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ABSTRACT

More consistent numerical simulation of divertor tokamak edges relies on
iteration of plasma and Monte Carlo neutral particle transport models in a
common realistic geometry. Using existing HF magnetostatic equilibrium
data, a new linear interpolation program denoted LINDA provides spatial
discretisations everywhere closely aligned with axisymmetric magnetic
structure. For a single-null poloidal divertor, chosen arrangements of
piecewise linear magnetic flux surfaces are constructed, and deriving from a
novel isosceles technique also orthogonal surfaces. Resulting grids are
described explicitly in poloidal plane co-ordinates for neutral particle
codes, and in fundamental metric functions detailing cell orthogonal
diameters, interfacial areas and volumes for the BRAAMS steady-state plasma
code. By imposing constant total and poloidal flux tube constraints and
approximating connection length integrals, consistent specifications are
determined simultaneously for both along magnetic field and poloidal
cross—section co-ordinate versions. Example output for case NET-3A is
presented. Expediting BRAAMS applications by evolving magnetic shear and
extension to double-null configurations are considered.
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1. INTRODUCTION

Where high temperature plasmas intercept material surfaces in the edge
regions of magnetic confinement devices, a complex balance of anisotropic
transport and interactions with recycled neutral particles determines the
steady-state equilibria. Sophisticated computational models have been
developed for each of these processes, typically describing plasma transport
in terms of an Eulerian boundary value problem and using Monte Carlo
sampling techniques to approximate atomic and molecular distributions.

Design studies of the poloidal divertor proposed for the NET tokamak
principally are aimed at producing reliable predictions of its performance
and characteristics, such as target power loadings, particle and energy
exhaust, and so on. A particular goal is thus to improve the degree of
consistency in its steady-state edge plasma simulations. Simply, the
separate plasma transport and neutral particle codes should be iterated,
each passing its output at each stage as input to the next generation of the
other. Monte Carlo neutral particle simulators typically compute a linear
approximation to the neutral distributions for a given invariant plasma
background, and hence are already suited to such a cycle. The plasma
transport component should be similarly adapted to attain solutions with
corresponding fixed source terms. Assuming the latter to converge at each
stage, new problems of stability and convergence of the overall procedure
are clearly then defined. One consideration, for example, is the
persistence of statistical errors in the neutral calculations. However,
with some appropriate technique the fully consistent edge configuration,
determined by the set of plasma, atomic and surface physics approximations
and boundary conditions employed, can in principle be obtained for a
specified divertor structure.

It is self-evident, but crucial, that this approach to consistency by
definition relies on a common specification of system geometry between the
component plasma and neutral calculations. Since each is certainly
sensitive to geometric details, they must obviously both explore the same
structure, and moreover, this structure must be as authentic as possible for
the results to be genuinely representative. For neutral particles, with
rectilinear trajectories between particle and surface collisions, a
particular issue is accurate portrayal of the actual first wall and target
shapes, 'but for the plasma, dominated by transport along magnetic field
lines, the magnetic flux surfaces must be described. A necessary precursor
to seeking consistent divertor calculations becomes the preparation of
realistic geometric definitions in forms intelligible to both the plasma
transport and neutral particle models.

For toroidally symmetric configurations such as poloidal divertors, a
two-dimensional solution of the poloidal plane structure is required. The
BRAAMS 1,23 (alternatively denoted BICEPS) two-dimensional transport code
is expected to describe the dominant plasma effects appropriate to the
collisional edge regions of large tokamaks like NET. Finite difference
calculations are performed on a topologically rectangular mesh, which is
related to an authentic poloidal geometry by specifying point by point
transformation metric functions. In this report, we present an
interpolation code, provisionally named LINDA, designed to produce the
requisite functions from existing output of the HF" magnetostatic
equilibrium code. Principal features of LINDA are piecewise linear
approximations to poloidal magnetic flux surfaces, and using a novel
geometric construction, orthogonal surfaces. Compatible representations of
the geometry are determined simultaneously for both versions of BRAAMS



implemented alternatively in magnetic field line aligned and Eoloidal
co-ordinates. Neutral particle simulators, for example DEGAS” or NIMBUSG,
typically express their discretised solution domain in explicit plane
co-ordinates, and LINDA also generates a complete poloidal mesh declaration
readily adaptable to any particular input form.

Introducing a fully authentic grid metric into BRAAMS implies a very
significant increase in complexity of the solution region, and hence of the
discretised correction equations prescgi?ing relaxation to a steady-state
plasma, over cases previously examined~”?’. To minimise the complication,
initial studies have consequently been based on the simpler single-null
divertor concept. Grids are generated by a version of LINDA customised to
the large aspect ratio, low beta NET-3A design. In fact; a double-null
poloidal divertor is the preferred general arrangement for NET, and
ultimately solutions for this problem are what is required. It is
anticipated that preliminary single-null BRAAMS calculations will form a
valuable and natural basis for subsequent double—null cases. Comparison of
NET-3A BRAAMS simulations incorporating realistic geometry with previous
results involving much simplified geometries should also highlight
immediately just how sensitive are the steady-state plasmas to precise
structural details. Furthermore, the essential interpolation approach
adopted in LINDA should not be difficult to extend to other situations,
including double-null divertors or limiters.

In detail, therefore, the new interpolation routine LINDA has been
tailored specifically to provide the geometric information demanded by
BRAAMS, and in Section 2 we first review its means of incorporating an
arbitrary plane geometry. Attention is given to consistency between the
alternative along field and poloidal cross-section co-ordinate
representations. The piecewise linear interpolation of corresponding grids
as implemented in LINDA is described in Section 3, focussing particularly on
construction of co-ordinate lines everywhere orthogonal to magnetic flux
surfaces. Examples of its output for a single-null divertor are also
included. Finally, a short summary is presented, and some design study
applications and extensions briefly anticipated, in Section 4.

2. REPRESENTATION OF PLANE GEOMETRIES IN BRAAMS

2.1 Control Volume Discretisation

Plasma transport is modelled in BRAAMS by equations expressing
conservation of particles, momentum parallel to the magnetic field, and
electron and ion energies, in conjunction with a diffusion relation for
anomalous cross—field tramsport of ions3. A more detailed exposition of
these equations is not actually necessary, it being sufficient for present
purposes merely to consider the means by which they are recast into a form
amenable to numerical solution.

Following Patankars, it is useful first to recall the discrete
conservation relation governing an arbitrary extensive quantity ¢ subject to
generalised convection and conduction through an elementary physical volume
V in some orthogonal right-handed curvilinear co-ordinate frame (0,,0,,0,)-
Here the restriction to orthogonal co-ordinates is crucial, in order that
motion in one co-ordinate direction is always normal to the other two. This
condition ensures that in a lattice of volume elements all fluxes are wholly
specified between each cell and those neighbouring its faces, rather



than involving others adjoining just its edges as well. Never—-the-less,
there are some unfortunate consequences for simulation of plausible divertor
arrangements, as discussed further in Section 3 later. Now let faces
respectively normal to the 0x~> Oy, O,—axes have elementary areas ay, a

a,, and denote the convectlve velocity vector (V,,v,,v,). Over a short time
interval T the increment in (p¢), where p is mass density, is of course
given by the discrete divergence of the total combined flux through V, plus
any included source or sink contributions. Explicity, restricting to planar
variations having absolutely no gradients with respect to g,, one has:—

d(po) = = { (UgPdar) g = (UPba) g 4ag (uypcbay)cy - cuyprpay)gymy

<«

. (axAxVGxdﬂ)cx E (axAdexd:)dx_,_de - (ayAyVUyut)Gy + (ayAyva¢)cy+de + vs},
(1)

where Ax; A, are generalised conduction coefficients, here with dimensions
of dynamic Vviscosity, and the source term S is expressed per unit volume per
unit time.

For a full poloidal divertor tokamak, ignoring magnetic field ripple and
diamagnetic flows, it is evident in view of its toroidal symmetry that its
edge plasma transport is an anisotropic two-dimensional phenomenon, as
supposed in (1) above. Quantities propagate rapidly along magnetic field
lines and much more slowly in an essentially minor radial normal direction,
with uniformity being presumable in the third redundant dimension.
Moreover, each Boltzmann moment equation for particle number density,
momentum and energy, conventionally closed, obtains basically a convection
and conduction formé further as exempllfied in (1). Such a model, as is
indeed embodied in the BRAAMS code?, thus requires geometric information
designating a particular solution space as manifested in (1). '

In BRAAMS, the solution domain is divided into a topologically
rectangular mesh , each cell of which corresponds to an individual volume
element as considered for (1). It is apparent that an extent in the
ignorable (0,) co-ordinate dimension is implied. Means of interpreting and
assigning this dimension are postponmed to sub-section 2.2, while presently
we merely assert that it should be finite but not constant. Finite
difference forms of each plasma tramnsport equation over the grid are then
deduced precisely in the manner of (1), namely effecting respective
conservation principles over its discrete units. A possible viewpoint is
that this construction obviously is equivalent to intgggating the
differential moment equatlons over each separate cell , although as
remarked by Patankar® this is really somewhat perverse, since it is the
differential relations themselves which strictly derive from an analytic
limit of finite expressions like (1). To convey its essential feature, the
resulting representation is denoted the "control volume" formulation or

discretisation®.

Hence the finite difference equations to be solved numerically in BRAAMS
are mapped to a given physical structure by supplying those functions
occurring in the general form (1) which define its geometry. Cell to cell
interfacial areas (ax; a,) and volumes (V) are required, and in addition a
means of specifying gradients (V; ; Vg )+ A minor complication here is that

as demonstrated in (1), these must be evaluated where fluxes enter and leave
a cell, namely at cell faces. However, it may be envisaged that if face to



face physical diameters in the o_- and ¢ - directions across each cell are
known, some appropriate interpolation should furnish an estimated inverse
physical length, and so a discrete gradient denominator, at interfacial
positions. In other words, the pair of cell widths completes the necessary
set of geometric data.

A more formal elucidation may be obtained by recalling a regular
Cartesian reference frame (x,y,z) may be transformed into a right—handed
curvilinear co-ordinate frame (G a ,Gz) according to a metric tensor
81k (%%195:9,), where 1,k = 1,2,3 51gnify respectively 0., o0, , O, components.
Two poings displaced by small increments in each co-ordlnate are then
separated by a distance element ds, given by 10,

3 3
ds? = ax? + dy? + dz? =% | % g (0,0 ,0,) dojdo,. (2)

If in addition cx,cy,cz are orthogonal, then gy, is diagonal and may be
written:-

h2 0, O
= 0¥ n2 o0 3
- ( 0o 07 g/hzhz) 32

Xy

where 1/Yg is the Jacobian of the transformation. From (2) and (3), small
projections separately in each curvilinear direction now correspond to
physical dimensions:-

dsy = hydo, dsy = hdey ; ds, =Yg do,. (4)

Recalling assoclated magnitude of surface area and volume elements are
determined!

= Vg i8kk 494d0y = dsjdsy ; AV, = __ELE_XLEL_ do, do, do, , (5)

dA .
J 9 8(04,0,,0,) y

they become also:-

. oiB ) , iz _ ,
da, = a, = _Sh; do do, = dsyds, ; dA, =a = _ﬁ_ do,do, = ds.ds, ;
' y

dAz = = hxhyddxdcry dsxdsy - (6)

v, =2V = Yg do dcydc = dsxdsyds .

Expressions (4) and (6) may be inserted into discrete approximations for
three-dimensional changes to general variables in the (o,,0 ,0,) co-ordinate
frame, to recover in the analytic limit familiar curvilinear differential
forms. Firstly, for a scalar quantity ¢ they yield components:-
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A related treatment for a vector quantity may be inferred by considering
exclusively the divergence part for (ppv) = F = (FysFo,F ) in a full
three-dimensional analogue of (1), ignoring also time integration i.e:-

V.F = 1 {a(rt )dc do, l + d(F Y8 )do, do
Ir= ey 3 y X"z
g ddxdcydcrz hx ¥y’ z X’z

h)do <39y lcx, o, } (8)

d(F,h,h g

> L (2 (rle)+d _ (rlE)+ 2 ( :
iz {at:t:\i("‘hxJ aoy(yhyJ aaz(zhxhy)}

Working backwards from (7) and (8), and recollecting the general
two-dimensional convection and conduction type as in (1) which characterises
each plasma transport equation comprising the BRAAMS model, it is quite
apparent that the set of geometric details required to map its discrete
computational mesh into a selected physical region is just as previously
stated. To summarise, therefore, cell by cell widths (dsx; ds_), and
interfacial areas (a,; a,) and volumes (V) consistent according to (6), must
be tabulated. Formally,” this procedure may be regarded as defining the
fundamental metric functions hx;hy;/ﬁ over the grid.

2.2 Along field and poloidal co-ordinates

Owing to their toroidal symmetry, the poloidal divertor systems of
interest are expected to be intrinsically two-dimensional in their
behaviour. A control volume formulation of the pertinent plasma transport
equations solved numerically in BRAAMS clearly relies then on specifying a
cell extent, Asz say, in the ignorable co-ordinate (cz) direction. How As,
varies over the calculation mesh depends on how the solution co-ordinate
frame (ox, ' z) is oriented with respect to toroidal symmetry.

Primarily, plasma flows proceed along magnetic field lines, with
relatively much constrained perpendicular progress minor radially across
them. The co-ordinate alignment thus most naturally suggesting itself is
one having o - and o - dimensions as far as possible respectively parallel
to these directions.” Remembering strict requirement of an orthogonal
system, in this case ds_, for each cell corresponds to its actual face to
face magnetic connection length, while ds_ indicates its width in a surface
everywhere orthogonal to magnetic flux surfaces and predominantly aligned
with local cross—field transport except possibly around magnetic field



singularities (X-points). The totally symmetric 0,~ direction is always
normal to such a field line containing (Ux,oy) surface, and so varies in a
complicated fashion with g-factor along any given solution plane locus. One
interesting corollary is that Lorentz magnetic forces on each plasma species
always lie along 0, and, independent of any other assumptions, are
automatically excluded from the picture.

A first version of BRAAMS hai Been implemented precisely in magnetic
field line directed co-ordinates™’“. For this along field realisation, Asz
actually assumes a rather simple interpretation. Since any grid row,
equivalent to a O, = constant curve, traces total magnetic induction from
point to point, i{s normal cross—section clearly represents a discrete
flux tube. If ds, is determined by flux surface interspacings, Asz is
consequently fixeg at each point by a condition of constant intercepted
total flux (cf(6)), viz:-

B(O,cy) dsy(O,cy)
B(cx,oy) dsy(cx,cy)

= => =
Ba constant Asz(ck’oy)

x 8s ,(0,0,) - )

Only an overall row normalisation Asz(O,cy) remains to be set; unity is
perhaps a suitable value. Equation (9) with (6) suffices to enable complete
specification of an along field grid metric germane to realistic BRAAMS

simulations.

Although along field co-ordinates plainly seem an efficient approach to
describing plasma behaviour, they are manifestly unsatisfactory in one
crucial respect. Neutral particles recyling from impacted material
surfaces, principally the divertor targets, and providing sources or sinks
of ions, momentum and energy where they interact with plasma particles, are
of course oblivious to magnetic fields. Following rectilinear trajectories
between interactioms, they permeate potentially the entire torus and
divertor interiors. Now their toroidally symmetric distributions reflect -
expressly the enclosing first wall poloidal structure, and are efficiently
representable only in a poloidal plane projection itself. In other words,
their inherent ignorable co-ordinate is explicity toroidal. Most
importantly, a two-dimensional Monte Carlo calculation of recycling neutral
particle distributions would have to explore exactly the symmetric poloidal
cross—section of any given divertor arrangement. While some adjustment may
be envisaged of a simplified neutral source model invoked in BRAAMS to fit
it into an along field calculation, therefore, for eventual iteration with
accurate neutral simulations as intended poloidal co-ordinates are
imperative.

To discern steady-state plasmas in poloidal co-ordinates, a possible
method would be to project converged BRAAMS solutions in the along field
frame into a poloidal cross-section. Both internal neutral treatments and
subsequent iterations with Monte Carlo computed neutral distributions still
would involve projecting these in turn back into along field co-ordinates
again. Clearly, a more efficient procedure ultimately is to execute BRAAMS
in the poloidal plane also. It is important to appreciate that no
modification is implied in the actual plasma transport model, since
physically a situation of fluxes predominantly parallel to magnetic field
lines of course still prevails. In particular, momentum balance within
magnetic flux surfaces still applies in terms of an along field quantity.



Each moment equation is merely recast by a co-ordinate deformation,
equivalent to a rotation at each point about a o_-axis, bringing o
everywhere from along the magnetic field into thé poloidal plane3.

Simul taneously o, becomes everywhere toroidally directed. Control volume
finite difference expressions as in (1) are again constructed for the newly
oriented cells, and solved numerically in BRAAMS as before. Above all, this
technique hence continues to exclude diamagnetic flows, even though
physically these do now have non-vanishing components within the solution
plane. Such an approximation remains potentially crude only where
convective velocities otherwise become very small in magnitude, and in any
case may be removed in some future extension of BRAAMS.

A poloidal version of BRAAMS as outlined above has also been
implementeda- Let terms pertaining to along field and poloidal reference
frames hereafter be denoted by superscripts F and P respectively. As
implied, of = retains its original identity, being always normal to
magnetic flux siurfaces. Consistent discretisations of a given toroidally
symmetric structure into along field and poloidal BRAAMS grids thus have
equal cross—field widths dsf = dsf. on the other hand, o, now lies along
maﬁnetic flux surfaces in tge poloidal plane, so that infinitesimal extents

X

8s: ; 6S£ must be related by a projectiom:=-
B B
P_P"8 s F _ "0 .F
Gsx S dsx = hx(Sch, (10)

where Bg;B are respectively local magnitudes of poloidal and total magnetic
induction, and we have recalled (4). Allowing for variations spanned in
magnetic field line pitch angle a = cos_l(Be/B), consistent discrete grid
cell widths are given by:-

F oF F
ds +do
8 b F 1 X BB FY _ X b 4 BB F
dsP = asf (.._F Io = dsf) = foF e nfddk. (11)
dsx =4

This generalisation is especially important for divertor configurations, as
changes in poloidal field strength (Bg) gradient near their X-points can be
substantial. To complete the metric one must set finally Asg, which at
first may seem less obviously determined.

The crucial point is to produce along field and poloidal mesh geometries
consistent in the sense that BRAAMS calculations in both co-ordinate systems
with identical boundary conditions would result in identical steady-state
plasmas. Logically, such agreement would seem to follow if cell to cell
interfacial areas are chosen so as to preserve absolute fluxes through them
in each case. 1In other words, observing from (10) that Uy, = (Bg/B) Ui and
using (6), once more considering an arbitrary extensive quantity ¢ we impose

(see FIG.1l):-

o pMsgasl = f ptslasl =l - sl sl - Bsel a2)



Note unlike in (11), here variation of a with o_ is neglected, since

sy usually. Equation (12) describes the toroidal extent of a poloidal
ceil at its magnetic flux surface normal faces
(cﬁ; oi + doi). A similar condition on cross—-field fluxes strictly yields
an_extent also associated with 1ts ostensibly parallel faces

s of + dof):-
(G}P{) y d y)'
P PyP _ F FpF P_ _F p_ (Bey ', ¥
Uy pdds bs, = Uy Pods As_ => ay = ay ; &s, = (-B_) As,, (13)
whence a mean magnetic pitch as definmed in (11) is accordingly recovered
over the cell longitudinal dimension. From (12) one finds that by so
choosing Asz, equal magnetic flux products are intercepted by corresponding
grid rows in the two frames a, Bg = ay B. Now by a flux tube construction
(9), the latter along field product is a constant, and hence each grid row
in poloidal co—ordinates is an equivalent tube of comstant poloidal, i.e.
projected, flux. Analagously to (9) we may write:-

P
3B (aE, ) = Bg(0,0t) dst(0,0y)

v 8s7(0,00) (14)
Bo( 0y, 03)  dsy (0%, o))

where again an overall normalisation ASE(O,OP) should strictly be ascribed
in compliance with (12).

A further connotation of (13) and (6) connects cell volumes in either
co-ordinate system, viz:-

P B -1
= /g¥ daojdclac] = dstdstasy = (B ) dsidsy (__) rsE =

z
(15)
vgF doidcl;dcrg =
Each cell volume is preserved, therefore, through rotation from along field
to poloidal orientation. In an analytic limit of infinitesimal
neighbourhoods of any given point, the Jacoblans for each transformation to
along field and poloidal frames are equal 1/#@ = l/VgF, as is indeed
required for frames related locally simply by a rotation about a common
axis. This constraint could conversely have been employed to derive (13).
Similarly, yet another viewpoint is exposed by referring to the usual
magnetostatic equilibrium formula for By with toroidal symmetry 11 ¢ R;C
denote respectively major radial and orthogonal azimuthal co-ordinates and
¢(R,C) the poloidal flux function then:-

. D2 Wy . 1
Bn = — V(2] + () = 2_ /Y. Y. 16
® R (aR) (ac) R ¥ te



But in our poloidal cross—section co-ordinates GE by construction lies always
within magnetic flux surfaces and of orthogonal _to them, so that poloidal
flux surfaces are actually curves o¥ constant UP, or ¢ = ¢(0P). Thus
expressing V¢ in this frame produces:- 4 ¥

By = —% , Ly O [ (17)
R LigR-opek
For any grid row, representing a course Ketwegn two magnetic flux surfaces,
¢ everywhere exhibits a fixed increment d¢ across it, and discretising (17)
in a constant poloidal flux tube proposition as (12) leads to:-—

PP
R(o.,0.)
Beai = -}_._l_.d¢ dsPas® = constant => Asz(ci,cP) e B FT AsP(O,cP).(IS)
R b { oP Z y
R(0,0y)
b
Our previous assertion to maintain plasma fluxes (12) is consequently
equivalent to each cell in a given poloidal grid row having a toroidal
extent proportional to that whole toroidal element length 27mR generated by
revolution about the centre line. In an axisymmetric situation this
manifestly seems reasonable. An incidental result inferred in passing from
(16) and (17) is the metric relationship:-

BOT, o2 o A HOE oy

Vi SR ki i e
= (aRJ+(aCJ (19)
y

To summarise, basic grid metric functions differ between along field and
poloidal representations only in longitudinal cell extents ds, (cf(ll)) and
interfacial areas ay (cf (12)]; magnetic flux surface orthogonal extents
ds,, interfacial areas a, and cell volumes V are equal in both cases. One
adﬁitional requirement for BRAAMS calculations in poloidal co-ordinates is a
description of (Bg/B) over the mesh, in order explicitly to project magnetic
field line directed velocity, pressures and transport coefficients at each
point into the solution planea. As with discrete gradient denominators, it
is sufficient to recount this pitch angle variable just at cell centres and
later interpolate values when needed at intervening positions.

3. DISCRETISATION OF MAGNETIC GEOMETRIES

3.1 The LINDA Interpolation Code

In order to prescribe a desired geometry in a BRAAMS plasma transport
calculation, as seen above cell by cell metric functions mapping its
rectangular calculational mesh into the physical region must be specified.
For an associated Monte Carlo neutral particle calculation, an exactly
corresponding geometry is generally derivable from a description simply in
plane co-ordinates of each cell vertex in this discretised solution
spaces’s. Improving consistency in both instances by refining the geometry
involved should first of all discover any deficiencies in existing cases
based on simplified representations’. Moreover, for their eventual
iteration necessarily with a single common geometry, its refinement is
essential to justify and to validate such a demanding approach to
self-consistency. For both these reasoms, it is most important to provide
for physical discretisations which are as authentic as possible.



Now there is readily available existing output from the HF magnetostatic
equilibrium code" for many proposed NET poloidal divertor configurations.
Assuming perfect axisymmetry, a regular rectangular lattice in major radial
and azimuthal co-ordinates (R,C) is superimposed on a poloidal
cross—-section. Data matrices of poloidal magnetic flux function ¢(R,C) in
Volt.seconds and cotangent of field line pitch angle cota = (BB/B¢), where
Bgs B¢are respectively magnitudes of local poloidal and toroidal magnetic
induction, are generated over the lattice. Hence, arbitrary orthogonal
grids aligned with actual magnetic flux surfaces in a given divertor
arrangement, as previously shown to be required, may be deduced by
interpolating these data. Their accompanying metric functions are
immediately appropriate to the poloidal co-ordinates version of BRAAMS, and
using (11) and (12) may simultaneously be consistently expressed for the
along field co-ordinates version. Recording (R,{) co-ordinates of every
cell vertex should also be sufficient to supply the grids later to neutral
particle simulations.

The philosophy adopted was to interpolate the required metric
designations closely approximating actual magnetic geometries in selected
poloidal divertor arrangements, while accepting established HF solutions as
a "black box". 1In other words, an option to modify HF to produce
alternative output and then to repeat calculations was deliberately avoided.
This simplified the overall undertaking in that only two major codes, for
plasma and neutral particle transport, are involved, and does not anyway
necessarily imply any greater crudity in interpolating magnetic structures.
An argument that other information regarding V¢ at each lattice point would
improve estimation of magnetic flux orthogonal surfaces, for instance, is
contested in sub-section 3.3 below. A principle of consistency of
approximation through—-out was also assumed. Thus, piecewise linear
interpolation of all quantities at all points is suggested, because of its
simplicity, robustness, proof against spurious turning points between end
values, and because here no other higher order form is actually any better
justified in general. The new procedure resulting interfaces between HF and
BRAAMS or a Monte Carlo neutral particle code, and to convey foregoing
attributes embodied has provisionally been named LINDA (Linearly
Interpolated Numerical Divertor Architecture).

In NET, the preferred magnetic divertor structure is in fact a
double-null form, owing to its potential advantages for example with respect
to target loading. Never—-the—less, it was decided initially to address an
intrinsically simpler single-null divertor problem, so as to introduce
greater complexity compared with previous BRAAMS cases’ in a more gradual
manner. At each iteration within a BRAAMS calculation, from the set of
moment transport equations comprising its model are derived discretised
correction equations, solution of which is designed to reduce current
estimates of conservation violating residuals!»?:3, A refined geometry,
through its metric functions, complicates the block-banded matrix forms of
these discrete equations, inhibiting both their solution at each stage and
overall convergence to an internally consistent plasma steady state.
Clearly it is sensible, therefore, to exacerbate these difficulties by
degrees, while simultaneously expecting a single-null divertor should be a
most natural step to the double-null goal. Similarly, a single-null
configuration with no extreme magnetic flux surface curvatures or highly
compressed regions would be preferrable, to facilitate interpolation. For

- T =



such reasons, then, first studies have been based on NET-3A, a low
triangularity, high aspect ratio, low beta single-null design, and for
which, moreover, BRAAMS results with approximate geometries are already
available’. In the following description of how interpolation of magnetic
geometries has been implemented, reference is made primarily to a version of
LINDA specially customised to this NET-3A divertor, but underlying
generality of methods where appropriate should be bornme in mind. Most
importantly, of course, attention is particularly drawn to key areas
affecting extension to double-null divertors.

3.2 Poloidal Magnetic Flux Surfaces

Executing BRAAMS in an along field frame, the longitudinal co-ordinate
0, is everywhere parallel to a total magnetic induction direction vector
(B/B), while in a poloidal frame its counterpart Oy follows contours of
constant poloidal flux ¢. In either case, 0, lies always within the
axisymmetric poloidal magnetic flux surfaces. Thus to infer realistic
computational geometries, firstly one must delineate these prevailing
superficies.

Numerically, one wants to identify an ordered set of poloidal plane
co-ordinates {(Ri,Ci)}i which when connected in sequence by straight-line
segments produce a piecewise linear approximation to a given flux surface.
Any chosen solution space discretisation aligned with magnetiec structure may
then be construed from an ordered set of such sets. Now formally since
¢ = ¢(R,C) in any poloidal cross-section, each flux surface having constant
¢; may be depicted by functions R(Z,¢.) or L(R,¢:), which in general will be
milti-valued. For a single-null diveftor, R( s¢%) in particular will be
double-valued everywhere except where (3R/3() ¢.> ©, where lower C values

are reached in either inner or outer divertor cﬂamber, and at the degenerate
points of magnetic axis and poloidal field singularity. Also, data matrices
of ¢ values available from completed HF calculations relate to regular .
rectangular lattices in R,{ co-ordinates. One could envisage primarily
cbtaining (Ry,C4) pairs at fixed ¢; by scanning a matrix from HF along each
row of constant € and locating botg intercepts with the ¢j contour.

In single-null configurations, flux surfaces to be interpolated are
divisible into three categories: those of (a) open scrape-off layer, (b)
closed main torus and (c) open divertor private region types. We evaluate
them in this order. Although as suggested, pairs of points on a contour ¢j
may be determined by scanning poloidal flux function data along each
horizontal row, this is obviously acceptable only while (6R/b§)|¢_ remains

of order one or less. At some point, such a constraint may be viglated and
one must switch to analagous interpolation along columns of constant R,
taking care to ensure a smooth match between zones. So for scrape—-off layer
surfaces, vertical interpolation is required around their tops. Presently,
explicit gradients are not examined, but rather a transitiom to searching
along major radial chords is made simply when the smaller major radius side
of a contour exceeds a certain bound and simultaneously lies higher than the
magnetic axis. Similarly for main torus surfaces, an equivalent process is
applied both to their tops and bottoms, intersection of another pre-set
bound again controlling. These two bounds are connected respectively to the
magnetic axis and X-point chords by a single loose input parameter.

Divertor private flux surfaces are always interpolated vertically.
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Using a formula like linear interpotaﬁion{ for which inferred values are
bounded above and below by end-points ¢ b lattice intervals k
along either a row or column where a selected function value ¢ is crossed
are of course readily distinguished by a condition*:-

45 € [olk]) Gleri]y s (5~ ¢[k])(¢j— ¢[k+1]).§ 0. (20)

In the present context, poloidal plane co-ordinates R,{ may also be regarded
as Cartesian (i.e. unit plane metric), so a general intermediate position Y
where ¢j is achieved may be located just by a standard linear expression:-

L Ly ¢[k])x[k+1]+(¢[k+l]-¢j)x[k] _ i)

(ol L gl ]y

A set of flux surfaces {¢-}. thus to be interpolated is determined
according to whatever spatial”discretisation is desired, since of course
they constitute boundaries defining transformed grid rows. Arbitrary grid
distributions in flux surface orthogonal dimension o, are currently imposed
with respect to the separatrix. This critical surface is interpolated
first#*, its characteristic poloidal flux 43 also being furnished by HF.
Scrape-off layer surfaces are disposed within an interval extending from the
separatrix point of maximum major radius, expecting it to approximate
closely the position of minimum scrape-off thickness. This is normalised,
to H say, by an input parameter. Inside the separatrix a precisely
reflected distribution is assumed, but here over an interval a parameterised
fraction of H in thickness. Grid rows are arranged within these intervals
by a normalised function implying their proportional spatial extents.
Currently a single parameter form providing for greater resolution around
the separatrix, in anticipation of plasma behaviour, is employed:-

* A certain machine dependence in this criterion was discovered. On CRAY-1S
and -XMP mainframes, real variable word lengths are sufficient to detect
exact coincidences with end-points, when (20) vanishes. Care is then needed
to prevent double counting of an intercept, from lattice intervals on either
side of the end-point. On a PRIME, due to its shorter word length these
coincidences are apparently not found, and no repetition occurs.

¥ Another small machine dependence emerged. A divertor X-point occurs as a
single lattice point in HF magnetic flux data, and hence is again exactly
picked out by CRAY processors but not by a PRIME. Numbers of separatrix
co-ordinates (R;,C;) thus differ by one in each enviromment, affecting their
subsequent ordering algorithms. For PRIME, a null-point position is
estimated as where the two appropriate separatrix straight—line segments
intersect.
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£,(0%1) = wiy+-viu} 5 (0<y21). (22)

Once flux function values {¢-} at each location are deduced, according to an
inversion of linear form (21}, -they are subsequently interpolated around the
structure as described before. In fact, mid-surfaces representing lines
through grid row centres are also required, and they are constructed as
well.

Divertor private region surfaces are treated slightly differently. An
outermost flux value $g is identified as that obtaining at a position
(Ry,Gp) a parameterised distance vertically below the X-point. Adherence to
plecewise linear interpolation is still maintained by applying a bilinear
formula involving its four surrounding lattice points, ¢k£;¢k+115¢k1+15
$1t10+41 With bpg = ¢(Rk,C£) ete, viz:-

b = (1Ag) (12 )opq + Mg (1A )ierr g + Ae(10g)dyepsy + Aphebieprgng 5

(23)
7\=EQ.:.1.{£__;?\ =ﬂ.
Ryp+1 Ry Ca+17C3

A straight line projected through magnetic axis and X-point is temporarily
taken roughly to represent a magnetic flux orthogonal surface, and
proportional distances along it between X-point and innermost contour are
computed for each chosen main torus flux surface*. Additional divertor
private flux contours are now distinguished, using bilinear approximation
after (23), at points along this line in equal proportions between X-point
and intersection with ¢,;. As remarked above, resulting contours, and
mid-surfaces too, are then interpolated purely along major radial chords.
Distributing flux surfaces in such a manner helps in procuring a smoother
overall BRAAMS grid, as exemplified below.

Finally, having obtained sets of co-ordinates {(Ri,Ci]} for each ¢
outline, they must be ordered so that when traversed in sequence a dirécted
locus around it is described. This ordering process is facilitated by a
curve regarded as R(C,¢.) being double-valued, as referred to earlier.
Hence by scanning HF daga along ascending rows of fixed { co-ordinates are
generated in correlated pairs. In NET-3A, lower { values are attained in
its outer divertor arm, so a few leading points occurring singly for each

* It is important to recall that hereafter, by intersection with a magnetic
flux surface we explicitly intend an intercept with a constituent
straight-line segment in its approximate representation. Thus neighbouring
points (Ri,Ci); (Ri+1’ci+1) straddling a straight line connecting (Rl,Cl);
(Rp,59) are disclosed by a conditionm:-

[(Ry=Rq )T+ (R;-Rp)E 1+ (R -R; )E, ] [(Ry=Ry )i+ (Rip =Ry O+ (R R4 1 )E5] <O
(€9%C1),(24)

and their actual enclosed point in common is found as described for two
crossing straight lines in sub-section 3.3.
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scrape-off surface are discriminated by finding the first large proportional
change in (dR/3Q) b, between succeeding points. Thereafter, correct

ordering is attain%d by registering alternate points over increasing C,
next continuously those co-ordinates interpolated vertically around their
tops, and lastly the intervening points over decreasing . Closed main
torus surfaces are ordered employing a similar approach, starting and ending
at intersections with the magnetic axis to X-point straight line. Divertor
private region contours are ordered automatically in scanning along
progressive columns of fixed R.

In practice, an extra difficulty tends to arise owlng to plasma grid
spacings demanded typically being small compared with poloidal plane
resolutions of HF data. Around the X-point, main torus and divertor private
flux surfaces and separatrix are interpolated in orthogonal directions, i.e.
vertically and horizontally respectively. Unmatching errors in small scale
interpolation can then lead to some fallacious contour crossings. To
conclude, points on former region mid-surfaces adjacent to the separatrix
are refined near the X-point by ascertaining, using an adaptation of (20)
over azimuthal co-ordinates {;, that they lie between separatrix and next
contours of increasing ¢. If initially they do not, they are repositioned
as in (21) to new Ci in proportion to their intermediate magnetic flux
values. An example of a completed set of organised piecewise linear flux
surfaces is illustrated for NET-3A in FIG. 2, taking minimum scrape-off
layer thickness H=10 cm, corresponding main torus width 16 cm, and divertor
vertical depth below X-point 65 cm.

3.3 Orthogonal Surfaces

As stated previously, BRAAMS calculations must be executed in an
orthogonal co-ordinate frame, and so for both along field and poloidal
versions their second essential co-ordinate 0, must everywhere be orthogonal
to magnetic flux surfaces, i.e. parallel to Vl. Naturally, this is
beneficial computationally also in being aligned with cross-field tramsport.
Having constructed constant flux contours {¢-}- as above, one must now infer
a set of normal curves, consistent again in & piecewise linear sense and
corresponding in turn to a requested distribution of transformed grid column
boundaries. Their intersections with {¢-}, in other words, comprise the
vertices of each cell in a magnetically oriented discrete solution space.
Associated metric functions may immediately be extracted from such a spatial
net.

Considering an arbitrary position P on a piecewise linear flux surface
¢ ., basically we wish to determine the straight-line segment connecting it
td the next such contour ¢j_1;¢- 1 Which best approximates an intervening
orthogonal co—ordinate arc: Orgzred sequences of these segments then
produce equivalent piecewise linear orthogonal surfaces. There are several
ways in which one could envisage estimating an individual element. Most
simply, one might project a perpendicular to the ¢. segment through P to its
intercept P' with ¢-_1 or ¢;.,. However, although™this line would subtend a
right-angle at P, ig would in general meet ¢._; or ¢, , segments at quite an
arbitrary angle at P'. A curve composed of fhese eléments would tend
systematically to depart from actual orthogonal ones of consistent
curvature, or at worst may become excessively jagged. Clearly, an obvious
compromise is to make some allowance for surface curvatures by not biassing
an element with one of its ends only; a line should be projected from P so
as to subtend equal angles with flux contour segments at P and P'. Three
lines thus conjoined form the base of an isosceles triangle.
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It will be appreciated that such a method makes no reference expressly
to data concerning V¢. Superficially, it may be thought advantageous to
utilise this information. For a perfectly axisymmetric system, V¢ at any
point in a poloidal cross-section is parallel to a line having Cartesian
gradient:-

(%) / (g—i)- (25)

One could therefore estimate each derivative, for example by some finite
difference approximation, over an HF flux function matrix, interpolate them
to position P, and obtain there a local direction of V¢. But then one
relies on two interpolations of two interpolated derivatives, a process
which becomes of questionable accuracy since grid spacings small compared
with HF resolutions, as alluded to before, are commonly involved. Again,
the situation may be thought to be partially improved if HF calculations
were repeated and made themselves to furnish more precise information on V¢
at every lattice point. However, in both cases a more serious criticism
still applies. Each straight-line segment in a piecewise linear flux
contour will in general not be tangential to the exact flux surface actually
passing through a point P anywhere along its length, including its ends.
Hence a line projected from P, even if exactly parallel to V¢ there,
typically will subtend some angle different from m/2 with its original flux
segment. Furthermore, it will meet a segment on a neighbouring contour at
another arbitrary angle, unrelated to local V¢. Just like simple
perpendiculars discussed above, a chain of such elements might correspond to
a rather ragged orthogonal surface. Modifying an element to take into
account V¢ also at its sought end-point P', which consequently would have to
be iterated on, would merely recover an analogue of our suggested isosceles
technique. Thus as regards generating orthogonal surfaces of maximum
consistency with magnetic flux surfaces already determined, and all
piecewise linear, the isosceles approach should be at least as good as other
fits directly involving flux gradient details. '

With this purely geometric method, finding end-points of isosceles line
elements in a given orthogonal curve can be framed entirely in terms of
intersections of two straight lines joining points (Ry,C;);(R,,8;) and
(R3,%3); (R, ,C,) respectively. Now if they cross at (RI, I) we have:-

_ (R &R0 J(RyR3)- (R38R, E3) (RyR) )
»
L (2221 ) (Ry=R3)-(£,-C3) (Ry-Ry )

26)
C L (R1c2‘R2c1)(C“‘C3)“(R3CQ‘RHC3)(CQ‘CI) (
i (€221 ) (RyR3)-(84-C3)(Ry-R, ) :
while they are parallel if:-
(2, ) (RyR3)-(8,-C5) (RyR;) = 0. (27)
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Suppose on adjacent flux contours ¢j and ¢j—1 or ¢j+1 we have identified

particular segments between respective co-ordinates (jo],CEj]);

(Rgil,cgil) and (RLJ+1] J+l Rniil J+1] Here one difficulty is
given segment index i, to find an apprOprlate segment index n, since flux
surfaces generally consist of distinct numbers of components not necessarily
spatially cross-correlated. Already having ordered them into series,
though, we examine a small range of ¢j—1;¢j+l components on either side of

one with an initial end-point closest to (RQJ],CQJ]]. In each instance, if
when extended segments i and n share a common point (Ry,Cy) according to
(26), its distance from starting point P on ¢ is computed. Both points P';
P" along extended ¢J_1,¢J+1 segment n an equal distance from (RI,C ) are

established, and either or both lying within (R[J+l] C[j 1]) to

C[i” counted as potential next orthogonal element end-points. If
on the other hand, segments i and n satisfy (27) and are parallel, a
perpendicular to line i1 is projected from P, denoted (RO,C ), its intercept
(RP,CP) along extended component n being given by:-

(RyR3) (€201 JCo+{Ry—R3) (Ry-Ry JR #(R,T3R3E, ) (E5-C) )

B (22-2,)(Cy-T3)+(Ry-R ) (R, -R3) ’
o 2 (8780 (638, )8 (84 =8) (Ry=Ry R o= (RAT4~R5 T ) Ry R, ) (28)
P (€,-2,)(6,-C3)+(R,=R; ) (Ry~R,4)

This is alternatively cFunE?d f ] otentlfl oﬁthfgonjl end-point should it
be contained between C 3 to 1

For both circumstances, 1t was found necessary further to restrict
potential next end-points by rejecting those which implied a greater than
specified change in gradient between successive orthogonal line elements.
Letting (R¢,C<);(R,,5,) be the two preceding element end-points on flux
contours ¢. ;. ; and ¢. (at P), and (Ry,C,) the putative continuation (at

P'), we additionally insfst that:-

(=B [ (RyR) Ry=RDH(E LI (E5=C ) 12-BL (R ;R ) (8>~C )~ (R>=R ) (E,~C<) ]2 >0,
(29)

where /B is cosine of a parametric largest angle permitted at P. Lastly,

extra care is required in all contingencies when Rnﬂ‘ = anil in order to
accommodate infinite (6C/6R)|¢ along flux component n.
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Following this procedure, as remarked, for a small number of segments on
flux contour ¢. i 13¢ a number N of possible new locations P' are accrued.
Normally it is sufff+1ent merely to select from these whichever is closest
to P. However, 1f N=0 we again seek perpendicular intercepts as in (28) on
those components n not parallel to sefment i, choosing finally whichever of

J

these or of sectional co-ordinates (r l] C[J 1]] themselves is closest to
P. Ultimately, an unambiguous step P' and consequent orthogonal line
element are obtained.

The LINDA geometry interpolation code thus has at its heart a routine
which, beginning either on a peripheral magnetic flux surface or separatrix,
produces an approximate orthogonal surface employing a piecewise linear
sequence of isosceles steps. In fact, having flux mid-surfaces available,
these are also used initially in a sequence, before reallocating a mid-point
on each cell orthogonal face where a straight line connecting its vertices
then intersects their enclosed mid-surface (see FIG.ll). An isosceles
algorithm as described appeared adequately to encompass all discretised flux
surface contingencies encountered in the single-null divertor problem
examined.

There remains just one critical orthogonal curve which cannot be
ascertained as above, namely one exactly passing through the poloidal
magnetic field singularity. If orthogonal surfaces are instituted from
separatrix points equal distances ds, on either side of the X-point, they
stay distinct and well defined as ds; is decreased until a certain threshold
value is reached, when they tend to cross. In effect, minimum dsi reflects
a limit on resolution attendant on the finite accuracy of piecewise linear
representation of magnetic flux surfaces; this is of course least reliable
where curvatures become extreme close to Bg*0. To approximate an X-point
coincident curve we therefore take those orthogomnal surfaces starting just
outside minimum dsi and derive their mid-position on a peripheral flux
surface. An orthogonal curve is projected back in from there to within a
few flux contours of the X-point. Finally, it is joined to it by a
continuous straight line, thereby averting a deviation ultimately to one
side because of inaccuracies.

Where orthogonal surfaces are placed is again a matter of choice
regarding a plasma grid. To ensure a certain level of geometric
authenticity, we fix permanently particular orthogonal boundaries, while all
others may be arbitrarily deployed. Hence we always include those surfaces
passing through positions of (1) target and separatrix intersections, (ii)
X-point, and (iii) minimum major radius, (iv) maximum elevation (L) and (v)
maximum major radius on torus scrape—off outermost flux surface. Note (i)
may be determined either according to specified major radii or separatrix
distances from (i) to (ii). For a single-null divertor, six sectors are
defined. 1In inner and outer divertor chambers (i) to (ii) parametric
numbers of grid columns are inserted, and the remainder divided between
torus regions (ii) to (iii), (iii) to (iv), (iv) to (v) and (v) to (ii) in
proportion to their respective separatrix arc lengths biassed by a set of
input parameters. Within each separate sector, a resulting number of
orthogonal boundaries are disposed at separatrix intervals again in
proportion to some normalised function. Currently grid columns are
clustered in anticipation of plasma characteristics by exercising in main
torus regions, either over a whole sector or symmetrically over its two
halves, a single parameter logarithmic form:-
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I - An(l+y-vw)
f (0<w<l) =1 ;5 (y>0). 30
x(_._) Tn(1+Y) ( ) (30)

An alternative form for divertor chambers has been tailored to expected
ranges of recycled neutral particles, giving before a target two grid
columns each of order 1 cm in width, i.e:-

£11(0<w<1) = % {5 + 4¢4w-1)2} 5 (v>0). (31)

In fact, as previously with flux contours, orthogonal mid-surfaces are
also developed, being initiated from median positions of each separatrix
interval relating to a grid colummn. Mid-points on cell faces parallel to
magnetic flux surfaces are assigned where a straight line between vertices
intersects their orthogonal mid-surface (see FIG.ll). Due to concavity of
flux contours, however, some linear parallel faces may clearly lie outside
the range of interpolated orthogonal mid-curves, which always end on flux
segments themselves. When this occurs, a face mid-point is assumed at its
intersection with an extrapolation of the last available orthogonal line
element. Lastly, although flux mid-contours are still exploited in deducing
orthogonal mid-curves, cell centres are situated for consistency at the
crossing points of straight lines joining each pair of mid-points on their
flux parallel and orthogonal faces (see FIG.1ll).

Completed flux normal co-ordinates are arranged iIn order from either
outermost divertor private, or innermost main torus, flux surfaces to
outermost scrape-off layer one. A set of piecewise linear orthogonal
surfaces, accompanying that of magnetic flux surfaces introduced above, is
also shown for NET-3A in FIG.2. Furthermore, the actual discrete grid
formed by taking their intersections as vertices of quadrilateral mesh cells
is depicted, along with their corresponding centres. As called for, we
have in an orthogonal frame a solution space discretisation everywhere
closely aligned with toroidally symmetric magnetic geometry. At this stage,
LINDA produces an output file specifying all grid points in poloidal plane
co-ordinates (R,L). For every cell its nine fundamental points, as detailed
in FIG.1ll, are listed, beginning on the inner divertor target at its
outermost private flux zone, proceeding along that row to its outer target
end, and continuing thus row by row towards the scrape—-off outer edge. Such
a grid description is generally suitable for supplying a precisely
equivalent geometry eventually to Monte Carlo neutral particle simulation
codes”>"°.

There is one prominent disadvantage of orthogonal co-ordinates implicit
in our discussion above and made manifest in FIG.2. One is constrained to
accept orthogonal surfaces as boundaries to a solution region at which one
wishes to impose conditions representing, for example, plasma incidence onto
material targets. In other words, BRAAMS can model directly only targets
orthogonal to magnetic flux surfaces. This is a significant deficiency with
regard to divertors in large tokamaks, of course, since it is essential that
their targets be inclined at a very shallow angle to magnetic field lines in
order to avoid intolerably dense power depositions. A marked obliquity to
poloidal flux surfaces is included. Means to circumvent or accommodate such
a discrepancy in BRAAMS simulations have been actively pursued, but
ultimately only a new code both allowing its equations to be framed, and
capable of solving them numerically, in a non-orthogonal co-ordinate system
would overcome it fully. Presently, calculations incorporating a complete
poloidal cross-section through a device, like FIG.2, must concede orthogonal
targets, with a possibility subsequently of applying some physically based
transformation to their results. Note a further counnotation due to
convergence of magnetic flux surfaces, again exemplified in FIG.2, is an
inability in general also to model plane divertor plates.
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3.4 Metric Functions

Once an orthogonal discretisation of magnetic geometry has been derived,
its characteristics must be encoded into those metric functions employed in
BRAAMS to define its solution space. Recollect these are cell by cell
diameters ds x3dsy, interfacial areas agj;a, and volumes V. With poloidal
cross—sectlon co-ordinates, magnetic fielg pitch information (B /B) is also
required. Like cell vertex co-ordinates above, quantities are 1isted in an
order applying to BRAAMS grids; from inner target to outer target along each
row, stepping from innermost flux surfaces to outermost scrape—off layer
ones, in a single-null divertor configuration.

One major discrepancy remains in such a geometric treatment. It is
obvious that a nominally rectangular computational domain and divertor
magnetic flux surfaces are topologically distinct, i.e. there is no
homeomorphic transformation mapping one into the other. Compatibility can
only be achieved if the computational grid is rendered discontinuous, a
property accomplished by introducing cuts. These special columns of cells
isolate one grid sector from an adjacent one, typically by invoking zero
coefficients to make a wholly impenetrable barrier to all transport. We
insert two cuts extending from innermost flux surfaces to separatrix, and
dividing the lower half of a grid into single-null divertor private, and
inner main torus, flux regions. Closed inner contours are disposed between
cuts, starting and ending on that magnetic flux orthogonal surface passing
through the X-point. Divertor private zones from inner target to this
continued orthogonal surface, and from there to outer target, are assigned
respectively to those grid sectors to left and right outside the cuts.
Hence proceeding along one of these lower grid rows, from inner target one
follows a divertor private magnetic flux tube up to a cut, then leaps to its
main torus counterpart an equal number of grid rows from the separatrix,
encircles this to a second cut, jumps back to the original private flux
tube, and concludes up to outer target. Scrape-off layer surfaces simply
map continuously to upper-grid rows.

Now left—hand cut right edge plus right-hand cut left edge, and
left-hand cut left edge plus right-hand cut right edge, physically are
continuous, being respectively associated sides of X-point coincident
orthogonal curves over main torus and divertor private flux surfaces. To
facilitate special action on interior boundaries so as to express physical
continuity we construct each cut from three columns of cells. A central
insulating column, as already mentioned, is sandwiched between two providing
for appropriate cross-matching of plasma features. It is emphasised that
cut cell columns are a purely numerical device without geometric relevance.
To this end, they are attributed zero longitudinal width dsx in LINDA, it
being incumbent on subsequent exploitations to recalibrate them as
necessary.

For a poloidal co-ordinate frame, cell widths dsf:;dsP are suitably
represented by respective face mid-point to face mid-point Cartesian
distances 5 to 6 and 7 to 8 (see FIG.ll). Projections of these dimensions
for NET-3A discretised as in FIG.2 are shown in FIG.3 and FIG.4. Each is
plotted over computational grid indices ordered as discussed according to
BRAAMS convention. We reiterate lower grid rows step between divertor
private and inner main torus regions across_the cuts, which are themselves
plainly visible as zero value gullies in dsi (FIG.3). Similarly, large
spikes in dsP occurring inside the cuts (FIG.4) are not important since
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special treatment of these columns in BRAAMS calculations is anyway
understood. Also inset in FIG.3 is total length along each grid row as a
function of its initial face mid-position (5) on the inner target, relative
to outermost private flux surface. Note there is very little variation
(~5%) in poloidal arc length of each scrape—off flux tube. A corresponding
total width exterior and interior to separatrix across each grid column is
inset in FIG.4, against separatrix distance from inner target. Our input
minimum scrape-off thickness of 10 cm is evident here.

Remaining metric functions emerge from our previous model of ignorable
co-ordinate extent Ast. We employ a tube of fixed poloidal magnetic flux
condition (14), taking normalisations for all grid rows at inner target to
be unity AsE 2 (0, of ) =1 m. In fact, as hinted in sub-section 2.2, a more
proper identification for each 80101da1 plane element in a toroidally
symmetric structure would be As, 27R (0, ), its circumference of
revolution about the centre line. Note using (lX) this would impl; in along
field co—ordlnates a uniformity direction normalisation of Asz(O g
21R (0, oF ) Bg(0, oF Y/B(0, GF), which closely resembles division of surface area
of a cifcular cross-sectlion tokamak having minor and magnetic axis major
radii a,Ry respectively into a rational flux tube:-
4m2aR B
b= gy, P, (32)
27R 4 q By

=

[l £77)

However, unit normalisation for every row in a poloidél cross—section leads
to little error certainly for NET-3A, where fractiomal variation in major
radius across the inner target is marginal (<10%). To enforce (l14), scalar
poloidal magnetic induction at any point is estimated from companion HF data
regarding cotangent of magnetic field line pitch angle t = (Be/B¢) and a
standard toroidal field formula, viz:-

1 Bg(0,00) _ t(0,00) R(0y,0y)
B¢ = constant. — => =
R Bg(ok,0y)  t(0%,07) RO, cP)
Consistent pitch data from HF are of c0urse arranged over the same spatial
lattice as poloidal flux function data, and to maintain piecewise linear
approximation once more we interpolate them to any location according to a
bilinear form after (23).

(33)

Interfacial areas between cells along a grid row a dsPAsP (cf (6))
are computed as a product of orthogonal width between vertlces 1 to 3 on
inner target and 2 to 4 thereafter with toroidal extent evaluated at
respective mid-points 5 and 6 (see FIG.1l). Resulting areas again for
NET-3A discretisation FIG.2 are projected over grid indices in FIG.5, with
column sums either side of separatrix inset against separatrix distance_from
inner target. Normal interfacial areas along a grid column a;, = dsi As, are
likewise inferred from cell width between vertices 1 to 2 on ilnnermost
magnetic flux surfaces and 3 to 4 elsewhere multiplied by toroidal extent
centrally across that cell, i.e. calculated at centre 9 (see FIG.1ll). Our
equivalent NET-3A grid projection 1s depicted in FIG.6, together with grid

row total versus initial position on inner target.
L]
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A significant question here is treatment of toroidal normalisations
across grid cuts. While (14) determines As (oP oP) uniquely everywhere in
divertor private and scrape—off regions given inner target values AsP(O a.),
in traversing a grid cut one enters onto a new main torus poloidal flux tube.
As before, AsP could unambiguously be reset by equating it to 2mR, but we
presently use an alternative strategy. Normalisations for each lower half
grid row are multiplied by a factor when crossing to main torus cells,
firstly incorporating its proportional discontinuity in Bg and secondly such
that there is a smoother transition in total interfacial area between those
rows bordering the separatrix. In effect, considering a total area graph
resembling FIG.6, inner main torus contributions are scaled until least
square straight lines through parameterised numbers of row values inside and
outside the separatrix intersect on it*. Both separatrix contiguous rows
are also brought exactly onto these lines by apglying extra factors, in the
scrape-off to its initial normalisation Ast 2(0,0.) which consequently is
increased fractionally above unity. This further improves smoothness of
critical area change onto open magnetic flux surfaces.

Cell volumes VF = dsPdsP&s are estimated from our previous diametric
measures between face mid-polnts 5 to 6 and 7 to 8, and ignorable
co-ordinate width again at centre 9 (see FIG.1ll). Thus one most naturally
approximates a logical principle that cell to cell interfacial areas should
be simple interpolations of centre based volumes and lengths. Projection
over grid indices for our illustration NET-3A discretisation is presented in
FI1G.7, zero value - direction channels still indicating the cuts. It
will be observed we  obtain substantial complexity, in conjunction, owing to
clustering of mesh lines simultaneously around separatrix and targets and
spreading in torus boundary regions of low curvature, with extreme
variations in magnitude. Recall from (6) that FIG.7 essentially refers to
(one over) the Jacobian for orthogonal transformation to this physical

solution space.

* Consider a set of N Cartesian points {(xi,yAi+hyBi]}i. Let: -

_i=N _i=N _i=N _i=N
T R e S T/ R Tt (34)
= i=N
g = 151 Yai 3 Bg 7 121 yBi-

A least squares straight line fit may be written y = axt+B, where:-

_ CBpBg=Npg)+ (B HgNEy N g = (B Bg—Hole ) H(H By —Bole )N

i . . (35)
W1-Niy K1 ~Ni,

If in addition this fitted line must pass through an extra designated point
(xI,yI) then:-
2
% & (UI‘NUQ)YI-(ulus‘Nua)XI'UIP3+P2U5 ) (36)
(B Bg=NBy )X TR By —Holig
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In an along field co-ordinate system, we recollect from sub-section 2.2
only longitudinal dimension dsﬁ and magnetic flux orthogonal area ai differ
from poloidal frame metric functions, normal widths ds_, areas a_, and
volumes V being identical in both cases. Now within a’magnetic %lux surface
of constant Iy equation (10) yie%ds:—

P ;
ds£ = dsi (LP ID X %_ dsi) = IO X ltt dsi’ (37)
dsy

where t = (BQ/B¢) is local pitch information generated by HF. We solve this
integral once more in a spirit of universal piecewise linear approximation,
by allowing t to vary linearly along a flux contour straight line segment
connecting two points sy,;syp in the poloidal plane, i.e:-

P__P P P

ST -8 to—t s,.n—S t 7
( X KA) =>dt = B "A dsi =>ds}F{ = _.........._.__.._XB XA tB ./l+t dt.(38)
(SP —SP ) SP —SP tB—tA A
XB “xA xB “xA

t = tA+(tB-tA)

Substituting r? = (1+t?) one readily finds:-

P P / 2 P

oF 1+t2-1 Y1+t 2-1

dsi = _XB "xA { /1.,_,:32 +1 90 (—2B)- x/l+t:A2 -1 ln(——A— b, (39)
tp=ty 2 /1+t32+1 2 /l+tAzi-l

which also tends smoothly to the expected limit (siB-siA)(BA/BGA) when tp >ty -
To evaluate magnetic connection lengths dsx across grid cells, expression
(39) is actually applied in just two steps roughly along their mid-surfaces;
from face mid-point 5 to centre 9 to face mid-point 6 (see FIG.1ll),
respective t values being interpolated bilinearly analagously to (23).
Consequent extents for NET-3A study FIG.2 are shown over mesh indices in
FIG.8, together with total grid row lengths agalnst inner target intercept.
Here one should contrast FIG.8 with FIG.3, noting in particular a very
pronounced variation in scrape—off magnetic connection length from target to
target (>50%). It is evident that much of this exaggerated shear is
contributed just by those few cells very close to the X-point, for which dsi
of course becomes greatly elongated. Everywhere else, shear through any
grid column is mild to negligible. Magnetic shear is a very significant
feature of authentic tokamak geometries, and is readdressed briefly in
Section 4 below.

Along field cell to cell areas ai are immediately deduced from (12),
giving:—-
F_B5¢ p t P
x = — ay = a - (40)

B V1+t2

a
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Pitch t is calculated at face mid-point 5 on inner target and 6 elsewhere
(see FIG.1l). Corresponding areas over our NET-3A grid, plus column sums
for scrape-off and inner regions, are displayed in FIG.9. Since each grid
row is a tube of fixed magnetic flux (cf(9)), invoking a standard toroidal
field relation we may note:-

—4+2
ai = constant. %-ﬂ constant. R(l %—J = constant. R, (41)
or ag varies roughly as major radial co-ordinate. Comparing FIG.9 with

FIG.2 affirms such an expectatiom.

Specification of magnetic geometry is completed3 by coupling to other
poloidal co-ordinates data cell centre values of (Be/B). To produce
discretisations of maximum consistency we invert (11), ascribing to each
cell a mean value equal to dsz(l/dsi), where ds, derives according to (39)
as explained. Only inside cuts and on the target boundaries* themselves do

we set it explicitly to (t//1+t2). Taking FIG.3 and FIG.8 we obtain a
pertinent NET-3A grid function shown in FIG.10. While gradients in pitch
angle are strong along field lines, therefore, we see they are trivial
against o, except around the X-point. This validates in general our former
neglect o Uy-dependence when relating magnetic flux orthogonal areas in
(12).

Two further output files are created by LINDA, containing cell by cell
listings in BRAAMS conventional grid order of compatible metric functions
for poloidal and along field reference frames. Magnetic pitch data also
accompany the former. Engaging realistic divertor representations in BRAAMS
calculations becomes a matter merely of reading in such a file, then
redefining cut cell dimensions as necessary. One final discrete measure is
also supplied, to enable results to be normalised to total power effluxes
anticipated into the plasma edge in point from inner ignited regions.
Summing cell face areas a_, around a grid innermost magnetic flux surface and
dividing by its surface atea of complete toroidal revolution identifies what
fraction is actually covered. Now if an element of length df on some plane
curve C is rotated through a small angle d¢ about a centre line, it sweeps
out an area R(1)dRd¢ where R is (major) radial co-ordinate of element df.
Thus an entire figure of toroidal revolution for C with total length L has

dan area:-
s = 2m J§ R(R)AL. (42)

We make a trapezoidal estimate of this integral for the grid discretisation
between cuts of an innermost main torus closed flux surface. Separate
contributions between face points 1 to 7 and 7 to 2 (see FIG.1l) are counted
from each cell. If in poloidal co-ordinates toroidal extents Asg were
assigned to 2MR, as already mentioned, the whole torus fraction covered
would effectively be unity. However, with our scheme of unit normalisation
across inmer target and smooth inside to scrape-off areas, obviously only a
part torus is included. For NET-3A case in FIG.2, a ratio of roughly 3% is

obtained.

* These points are necessary to set appropriate sheath conditions for
oblique plasma incidence in both co-ordinate versions of BRAAMS.
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It will be appreciated from foregoing sample NET-3A results that a
particular issue remaining in LINDA is that of noise. An especially clear
example is provided by parallel areas a_, in FIG.6. Some degree of noise is
inevitable in any interpolation problem, and here certain expediencies allow
it to be reduced. By choosing flux surfaces determining grid rows in a zone
of high poloidal magnetic induction, it is generally unlikely that they will
be compressed any.closer together anywhere else. Similarly, disposing
divertor private flux surfaces in reflected proportion to main torus
contours assists in producing a relatively smoother grid over its lower half
cuts. Closed inner flux surfaces themselves are incorporated only so that
one has a boundary on which certain symmetry conditions with respect to
electron and ion transport are well obeyed. Clearly, one would like this
innermost contour to separatrix region as narrow as possible, both because
preliminary convergence of BRAAMS calculations can proceed no faster than
slow cross—field transport of particles and energy across it, and because
approximations, notably currentless flow, inherent to the BRAAMS model
become increasingly severe at smaller minor radii. Again, though, one
compromises to avoid growing noise from interpolations excessively fine
compared with original HF data resolutions. A typical parameterisation
emerges as portrayed for NET-3A in FIG.2. To a lesser extent, a similar
consideration applies to fixing private sector thickness below the X-point.

One drawback of piecewise linear interpolation is its liability to
generate numerical noise due to errors in locating magnetic flux surface
points. This situation is especially acute near the X-point, where not only
are errors accentuated by large flux surface curvatures and difficulty in
describing orthogonal curves, but also gradients of (I/Be) are enormous.
Such errors picked up in our toroidal renormalisation method of crossing
cuts may underlie apparently quite systematic nolse between NET-3A main
torus grid rows, exemplified in FIG.6. Hence, in addition to its incurring
fewer interpolative operations, alternatively setting Asg for each poloidal
plane cell explicitly to 2nR may lead to smoother metric results.
Never-the-less, noise cannot in any case be-arbitrarily smoothed out if one
is to preserve comsistency of functions. One may smooth a,, for instance,
viewing it as an adjustment to inferred values of Bg, but only if
corresponding amendments are also made to ai;ai;v and with greatest

difficulty to integral connection length dsi. Again, one could not smooth
poloidal co-ordinate dimensions dsz;dsP without simultaneously altering
every other geometric quantity, plus actual cell vertex positions {[Rk’ck)}k
as well. We attempt to minimise noise wherever possible, but do not
interfere with final representations.

3.5 Technical Details

Presently, LINDA contains ~2700 executable statements in FORTRAN 77
dialect. Ordered poloidal flux function and cotangent of pitch angle data
from HF are read directly from two formatted ASCII files. Graphical
sunmaries of grid discretisation and metric characteristics are produced
using current versions of the Culham GHOST packagelz. Since it is globally
a "once-through” non-iterative code, execution takes typically only 12-15 s
of CPU time on a CRAY-1S or -XMP when encoded using its CFT77 optimising
compiler. All control parameters are initialised in a single block data
segment, and cell normalised distributions f_;f  defined in two function
routines. By maintaining a compiled object module library, only a trivial
recompilation among these three parts, followed by relinking, is needed to
implement a new case.
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Now spatial lattices over which magnetic information is determined by HF
usually comprise 15000-20000 points, while interpolated piecewise linear
flux contours themselves may each contain 200-300 plane co-ordinate points.
Many more are contributed by orthogonal surfaces, and ultimately nine
separate positions (see FIG.ll) with eight distinct geometric measures are
accrued from every cell. Thus if all these data were stored concurrently,
rather heavy demands for storage would be entailed. We avoid any such
inconvenience by declaring four real and one integer named common blocks,
all of minimal size and repeatedly reused in successive stages of a
calculation. Temporary workfiles are then employed to pass required
co-ordinates etc between stages, transfers further being exploited to
accomplish relevant reorderings. In addition to principal output files
containing cell vertex co-ordinates, grid metric descriptionms in both
poloidal and along field systems and graphics, any other workfile may also
optionally be disposed. This provides an extra useful potential to furnish
more primitive aspects, like approximate magnetic flux surfaces.

4. SUMMARY & APPLICATION

In order iteratively to increase internal consistency in numerical
simulations of divertor tokamak edge plasmas, a means of supplying unified
and realistic magnetic geometries to BRAAMS plasma and Monte Carlo neutral
particle transport codes has been devised. Taking poloidal plane
distributions of axisymmetric flux function and pitch angle computed by the
HF magnetostatic equilibrium code, a new interpolation program LINDA
produces spatial discretisations everywhere closely according with physical
magnetic structures. Linear approximation methods are employed through-out.
Piecewise linear magnetic flux surfaces are constructed, each ordered
sequentially, disposed arbitrarily outside and proportionally inside the
separatrix. Based on an original geometric approach of subtending isosceles
angles at segments of consecutive contours, arbitrary arrangements of
orthogonal surfaces are also deduced. Intersections determine vertices of
discrete grid cells, presentable directly in plane co-ordinates to Monte
Carlo neutral particle codes or encoded in fundamental metric functions to
two-dimensional BRAAMS calculations. Cell diameters parallel and normal to
flux surfaces are required, together with interfacial areas and volumes.
Thus extents in an associated symmetry direction are implied, being
consistently fixed by total and poloidal magnetic flux tube conditioms
respectively in field line aligned and poloidal reference frames. Ordered
metric listings are prepared for both these implementations of BRAAMS.
Magnetic pitch angle values must accompany poloidal data, and are specified
by approximate connection length averages.

Employing such an authentic geometry in either version of BRAAMS departs
from previous simplified divertor studies’ naturally in matters of detail,
but most significantly in one crucial physical respect. Latterly, reduced
representations have prescribed zero shear against magnetic flux orthogonal
co-ordinate, i.e. every_cell in a computational grid column was appointed
equal connection 1ength7. Recalling example FIG.8 and even FIG.3 for NET-3A
demonstrates a true variation. In fact, some limit on maximum shear may be
apposite, for instance no flux surface should be placed closer than a mean
poloidal Larmor diameter from an interpolated X-point, or other constraint
expressing its practical imprecision. Our illustrative mesh FIG.2 probably
at worst only marginally contradicts such a proposition. In any case,
finite shear may potentially increase numerical difficulties affecting
stability and/or convergence of BRAAMS utilisations, or even in unfavourable
circumstances excite physical modes, for example of a Kelvin-Helmholtz like
nature. One obvious possibility to lessen difficulties might be to start
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from some prototype metric in which shear is artificially decreased by
inventing a poloidal magnetic field giving pitch angle invariance with
orthogonal co-ordinate. For example, t = (BG/B¢) may be set by LINDA always
to a scrape-off mid-value in each grid column. Beginning from a converged
BRAAMS solution for this easier situation, omne could then move to an exact
solution through a progression of intermediate stages of mounting shear,
converging from its predecessor to a new steady-state plasma at each one,
and so never perturbing severely from equilibrium. At least in poloidal
cross—section co—ordinates, consistent first-order adjustments to metric
functions for a small change dBy in poloidal magnetic induction are
immediately conferred by (6) and our choice of toroidal dimension (14),

whence: -
day(oy,0y) day(oy,0p) dvP(oy,0p) dBg(0,07)  dBg(dy,0y)

af(oy,00)  ay(0y,00) V(R 00)  Bg(0,00)  Bg(dy,0p)

yrx

(43)

Increments dBy themselves are expressible in terms of point steps in pitch

data c = (Bg/B) augmenting poloidal geometric quantities:-

dBgy -
_ t -y 0 _dt_ 1 dec 4
c = = - S8 4
Y1+t? Bg t leetc “

Development so far implicitly has applied to single-null poloidal
divertor edges. Assuming BRAAMS plasmas can eventually be obtained for
them, perhaps via an evolutionary approach as indicated, one must still
recall a proper need to treat double-null configurations for NET. Extending
our linear interpolation of magnetic geometries should be reasonably
straight—-forward, since of course identical basic elements are again
involved. Piecewise linear magnetic flux surfaces can be assembled as
before, although now no change in interpolation direction and a distinct
ordering algorithm distinguishing torus inner and outer sides are likely to
be required for scrape—-off contours. Above all, the essential kernel
routine approximating an orthogonal curve across some set of these surfaces
retains its validity. Generally, only a reorganisation of component
processes is implied, to embody a new conventional cell order with more grid
cuts for the BRAAMS calculation mesh. A double-null case effectively is
composed just of two juxtaposed single—null arrangements, so chiefly
adaptation consists of duplicating and suitably resorting our former
procedures. In addition, resembling commensurate reflection of main torus
inner flux surfaces into divertor private ones before, some extra criteria
may be added to minimise loss of smoothness between reassimilated grid
regions neighbouring om a cut.
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FIG. 1 Illustrative volume elements with pertinent facial areas and flow
velocity components indicated in poloidal (top) and alomg field
(bottom) co—-ordinate frames.
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FIG. 3

Associlated projection over grid indices of cell longitudinal
diameters ds; in poloidal plane. Zero value channels reveal
positions of grid cuts. Inset: total poloidal arc length along
each grid row against initial mid-position on inner target,
starting from innermost private flux surface. Recall lower half
grid rows follow a divertor private contour up to first cut, then
traverse its closed main torus counterpart to second cut, and
finally complete the original private contour.
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4

Equivalent projection to FIG.3 for cell orthogonal diameters ds,.
Large value spikes again lie within grid cuts. Inset (upper):
total poloidal width outside (positive) and inside (megative)
separatrix across each grid column, against mid-position along
separatrix, starting from inner target. Cut columns themselves are
excluded. Inset (lower): cell orthogonal diameters ds, along grid
rows immediately inside (x) and outside (+) separatrix” against
separatrix distance.

.
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Equivalent projection to FIG.3 for magnetic flux orthogonal
interfacial areas in poloidal frame. Inset: sum Interfacial
areas outside (positive) and inside (nmegative) separatrix across
each grid column, against distance along separatrix from inner
target. Discontinuities across lower half grid cuts are evident.
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Equivalent projection to FIG.3 for magnetic flux parallel
interfacial areas a,. Inset (upper): sum interfacial areas along
each grid row (soliﬁ), and along closed main torus portions only
(dashed), against initial position on inner target from innermost
private flux contour. Inset (lower): Multiplicative factor applied
over lower half grid cuts to symmetric toroidal normalisations of
each row, against position across inner target. A smoother
transition in total areas on either side of separatrix results.

.



FIG. 7 Equivalent projection to FIG.3 for cell volumes V. Very small
values adjacent to targets reflect clustering of grid both in
facing high recycling regions and around separatrix.
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FIG. 8 Corresponding projection over grid indices of cell magnetic
connection lengths dsi in along field frame. Shear 1s seen to be
small except in immediate vicinity of poloidal field null
(X-point). Inset: total connection lengths along each row againmst
intercept across inner target.



FIG. 9 Equivalent projection to FIG.8 for magnetic flux orthogonal
interfacial areas af. in along field frame. An expected relation
essentially to major radial co-ordinate 1s manifest. Inset: sum
interfacial areas outside (positive) and inside (negative)
separatrix across each grid column, against pololdal distance along
separatrix from inner target.

FIG. 10 Corresponding projection over grid indices of cosine of magnetic
field line pitch angle (BBIB). Values are connection length
averages given by ratio of cell longitudinal diameters in poloidal
and along field frames dsi(l/dsi).



FIG. 11 Identification of ordered points defining basic discrete cell in
poloidal plane between plecewise linear magnetic flux surfaces
(FS), mid-surfaces (FMS) and orthogonal curves (0S) and mid-curves
(0MS) .












