulation profiles apparent at the wall.

6.3 Linear instability with parabolic jz

Another more general test of the code on linear problems is provided by

the instabilities in the equilibrium

B = 0
x
3
Hy = const. (r/2 - xr /4)
B = 1

i.e. a uniform Bz and parabolic jz.

Fig. 15(a) shows log10 of the energy spectrum of ve vs. time, starting
from a seed of white noise for the case L = 3, const. =8, S = 103 with
Nr= 64, N8= 15, Nz= 15. The decay of the damped modes and the exponential

growth of the unstable modes can be clearly seen. Fig.15(b) gives another

representation of these results.

The exact linear growth rates for this problem are not known analytically,

but have been found numerically to great precision using a resistive MHD
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eigenvalue solver. Since the boundary condition jr = 0 used in the
eigenvalue solver does not obtain in the present code, the comparison
cannot be exact. However, for the fast global modes being studied here,

any discrepancy should be rather small.
The following table shows the comparison between the values of simulation

growth rate (lower values) and eigenvalue (upper values) for the different

unstable modes in the simulation.
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m=20 m=1 m= 2 m= 3
1.383
1.285
1.289
1.297
1.912
1.904
1.090 2.048
1.152 2.060
2.159 2.035 1.545
2.150 1.942 1.586
1.598 1.717 2.354
1.393 1.759 24331
2,311 1.818
2.274 1.261
1.281 2,032
0.739 2.066
2.269
|
2.180
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It can be seen that these sets of results are generally in good agreement.

6.4 Linear m = 1 cylindrical tokamak tearing mode with parabolic q

This problem provides a test of the code on a long timescale on a problem

with a narrow resistive layer. The equilibrium fields are

jor/2
1+ (x/x )2
c

B =1
in which j0 is a parameter, related to g by
q(0) = 2/j0R

in which R is the major radius (L/2m). This is the 'peaked' profile
introduced for the analytic study of tearing modes [46] and subsequently
used for numerical simulations [47].

As is usual in such calculations a resistivity profile n(r)jz(r) = const.
is used to maintain the equilibrium current against ordinary resistive
diffusion. Here, the constant is determined by fixing the value 1 = 1 at

the resonant surface.

The values used in the simulation were: m = 1, n = -1, rc = 0.6, g(0) =

0.9 and hence g(1) = 3.4 and the position of the resonant surface rs= 0.2.
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The aspect ratio was taken as 10 (L = 20m) and S was a parameter, varied

in the range 10* » 108.

A complication of the present simulation is the presence of the ideal
m = 1 internal mode, always unstable in a cylinder if there is a g = 1
surface in the plasma, with growth rate scaling as

2

¥ = B . o3
3
" e

o(1)

for large aspect ratio. Since the growth rate of the resistive mode
scales less strongly, the relative importance of the two modes may be
selected by choosing an appropriate aspect ratio. The value R = 10 used
here is such that the ideal growth rate is not negligible. This is

reflected in the results for the growth rate y at large S.

Fig. 16 shows é plot of log;, Y vs. log;, S obtained for this simulation.
The solid line is the exact result, computed numerically using the
resistive eigenvalue solver discussed in the previous section, and the
individual points are the simulation results. It can be seen that there
is excellent agreement. Fig. 17 shows the characteristic shape of the

eigenfunction for the case S = 106,

Given the example of the torsional Alfvén wave (section 6.1), in which

numerical dissipation ("numerical resistivity") dominated the calculation
at even a modest S (103), it is natural to ask how the code can give such
accurate values for the tearing mode growth rate at S = 108 . This can be

answered using expression (9), relating the physical and numerical growth
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rates and the effects of time discretization. For the growing tearing

mode studied here, u& = 0 so that in (9)

(w) =0
¥’ num

=y - oy
Trum = - 2 *

(Here, negative y implies growth). Since |7At| << 1 by hypothesis (and
typically 10~2 in practice), this indicates that the numerical growth rate
should be close to the true growth rate (and marginally larger), as

observed. This would not generally be the case if the mode had a complex

growth rate.

6.5 Field Reversal in the Pinch

This section mentions briefly how the code has been applied to the
simulation of field reversal in the Reversed Field Pinch [3]. A full

discussion of this work and its comparison with experiment may be found in

(2]

The object of the calculation is to simulate and subsequently analyze the
dynamics of the field reversal phenomenon, that is the spontaneous
generation of internal currents such that the magnetic field BZ assumes a
radially decreasing profile and becomes negative at the wall. Although
the nature of the final reversed state is described by relaxation theory
[41], the nature of the detailed mechanism is not similarly available.

Investigation by numerical simulation is then particularly relevant for
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not only is the process inherently non-linear, but also is apparently very

robust.

Of particular recent interest is the study of the maintenance of field

reversal in the initial force-free reversed state defined by [7]
q(r) = 0.4 (1.0 - 1.8748r2 + 0.83232 r")

for the case n= 1, S8 = 103, L = 21 (unit aspect ratio). In the present
calculations the initial state is seeded with white noise at a relative
amplitude of 10~ % and the code run with Ee = 0 and Ez = const. for some
substantial fraction of a field diffusion time. The value of Ez is chosen

to give an appropriate value of total current in the final state.

The magnitude of reversal is-conventionally measured by the gquantity F,

defined as the average value of Bz at the wall, normalized to its average

over the volume.

Fig. 18 shows a typical plot of F vs. time for a run with numerical
parameters v = 10~%, E, = 1.771 10~ 3, N, =32, Ny =12, N, =25 (i.e.
mode numbers 0 < m € 3, -8 < n € 8 are included). As the simulation
proceeds the field rapidly loses the reversal of the initial state, but
then suddenly reverses and remains marginally reversed for the rest of the
calculation, although with slight fluctuations. For comparison, the

dashed line shows how it would evolve (under axisymmetric resistive

diffusion) if there were no non-linear terms in the equations.
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Since there is no a-priori reason for field reversal +to be produced by an
MHD model, the implication of such numerical modelling is that a classical

single-fluid dynamo theory may be sufficient to explain this remarkable

phenomenon.
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2(a) Example layout of grid values of a periodic
function f for even and odd N. The periodicity is
made explicit.

3. Layout of quantities on the staggered radial
mesh. O=even mesh points, x=o0dd mesh points.
(For convenience, only 2 radial points are shown
and the lists of items have been split in two).

1. Illustrative one-dimensional linear advection tests:
forward-time upwind-space (FTUS), fully implicit
(IMPL), Brailovskaya-time centred-space (BTCS), Lax-
Wendroff (LAXW), centred-time centred-space (CTCS),
Brailovskaya-time spectral-space (BTSS). Mesh size=32,
vA#Ax=0.25. The dashed line shows the exact result.
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2(b) Layout of complex Fourier coefficients
corresponding to fig.2(a).
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5. Typical plots of V.v and V.B vs. time. V.B
rises steadily as a result of rounding error. V. is

maintained at a low level by the pressure
correction.

& B2

0.00

-0.03

x10-'24

4. Example layout of radial integration
coefficients for even mesh points for odd and
even N,. Coefficients for odd mesh points are the
same but in reverse order.

time

0 o

0 6000

6. Mean By vs. time for the simulation of a linear
torsional Alfvén wave. Comparison of the
simulation result (solid line) with the analytic
result (dashed line) demonstrates the presence of
numerical dissipation.
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7. Frequency w vs. timestep for the simulation of fig.6. (a) is
Re(w)—2, (b) is Im(w). The dashed lines show the analytic values.
As expected from numerical analysis, the imaginary part is
proportional to the timestep and gives the analytic value only on
extrapolation to zero timestep.
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8. Log of energy spectrum of v, vs. time for the 9. Radial eigenfunction of v, at the onset of the
aliased simulation of a non-linear torsional blow-up of fig. 8, showing the alternating spikes
Alfvén wave. Each trace shows the energy in a typical of numerical instability.

particular m,n harmonic. The calculation rapidly
fails with a non-physical blow-up.
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10(a) Log of total kinetic energy vs. —log

T (r=t,—f) for the blow-up of fig.8. The dashed
line shows the theoretical slope (+2) for a 1/¢
explosive instability.
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11. Log of energy spectrum of v, vs. time for the
de-aliased simulation of a non-linear Alfvén wave.
Trace (a) is the simulated n=1 mode and trace (b)
is a small n =13 error field. This successful
simulation is to be contrasted with that of fig.8.
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10(b) Log of timestep vs. —log 7 (r=¢.—1) for
the blow-up of fig.8. The dashed line shows the
theoretical slope (—1) for a 1/t explosive
instability.
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12. Radial eigenfunction of v, for the simulation
of fig.11. The simulated shape of the
eigenfunction (markers) is in good agreement with
the analytic result (solid line).
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13. Log of energy spectrum of v, vs. time for the
simulation of the linear m=2 instability with
uniform B, and j,. The simulation growth rate
v=0.606. The dashed line shows the theoretical

slope (y=0.599).
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15(a) Log of energy spectrum of v, vs. time for
the simulation of the linear instabilities with
parabolic /.. The damped and growing modes are
seen to evolve from the initial white noise.
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14. Radial eigenfunction of v, for the simulation
of fig. 13. The simulated shape of the
eigenfunction (markers) is in good agreement with
the analytic result (solid line).

15(b) Energy spectrum of v, at the end of the
simulation of fig. 15(a), plotted as an isometric
histogram in m,n space. The band of instability
and the relative amplitudes of the modes are
immediately apparent from this diagnostic.
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16. Log growth rate v vs. log S for the simulation
of the linear m=1 tokamak tearing mode. The
simulation results (markers) are in good
agreement with the exact results (solid line). The
behaviour at large S is due to the presence of the

[I- 6 8 ] O ideal m=1 instability.
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17. Radial eigenfunction of v, for the simulation

of fig. 16, showing the narrow region
characteristic of resistive instabilities. (S=10°). O- O O- 5 1 a O
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18. Field reversal fraction F vs. time for the
simulation of the Reversed Field Pinch. After an
Tt ime initial phase, the simulation shows marginal
" reversal (F=0) with some fluctuations. For
comparison, the dashed line shows how F would
evolve if it were governed only by axisymmetric

0 2 5 O 5 O O resistive diffusion.
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