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Abstract

Linear stability properties of the ideal internal kink mode in
toroidal geometry are calculated for equilibria in which the al(r)
profile is very flat and g ~ 1 in the core region of the plasma.
Marginal stability criteria and growth rates are calculated analytically
in the large aspect ratio limit and compared with numerical results from
the FAR code. The theory is developed for m =n = 1 modes and for
higher m(=n) modes. The temperature perturbation due to adiabatic
expansion in the linear phase of the 1/1 mode is calculated and compared
with experimental data, showing that the prediction from ideal mhd theory
cannot account for the observed temperature increase on JET. Comparison
with collisionless theory suggests that the observed temperature increase

can be accounted for by compression of the trapped particles.
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1. Introduction

Observations of the initial plasma displacement during the sawtooth
collapse in JET discharges [1,2] show that the radial displacement

eigenfunction Er(r) is not close to the Heaviside function

(1)

which is usually predicted by analytic theory (and computations) of

internal kink modes, when q(r1) = 1.

The analytic theories of Bussac et al [3] (for a single g = 1
surface) and of Hastie et al [4] (for multiple g = 1 surfaces) both
assume |q - 1|>> ¢ =.% in the inner region. However,
computations[2,4]of the internal kink mode for ultra flat g(r),
with |q(r) - 1|€ e in [0,r1] show approximately
parabolic gr(r) corresponding to convective flows of the type seen in
JET.[2]) This gives support to Wesson's suggestion [2,5] that, at the
moment of sawtooth collapse, and indeed throughout the whole sawtooth

cycle, g =1 + 0(g) in the region «r <r1.

In Section 2 of this paper the analytic theory of the toroidal ideal
internal kink mode is developed for eguilibria of this type. Analytic

expressions for the eigenfunction E(r) are obtained and shown to depend



on both the pressure profile p(r) and the g profile &(r) = g(r) - 1.
Expressions are also obtained for the marginal stability criterion.
Similar analytic results are derived for the shorter wavelength modes with
m=n=2, 3, 4 etc. In Section 3 expressions for the growth rates of

m/n = 1 modes are obtained and the 1/1 growth rates are compared with
numerical results obtained from the FAR stability code[4,6]. Section 4 is
devoted to a comparison of the theoretically predicted compressional
heating during the linear phase of the m = n = 1 ideal kink mode with
that observed experimentally during sawtoothing in JET. It is found that
ideal MHD theory fails (by two orders of magnitude) to predict the

~ observed temperature rise. In Section 5 we investigate collisionless
stability theory[7,8] and show how the temperature increase can be
accounted for by the compression of trapped electrons. Collisionless
theory requires a modification of the ideal mhd stability boundaries for
the m/n = 1 modes investigated in the previous sections. The modified
stability boundary of the 1/1 mode is calculated in Section 6. We

conclude with a discussion of the revised stability thresholds.

2. Minimisation of 6&W for a large aspect ratio equilibrium

In this section we consider the order by order minimisation of the

energy integral
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The equilibrium magnetic field is given by

B =R, (£(x)Vp x 9r + g(x) Vo) (3)

and the 1r,6,¢ coordinates are those used in references [3] and [9].

we consider an equilibrium in which

|a(r) - 1] ¢0(e) for 0 <r < r,

while gq(r) increases from near unity at r1 to q, > 2 at the edge of

the plasma (r = a).



The situation of interest is that in which g(r) > 1 at all radii,
since we expect that a marginally stable equilibrium will always exist

before g can evolve down to unity at any radius.

Returning to &W we insert the expansion

=g +ef +e?g
Eé0 “15"‘2

where § = § (r) ei(me = Bl

the equilibrium quantities [9]

with m = n and the explicit expansion of
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£=f£)+ €2, +
g =1+ €29, + ehg, + (8)
P = Ezpz + EHPH +

where A(r) is the toroidal shift, and € labels small terms for

convenience

In leading order (which we label §W-,) we find

a ar 3 2
SW_, = 2m2R B2 [ = | = (rgroj + img (9)
This vanishes when
- |
o0 = 7 @ (TZrg) (10)
In next order
a 2
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ry dr

This expression alsoc vanishes when,



6&61 0
+— (rE ) =0 (12)
06 or
and gro(r) =0 T, < r < a.

We note that, because the factor % - 1]2 ~ 0(5)2. in the range

[O,rl], no information about gro(r) in [O,r ] has been obtained, other

than the boundary condition

E.ro(r1) =0 (13)

The radius r, which bounds the plasma core region in which

lq - 1| < ¢ does not have a precisely defined value. Physically

meaningful results for stability thresholds, growth rates etc., must of

course be independent of the choice of ry. This will be achieved by

regarding r) as a parameter to be varied in the minimisation of

W(E,E), or the maximisation of the growth rate .

Proceeding to next order we find
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Stability is determined in this order by the minimisation of &W, with
; ! (m%1) i

respect to Ero' and the two sideband displacements 51 which

are O(eg) smaller than Epr and are driven by toroidal coupling. The

boundary conditions require

+0 as r +r +
aro 1

to be the small solutions at their respective singular

+
surfaces, q = 1 i_;, if such exist, or 5;?‘1)

and g&“ﬂ )

(a) = 0 if the singular
surface is not present.

+
In the region [r1,a] only g(m_1)

- appear in 6W2 and the usual

cylindrical Euler eguations are obtained
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In the inner region [D,r1] the minimising Euler eguations form a

; 1 n ast
1 h . k — - = 3
sixth order system Here we take 3 RE THHT and write

g = 1 = 6g(r). The appropriate equations are

- dEU a® & -m d (m+1) mt+
—|x3%q2__ | + xgo[(mZ-naqz + ] x — ] x T]
dx | dx 2 2(m+1) dx
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where ¢ = 2R.p'/BU2 + X = r/r, , and we have dropped the subscript r on

E; and g; for simplicity.

We may integrate Egs. (17) and (18) to eliminate the sideband

mt1
displacements 51( )from Eg. (16) and obtain an integro-differential

eigenvalue equation for g,;

d dgp m+l b
— {x%a? '} - gx(m2-1)8q2 + o A [ ax Egdx =0 (19)
dx dx m o



where

(m+1) (C + m + 2)
m

A = (20)
M 2 (m - C_)
m
XE , (m+1)
with ¢ = =L (x=1) , evaluated from the solution of Eq. (15) which
(m+1)
€1

: ; ' m+1 . .
vanishes at r=a, or is small at g = - if this resonant surface is

within the plasma.

(a) The m=n=1 mode

The singularities which arise in Eg. (16) when m=1 are only

(0)

apparent since the radial displacement of the lower sideband £r1

vanishes. A separate treatment of this case reproduces Egs. (19) and
(20) with m=1. The eigenvalue Eg. (19) is then easily solved for
arbitrary profiles a(x), &6q(x) to obtain the stability condition and

eigenfunction for the =n=1 mode;

1--C1

1
J @ x2[1(1) - I(x) Jax < (21)
0 Cy+3
with
X a s
I(x) = | ® J a(t)t2at (22)
0 53552 0



Eolx) = Eg(1 = T(x)/1(1)) (23)

For the simple case of a parabolic pressure profile

2
r
p = pgl1 = __2) for 0 < r <1, (24)

To
and constant safety factor

g-1 = &g = constant 0 ¢r <r, (25)

the stability criterion becomes

& > By Rr, [ C+3 ]1/2 (26)

rG2 24(1-C)

(b) The m=n2 modes

For the simple choice of profiles defined by Egs. (24) and (25) the
eigenvalue eguation (19) can also be solved for general m , to obtain

the stability criterion for higher m modes. This is :-

Rr 1 Cm+m+2 142

& > BU (27)
r

02 4(m+1) (m+2) (m=C )
m

which agrees in the appropriate limit with expression (26). The values of

Cm have been determined numerically for the profile

- 11 -



) + —=_ for r,< rea.

and the dependence of the threshold By on the mode number m is shown
in Fig 1. As in the case of cylindrical geometry (P. Kirby [10] )the m=1
stability boundary occurs at a lower value of Bo than the boundaries for

higher (m,n) modes.

3. Growth Rates of Internal modes with m/n = 1

To evaluate growth rates we equate the kinetic energy

L j.%d.r HE (28)

to the potential energy, including the compressional part

"1 o 2
&, = 21?Bg%Ry [ ‘rar =3 | Vog| (29)
0 0

where I' is the adiabatic index.

The growth rate is then determined from [11]

2
¥ . oW o(E, E)+6H, (E/E)
—— = maximum {- (30)
¥ Ok K(E, E)

- 12 =



where both 6W2c and K now depend on the longitudinal component, g“,

of the displacement vector.

Ip
To continue, we assume that Tz/YAZ < ——. This approximation
B 2
0

(fast propagation of sound waves) holds close to marginal stability, but

is in fact more generally valid for internal kink modes in typical

Tokamaks. We then obtain a lowest approximation to E by setting

&ch = 0.

Equation (30) for the growth rate now takes the form

1 1
1 ]
, alf Xt godx]2 - | xax 5q2[(xg0)2 + (m2-1)§§]
3_.1_ = max { 4 a } (31)
2 2 :
& Ya &0 f1xdx [(xgo')2 + (m2 - 1)502J
0

with Am given by Egn.(20).

For the m=1, n=1 internal kink mode this variational problem is
analytically soluble for arbitrary profiles of the safety factor 5q(x) .,

and pressure p(x). The growth rate is given by

1 X
. o (/ a(t)t2ac)? = 1 (32)
x3(8a237%/7,2) 0

I

The growth rate obtained from Egn. (32), including the variation over Iy
is compared in Fig 2 with growth rates obtained from the FAR initial value

1)3

; r
stability code[4,6]. The g profile in this case 1is q=qo+6.8(.E ~

1 1 _ .
for r/axz and q—q0 for r/a(z, 30—0.66% and &0.1. Also shown in

Fig 3 is an improved analytic result. This was derived by expanding the



1 1 1 ; : A
factor @. --—) =~ - &(r) in solving for the m=2 sideband, and
q 2 2

retaining the first order corrections 0(&g) perturbatively. The
improved agreement with the numerical growth rates suggests that this
expansion is the main source of error in the analytic treatment. As has
been indicated above the growth rate obtained from Eg. (32) with x=r/rl
has been maximised with respect to variation of the parameter rj/a. The
dependence of <y on the choice Of. r1 is shown in Fig 3. The procedure
followed in solving equation (32) for +y is to choose a value of r, in
the region where (g-1) is small, calculate Al(rl) (equation (20)) and
the integral, to obtain Y(rl)' and then to maximise Y(rl)' Fig 3 shows
the wvariation of T(rl) for the same g(r) profile as Fig 2, and with

qo = 1.004.

4. Adiabatic compression during the sawtooth precursor.

Observations on JET[12] show that as the magnetic axis is displaced
during the m=1, n=1 instability occurring just before the sawtooth
temperature collapse, the peak electron temperature as measured by
electron cyloctron emission (E.C.E.) may increase by a substantial amount.

In one example[12]in which the plasma displacement was outward, along the
E.C.E. line of sight the peak temperature Teo was seen to increase from
around 6.3 keV to 7.2 keV before the temperature crash. A possible
explanation of this is that the temperature perturbation is caused by
local adiabatic compression of the plasma. At marginal stability the
plasma motion, as predicted by ideal MHD fluid equations, is strictly

incompressible, but at finite growth rate we can calculate Vef from

-~



equation (30) by going to next order in (Yszgzﬂo)' The result is

2 w2 &
veg =Y B R (33)

132 Ip Rg

where gR is the outward displacement from the symmetry axis. With
growth rate taken from experimental observation of the 1/1
displacement[1] (Y/TA ~ 10-2) and the experimental value of B ~ 10'2,
this would yield an estimate for the temperature perturbation &T at the

magnetic axis;

2 Er +2
8T = = — (Veg)T = - 1.6 =Y T, (34)
g 2
3 R v, 50

of about 15evV for a 45cm displacement of the axis. This 8T represents
cooling due to adiabatic expansion where the axis is convected outward
into the weaker toroidal magnetic field, and compressional heating where
it is convected inward. In addition the magnitude of the perturbation

falls far below the observed temperature increase of about 900eV.

However collisional fluid equations are clearly inadequate to
describe compressional effects occurring on a time scale of 100 p sec when
the electron and ion collision times are of order 100 p sec and 10 m sec
respectively. The appropriate theory describes individual particle motion
along the field and replaces the energy integrals of ideal MHD by the

kinetic energy principle [7,8].



The only modification required in the foregoing calculation of
stability boundaries and of growth rates, is the replacement of the

compressional energy 6W2c, Egn. (29) by the kinetic integral [7,8]

1 3 6fj2
S - 3
&, :z ijfdxfdv —= (35)
3 dF
5&:

where the perturbed distribution functions for ions and electrons are
determined by the bounce averaged Fokker-Planck equations, or in a

collisionless plasma by the Vlasov equations [B] or use of the

p and J
adiabatic invariants [7].
oF
(y - indq _ ved> J6F = =y — < vllleg:vfg_?pscv-g-xﬂ:vgp (36)
T oK
where, k = :.vz is the energy per unit mass, n = §/|B|,
dae
T = Rgg j_ (37)
|V1|‘

is the transit time for passing particles, and is the bounce-time between

turning points, for trapped particles.

B> = 4 [ Roa 48 4 (38)
V4]

is the orbit average of A, and the term indg/t on the left hand side of

Equation (36) appears only for passing particles. An important feature of



gl}
this equation is that the right hand side becomes small, of order (E __]
R

for passing particles, while it is of order gy /R for trapped particles
and those passing particles with v"/v ~ 0(el’?), which we shall refer to
as 'slow passing' particles. This arises because the gquantities Vef, and

QQ:VQ are oscillatory (= cos 6) in leading order, and couple to the

variation of |B| and VH in the orbit averages. As a result the energy

integral, Eqn.(35) can only have a contribution of order EZ(EUZ/RZ) from
passing particles, while the slow-passing and trapped particles contribute
allz[guz/RzJ. The precise nature of the solution in this region of

velocity space depends on the relative magnitude of three frequencies:

v
v /&, the effective collision frequency for slow particles (_ﬂ ~ 51/2);

3j v
T;l, the bounce or transit frequency for slow particles; and vy, the
growth rate. 1In the following we consider three limiting cases as

examples

(a) collisionless limit (v + 0) with vyt << &g
(b) collisionless limit (v + 0) with yt >> &g

(c) collisional limit: v >> y >> &a/7T.

In the third case the collision operator is taken to have the Lorentz
form, appropriate for electrons if Zeff >> 1. The perturbed distribution

is then forced to be isotropic, but not necessarily Maxwellian.

The relevant solutions for 6f for these cases are:



g

K

4
o W

(a) Of = AB <cos &> B Trapped particles
(39a)
= 0 Passing particles
£
mK r
(b) 6&f = - ABO._H <cos 9>Fm all particles (39b)
(c) 6f-mK§rFf'2_h 11 particl
(o = =% E a particles (39¢c)
1 1 g o
h = o [ ém (2B-K) +_ | EEE) 4 )= 0.009 (40)
2 7 TG 3/2° W
m

where E(m) and K(m) are the complete elliptic integrals, and we have

introduced the pitch angle variable AB=vi/v2.

Inserting the appropriate solution for &f into the kinetic

integral, Egn. (35), we obtain:=-

- ‘ K 1/2
o, =2mRB 2 [ xar BE T (2m) (41)
0 81 Buz RUZ RU

where the numerical coefficient, p, which results from pitch angle

integration over bounce averaged quantitles, is glven by

(2E-K) 2

1
w=2am

0

1.108 , y;b<<6q, v+0 (42a)

- 18 -



"
1.108 +2]

2 oo 2 _
[x + = (E K)]? = 1.292 , yg>>6a w0 (42b)

=
|

0 m3/2K

= 2m(2r/R) /%2 = o0.09Ye, v>> y>> 8a/ (42¢)

=
|

In case, (a) only trapped particles contribute and the
coefficient | is the same as that found by Antonsen, Lane and
Ramos[13]for a similar (interchange) stability problem. In the second
case, (b) the slow passing particles also contribute but are seen to be
much less important than the trapped particles. The discontinuity which
appears in 6f when YTb<<6q is resolved by a collisional boundary layer
of width L_;_)llz but this does not affect the energy integrals
significantly. 1In case (c¢) pitch angle scattering has smoothed the

perturbed distribution function to be isotropic and has reduced the

magnitude of the kinetic term.

The inclusion of this stabilising effect has two interesting
consequences. Firstly, ultra-flat q(r) profiles may be stable to the
ideal m=1, n=1 mode even when &g(x) = 0, and no field line bending
energy is available to balance the pressure gradient driving terms. This
could explain observations on JET[14] which suggest that a g=1 surface

exists during the ramp phase of the sawtooth.

Secondly, the kinetic compression term, Egn. (35), indicates that a
substantial increase in temperature should occur as the magnetic axis is
displaced by the m=1, n=1 motion. Equation (41) suggests that the

&p 1/2 E.u 2 &

pressure perturbation = ~ g*/“___ rather than 0[.1L_.__] found in
2
R To B R



collisional theory (Egn. 34). However, equation (41) conceals the fact
that the pressure perturbation in ccllisionless theory is anisotropic. To
interpret the E.C.E. measurements correctly one must return to the
perturbed (anisotropic) electron distribution function and calculate the
radiation temperature, Tr[15]

mjnufdav
o (43)

where n(w,v,8) 1is the emissivity. Considering emission perpendicular to

the magnetic field and taking the non-relativistic limit, 1 «a vf

equation (43) for Tr becomes

@ 1/B
m fo x¥2%c [y X a[r (0 + st(ni ]
-/1-;5
r
® 1/B :
[ 3% I 2w+ L2 + 6]
v1=AB 0k kB OA

Equation (44) may be expanded for small §r/R to give an expression for

the perturbed radiation temperature Tr'

The result depends sensitively on the degree of anisotropy of &f. Taking
the distributions of (39b) and (39c) as examples 6Tr may be calculated

explicitly in terms of elliptic integrals. The results are

R °r
1.11/1__R_,

Brr/Te Y>> 6q; ve40 and 6 =1 (45b)

- 20 -



r E’r
6T /T = 0.09V- —, v > y> &/t (45c)
r e R R e

Initially there are no trapped electrons at the magnetic axis since

v R
e R ; 5 . ; p
V, T — C_J3/2+ o there. As the axis is displaced into a helix by the
% VTe r

m 1 instability v, ,<1 is satisfied when E/R ﬂ(veR/vTe)2’3' At this

*
point banana regime dynamics begins to apply and the appropriate equations

governing Tr(t) are obtained by setting r -+ §r, so that

&

d a
L S P Sl () P2 (46.D)
T dt r dt R
eo0
and
ar 3
1 T aop.0el (F)302 (46.c)
T at at R
eQ

for the two cases considered above.

Taking ar/R ~ 1/6 and T, = 6.3kev the resulting estimates for
éTr are >5kev, and 25eV respectively. A very sharp transition
therefore occurs when the growth rate y exceeds the 90° Coulomb scattering
frequency Uy In practice at 6.3keV, with zeff~ 3, v;l~ 100 usec in the
JET discharge for which a 900eV temperature increase was recorded. This
is comparable to the growth time so it is not surprising that the
observation is intermediate between the extremes predicted by (46b) and

(46c). At somewhat lower electron temperature the more collisional result

- 21 -



of (46c¢c) should hold which may account for the fact that significant

increases in the E.C.E. radiation temperature are unusual.

5. Stability Boundaries in the Banana Regime.

To determine the ideal MHD stability boundaries of internal kink
modes in the banana regime the compressional energy, Egqn. (41), must be
added to the field line bending energy and pressure gradient terms of the
energy integrals in Egn. (14). Of the three coupled Euler eguations
(16)-(18) which are obtained from the variational problem of minimising
6W, only equation (16) is modified, so that after elimination of the two

sideband displacements, the eigenvalue equation becomes:-

dg 1
d +1 m+ 1
S x3[ea23y2/y2)2) - gpxim2-18a2 + ax™ A [ @ X7 Egdx
dx dax o

(47)

15 2 172
IR N g, -

8n By? R

We consider first the limit in which both electrons and ions may be

treated as collisionless, and equation (3%9a) for O&6f applies.

Equation (47) has been solved for the m=1 mode. The transition out

of the banana regime as x+*0 was simulated by taking

- 22 =



1% 1,378

where vy, = (veiR/gl3’2VTe) is the usual collisionality parameter.

*
With v* taken to be 1/80, Fig 4 shows the ideal stability boundary
as a function of q, and ﬁo. The aspect ratio A=3, the g profile
used is the same as that for Fig 2 and the pressure profile is
p=p0(1-r2/a2)2. Also shown in Fig 4 for reference is the marginal
stability boundary for the collisional MHD limit in which the trapped

particle stability term is absent in Egq.47; the strong stabilising effect

of trapped particles is evident.

In practice, although the collisionless limit provides a good
approximation for the ions, it does not for the electrons. The
detrapping frequency for the electrons, ve/e , typically exceeds the
growth rate of the helical instability in JET, and even the 90°

scattering fregquency Ve can be comparable with y if zeff>1. The

isotropising effect of collisions decreases the compressional

172

stabilization for the electrons from ¢ Be to 0.1sﬁe, (Eg. 42) and a

much weaker stabilisation results.

6. Summary and Discussion.

An analytic theory has been presented for the m=1, n=1 ideal
internal kink mode in equilibria with ultra-flat profiles of the safety

factor gq(r) in the core region. This extends the theory of Bussac et

- 23 =



al.[3]to a new regime in which lq—1| ~ 0(e) in the core. The theory
also permits analysis of higher m,n modes with m/n = 1. Analytic
expressions have been obtained for the eigenfunctions (equation (23)), the
marginal stability criteria (equations (21),(26) and (27)) and linear
growth rates (equation (32)). For the case of the 1/1 mode the analytic
growth rates have been compared with numerical results from the FAR code

and found to be in fairly close agreement.

The equations used in sections 1-3 are the collisional MHD fluid
equations. A number of predictions from these eqguations are at odds with
experimental observations. In the first place, ideal mhd theory predicts
that 1/1 instability is inevitable if gq = 1 at some radius (and is
ultra=-flat in the core region). This is in conflict with recent
observations on JET(2,14] which suggest that (i) the g(r) profile is
very flat and close to unity in the core, (ii) q(rll = 1 at some radius

throughout the sawtooth ramp phase.

In addition calculation of the heating (cooling) to be expected by
adiabatic compression (expansion) during the linear phase of the 1/1
ideal kink mode predicts a 15eV drop in the electron temperature of the
magnetic axis where it is convected outward from the symmetry axis.
Experimentally a 900eV increase in the electron temperature has been
measured from electron cyclotron emission during such a displacement [12].
In section 4 it was then shown that, for a plasma in the Banana regime of
collisionality, important trapped particle terms must be included in the
mhd stability analysis and that the anisotropic perturbation of the

electron distribution function predicted by banana-regime dynamics can
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result in a substantial increase in the radiation temperature as measured
by E.C.E. A second important consequence of low=-collisionality dynamics
is that the ideal 1/1 mode may be completely stabilised, (Egn. 48) even

when gq(r) passes through unity and is ultra-flat in the core.

We conclude from these results that the fluid MHD model has serious
limitations when detailed comparisons with sawtooth data are attempted.
Trapped particle effects, which were previously investigated in connection
with interchange [13,16] and high-n ballooning modes [17], may be
distinguished in the behaviour of the m=1, n=1 instability preceding the

temperature collapse in the sawtooth.
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Fig 2. Comparison of analytic growth rates with numerical values obtained
from the initial value code FAR. Solid line is obtained from
Equatien (32). The broken analytic line introduces small

corrections perturbatively by expanding {_1 - .1.) =_1_ - &g(r) in
q 2 2

solving for the m=2 sideband (see text). Equilibrium a=qg .
r/a < 0.5; g=q, + 6.8(r/a - 0.5)3, r/a > .5. By = 0.66%,

a/R = 0.1.
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Fig 4. Effect of trapped particle stabilisation on the stability boundary
of the m=1, n=1 mode. Solid curve is the boundary in the
absence of trapped particles. The broken curve shows the effect
of trapping. q profile as in Fig 21 p=p0(1—r2/a2)2,_ aspect

ratio A = 3.
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