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Abstract

If the equations that describe the observed anomalous transport in
magnetic confinement systems are invariant under a scale transformation
then any confinement time calculated from them must exhibit the same
invariance, no matter how intractable the calculation. This principle
places constraints on the form of the confinement time scaling which are
characteristic of the'plasma model represented by the equations. These
constraints reduce the number of parameters which have to be investigated
empirically and can serve to indicate which plasma models could describe
the observed losses. By extending this argument to specific models of
turbulent transport in which the magnetic configuration and the physical
mechanism for transport are identified, one can closely define the form of
local transport coefficients - in certain cases completely determining
them. This paper provides a review of these ideas, shows how they provide
a theoretical framework for discussing existing empirical confinement

scalings and illustrates their use in classifying and determining the form

of local transport coefficients.
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I. Introduction

The topic of transport in magnetic confinement systems presents a
challenging problem in plasma physics whose solution would help to provide
a realistic estimate of the parameters of a potential fusion reactor. If
transport in such systems were due solely to Coulomb collisions then we
would have a predictive theory (classical, or neo-classical theory)
available but there is strong evidence that transport is generally
anomalously rapid - by up to two orders of magnitude in the case of
electrons in tokamaks, for instance. The task of providing a theory of
this anomalous transport is impeded by the diversity of plasma phenomena
that could be involved, making it eveh difficult to decide upon the
responsible mechanism. If this hurdle can be overcome, there still
remains the problem of actually calculating the anomalous confinement
time, say from the non-linearly saturated state of some plasma physics
instability. Thus, not surprisingly, much reliance is placed on empirical

scaling laws

T = F(nr T, B, a ----) (1)

for the energy confinement time 1T as a function of characteristic values
of plasma parameters such as density n, temperature T, magnetic field
B, linear dimension a etc. These are derived from existing experiments

and then extrapolated, with uncertain validity, to reactor scale

parameters.



A more general, plasma physics based, framework within which to
discuss both empirical and theoretical approaches would be desirable. A
set of related techniques - dimensional analysis, similarity ideas and
invariance principles - offer this possibility and have been long familiar

in fluid dynamics (LAMB, 1932; LANDAU and LIFSHITZ, 1959).

For example, there is the well-known demonstration using dimensional
analysis that the drag force F on a body of characteristic size a ,
moving with velocity u through a fluid of density p and viscosity 1

described by the Navier Stokes equations, must be of the form

F = p u?a2f(R) (2)

where the Reynolds number R = pua/mn. The function £ depends, of
course, on details of the shape of the body but the problem has been
reduced to solving for this function of a single parameter. Clearly this
result leads to the concept of similarity; i.e. if one knows the value of
F, theoretically or empirically, for a particular case, then one knows
the results for a whole family of situations with different parameters but

the same value of R as that case.

As discussed by LAMB (1932) dimensional analysis is related to the
invariance properties of the Navier Stokes equations under scale
transformations. To demonstrate this we consider the Navier Stokes

equation for the velocity v of an incompressible fluid (LAMB, 1932;

LANDAU and LIFSHITZ, 1959).
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ot
where p is the pressure, and seek the scale transformations that leave

this equation invariant. There are three:

\L-ba\L t -+a-lt P ->cr2p T =+ an
X > Bx t > Bt n =+ Bn (4)
p *yp P *yp n+yn

Now a force F must transform as pvxa/t so that if we seek a power law

scaling in terms of the available quantities

F ~ ppuqarns : (5)

F must scale appropriately under the three transformations (4). This

imposes three constraints on the indices p,q,r and s such that

F ~ puzaz(pau/n]P (6)

Had we sought a more general expression than the power law (5) we would

have recovered the result (2).

By making an additional assumption concerning the physics we can
constrain the form of £f(R) - indeed determine it up to a constant

multiplier. Thus considering the limit R << 1 we can ignore the



inertial terms in Eg.(3) and deduce from dimensional analysis or scale

invariance that
f(R) = ¢/R (7)

where c 1is a constant depending only upon the shape of the body. 1In
fact a detailed calculation is needed to obtain ¢ which takes the value

én for a spherical body (LANDAU and LIFSHITZ, 1959).

In the opposite limit R > Rc’ where RC >> 1 is a critical value
of R, one expects the flow to become turbulent and then detailed
calculations are completely intractable. However, if one assumes that the
effects of turbulence can be represented by a turbulent viscosity Tp

which is itself independent of classical viscosity, dimensional analysis

implies (LANDAU and LIFSHITZ, 1959)

where u is a typical flow velocity having a gradient length &. Since
turbulence only exists for R > Rc an order of magnitude estimate is

n, ~ N(R/R_) (LANDAU and LIFSHITZ, 1959).

The idea of constraints arising from invariance properties of
equations, the tighter constraints imposed by simplifying those equations
and the concept of turbulent transport coefficients, all illustrated above
for a viscous fluid, will be recurrent themes in this review of invariance

principles and plasma confinement.



The equations of plasma physics are, of course, considerably more
complex than the Navier Stokes equations. This is reflected in the larger
number of dimensionless parameters available. 1In particular we have p/a,

A A , . . ..
/ and D/a where p 1is a Larmor radius, A 1is the collisional

a
mean free path, AD is the Debye length and a 1is a macroscopic length
characterising the confinement system, and also the quantity B which is
the ratio of plasma pressure to magnetic field pressure. In addition to
these basic parameters which govern the physical processes, we have

constants such as the electron-ion mass ratio and various geometrical

ratios peculiar to particular confinement systems.

For such a complicated system of equations the invariance approach
offers a more powerful, systematic and less heuristic technigque than
dimensional analysis. In Section II we describe an invariance principle
which allows one to constrain the form of confinement time scaling laws
(CONNOR and TAYLOR, 1977; LACINA, 1971). Since these constraints are
characteristic of the particular plasma physics model assumed to be
responsible for the anomalous transport, this provides a classification of
scaling laws, theoretical or empirical, according to these models. We
describe the relevant constraints for a number of conventional plasma
models: electrostatic vlasov, electrostatic Fokker-Planck, high-p vlasov
and high-f Fokker-Planck, all with and without the quasi-neutrality
assumption. In addition the simpler, but popular, ideal and resistive mhd
models are considered. These results give rise to the concept of
similarity and we describe some consequences for the performance of
families of similar confinement devices. An interpretation of the

constraints in terms of dimensionless parameters (KADOMTSEV, 1975) is



discussed, but the invariance approach is capable of extension to
situations where dimensional analysis would require considerable physical
intuition to obtain similar results. Thus illustrations are given of how
it may be possible to gain information on scaling of confinement with
dimensionless numbers such as Fhe geometrical ratios characterising a

magnetic configuration or gquantities such as atomic number and charge.

In Section III we demonstrate a more powerful extension of the
invariance technique to discuss turbulent transport processes (CONNOR and
TAYLOR, 1984). The simplification of a set of eguations resulting from
the assumption of transport due to local turbulence associated with a
microscopic scale length such as the Larmor radius p , rather than a
macroscopic scale a , enables the invariance principle to provide
extra constraints on the form of a local thermal diffusivity <y . For
particularly simple models such as resistive mhd one may be able to
completely determine the form of y in this way, but for more complicated
situations such as drift wave turbulence this may not be possible.
However, valuable information can always be obtained and the constraints
serve at least to classify possible theoretical and empirical forms for Y.
A number of illustrations of this technique drawn from the processes
thought to be responsible for anomalous transport in toroidal devices are
given. The relation of the results to explicit analytic and numerical

treatments of the same problems are discussed.

Finally, in Section IV, we summarise our conclusions on the value of
this approach to the description of confinement time scalings and discuss

its relation to dimensional analysis.



II The Invariance Principle and its Implications for Global Confinement

Scalings

In this Section we describe the Invariance Principle and its
implications for empirical and theoretical scaling laws for global

confinement time (CONNOR and TAYLOR, 1977).

1. The Invarilance Principle

A statement of the Invariance Principle is: 'If the confinement of
plasma 1s described by the equations of some particular plasma model then
a confinement time calculated from that model must reflect any invariance

properties of those equations, no matter how complex the calculation.'

This principle constrains the possible forms of the confinement time
scalings in a manner which 1s characteristic of the particular model
involved. Before listing the consequences for the varilous conventional
plasma models we 1llustrate thls for a particularly simple case. The
example chosen 1s a model, which we label A, where anomalous transport is
imagined to be completely described by the electrostatic Vliasov equatilons
for both electrons and ilons, supplemented by the charge neutralilty
condition. Thus we ignore effects of finite B, Coulomb collisions and
fluctuations on the scale of the Debye length. Model A encompasses drift
wave models such as transport due to the collisionless trapped particle

modes and the ion temperature gradient mode.

The plasma is described by the Vlasov equation for the

distribution functions £
]



of |
J =09 j=1i,e (9)
or

where B is a vacuum magnetic field and the electrostatic field E is

determined by the quasi=-neutrality condition

‘e [a%v £. =0 10
jiejfvj (10)

We seek scale transformations

° £, +ﬁj, v + By, X > Y%, t =+ 6t, E » LE, B ~+ VB, (11)

-~ ~ ~

isotropic in space, which leave Egs.(9,10) invariant. There are three,

and only three, independent ones which may be expressed as

A f. »of

1 J J
A, v > By, B » BB, t » g lt, E + B%E (12)
Ay x >v B YR € I

The particular specification Ay - Ag is arbitrary to the extent that any
three independent products of these transformations would also leave
Egs.(9,10) invariant. Now the invariance principle implies that any
confinement time calculated from Egs.(9,10) must transform appropriately

under Ay - As. We consider a power law scaling for the confinement time

T~n T B a (13)



where n, T etc. are taken to be characteristic values, say at the plasma
centre - such characteristic values are sufficient since their complete
profiles are determined by the equations we are investigating! It
follows, recalling n = fdavf and nT = fd3v(mv2/3)f, that the four indices
P, 4, ¥ and s are constrained by the three transformations to satisfy

the relations
p=20, 2g + r = -1, s =-r =1 (14)

i.e. there is only one independent index

q
) (15)

1
T e
B a?p?

By considering a more general representation of 1 as a Taylor series

T = z cpqrs of o3 g* a° (16)
P:.4d,X,Ss

it is clear that the transformations Al - A3 constrain 1 to the form
BT = F (T/a?82) (17)

It should be stressed that we have assumed homogeneous boundary
conditions at the plasma edge, i.e. effects due to atomic physics etc. at

the periphery do not affect the scaling properties.



2. Characteristic Constraints

The same procedure can be applied to more complex models than model
A. We list in Table 1 the constraints appropriate to all the conventional

plasma models which we describe below.

Model B - The electrostatic Fokker-Planck model. In this model the Vlasov
egquation (9) is replaced by the Fokker-Planck equation with the Landau
collision integral for Coulomb collisions. (This differs from the
classification of LACINA (1971) in which collisions with neutrals were
also included). Such a model encompasses collisional drift waves and
dissipative trapped particle drift waves. Taken together with model A it
describes most of the phenomena employed in the earlier Six Regime (DUCHS,
POST and RUTHERFORD, 1977) and present (ROMANELLI, TANG and WHITE, 1986&;
WALTZ et al., 1987) drift wave models of anomalous transport in

tokamaks.

Model C - The high-p Vlasov model. Here the Vlasov model A is modified to
include a self-consistent magnetic field B satisfying Maxwell's

equation

3 4 j =] e, [advvE, (18)
~ ~ 5 ~3J

Such a model describes finite-f collisionless drift-Alfvén waves and
includes the physics underlying the transport coefficients of OHKAWA

(1978), PARAIL and POGUTSE (1980) and KADOMTSEV and POGUTSE (1985).

wif i



Model D - The high-f Fokker-Planck model. This model, which -combines
models B and C and includes, for example, the two-fluid equations of
BRAGINSKII (1965), is often thought to be adequate to describe anomalous

transport in toroidal systems.

Models E, F, G and H replace the charge neutrality condition Eg.{10) by

the more general Poisson equation

V. E=p/e. , p= z e, jd3vf. (19)
= 0 j ] J

in models A,B,C and D respectively. Such models may be more relevant to
transport processes in mirror machines where higher frequency, shorter
wavelength velocity space instabilities occur (KADOMTSEV, 1961).

These choices exhaust all conventional plasma physics phenomena but,
because of traditional theoretical interest, we include two special fluid
models - Model I is ideal and Model J is resistive mhd. The eguations of
these models comprise a continuity equation relating the density
p=mn and the macroscopic velocity 4

EE + Vopv = 0 (20)

ot

a momentum eguation

Pl—+ W)+ - jxB=0 2]

=-11-



where the pressure p 1is related to the temperature T through p = nT

and satisfies an energy equation such as

ol

. 2
2 4 v )(ee") = ny (22)
y=1 ot

~

with the Spitzer resistivity n ~ r=3/2 and Yy the ratio of specific

heats. The models are completed by the Ohm's law

P%)
+
<
*
W
1}

nj, . (23)

-12-



Plasma Scaling law Constraints on . Free

model for Bt power law scaling(24) exponents

I
]
1

A uasi-neutral F z P=0,r=85=-2q 1

Q
electrostatic a?p?
Vlasov

2

B Quasi-neutral F[ - i ae ] 3p + 29 +s =0 2
electrostatic a?g? B4a® 4p + 2g + r =0
Fokker-Planck

C OQuasi-neutral F(naz, T ) 2p - 2g - 5 =0 2
high-pg Vvlasov a2g? r+29=0

D Quasi-neutral F(naz,Tal/2,Ba5/“) 2p + q/2 + 5r/4 - s =0 3
high-pg
Fokker-Planck

E Electrostatic F (L ' T ] 2p + 2g + r =0 2
Vlasov B2 aZg? 2g + s =0

F Electrostatic F[E_ ' _EL_..Ba3’2) 6p + 2g + 3r - 2s = 0 3
Fokker-planck B2 aZ2

G High-g viasov F(%_, = ,aB) 2p+r-s5=0 3

B2 aZg2

H High=-p F(n,T,B,a) - 4

Fokker-Planck
= +
I 1Ideal mhd (na?) /2% (1) . =1gz 1
B2 sl 1q
J Resistive mhd (naz)l/zF(EE ,Talfz) P-4q+ 28 - 5/2 =0 2
B2 2p +r=-1=0

Table 1. Confinement Time Scaling Laws for Conventional Plasma Models

=]8=



and Maxwell's eguations for the electromagnetic field. These equations
are appropriate to describe ideal and resistive ballooning modes in

tokamaks and resistive interchange modes in pinches.

In Table 1 we list the constraints on the form of confinement time

scaling laws and on the indices for supposed power laws

B a (24)

for models A > J

3. bpplications of the Constraints

(a) Theoretical Models

- Any theoretical calculation must, of course, conform to the
appropriate constraints. Apart from a trivial application as a check on
such calculations this also provides a way of classifying the theories.
Thus, for example, the complicated and varied results involved in the
confinement scenarios based on drift wave transport discussed by
FURTH (1977) are classified quite simply in Table 2 in terms of the values
of the two independent indices pertaining to the quasi-neutral
electrostatic Fokker-Planck model (model B of Table 1). Alternatively one
learns that theory has only to supply the values of a limited number of

indices!

-14-



Model P ' q ,
Bohm =1 0
Dissipative Trapped Ion -7/2 1
Collisionless Trapped Electron -3/2 0
Dissipative Trapped Electron -7/2 1
Pseudo=-classical 1/2 =1

Table 2. Confinement due to Drift Wave Transport Models of FURTH (1977)

9

T 2
BT~ ( 2 2J ( :as)
a“B B"a

(b) Empirical Scaling Laws

An examination of empirical scaling laws in the context of these
constraints is a more significant application of the invariance principle.
Thus by examining which, if any, model is consistent with an empirical law
we can, in principle, identify the nature of the plasma physics
responsible for the anomalous transport. Such a preliminary screening of

data would guide the choice of a theoretical model to be investigated in

more detail.

Table 1 lists the constraints to compare with empirical laws.
However one must note that for Ohmically heated pinches and tokamaks the

temperature is not an independent gquantity but is determined by the energy

balance condition

=15-



e (25)

where 1 ~ z/T3/2 is the Spitzer resistivity, with Z the effective
charge of the plasma, and I is the total current. Combining Eg.(18)

with Eg.(25) yields

(26)

As a result of this constraint the power law scaling (24) now takes the
form

Bt ~n Bla’” (27)

and the results in Table 1 are modified.

Table 3 shows the effect for the more customary models A, B, C, D, I
and J . Since the Chmic heating condition itself involves the physics of
the gquasi-neutral high-f Fokker=-Planck model, the constraints are less

sensitive to the choice of model.

In Table 4 we show some contemporary empirical laws for tokamak
confinement which can be compared with the constraints on the indices
given in Tables 1 and 3. It is evident from comparing the Neo-Alcator
law (LIEWER, 1985) for Ohmic tokamaks with Table 3 that it is at least
consistent with the three conventional models B, C and D which cannot be

differentiated on account of the Ohmic constraint. The

<



MEREZHKIN-MUKHOVATOV (1981) law accurately satisfies the constraint
appropriate to the quasi-neutral high-p Vlasov Model C of Table 1. On the
other hand the GOLDSTON (1984) law, derived from experiments with
substantial auxiliary heating, obeys the constraints of the gquasi-neutral
high-fB Fokker-Planck model reasonably well and, surprisingly, equally well
satisfies those of the simpler resistive mhd model J. This type of
preliminary screening of the empirical data can be a valuable guide to a

choice of theoretical models for transport.

_l7_



Plasma Scaling law Constraints on Free

model for BT power law scaling(27) exponents
I

Quasi-neutral BT = F(na’BY) z = 7%, y = 4x 1

electrostatic

Vlasov

Quasi-neutral Bt = F(na2,a5B“) 8x + Sy - 4z = 0 2

electrostatic

Fokker-Planck

Quasi-neutral Bt = F(naz,ass") 8x + 5y - 4z = 0 2

high-f8 Vlasov

Quasi-neutral BT = F(na2,a5B“) 8x + S5y - 4z = 0 2

high-pg

Fokker-Planck

Ideal mhd

Resistive mhd

2.4

BT = n1’2aF(E_E_) 4z + 2x = 5, y + 2x =
a%g"
2.4

Bt =nl/2fr(" %) 4z +2x=5 y+ 2x =
a "

Table 3.

Scaling Laws for Ohmically Heated Plasmas

_18..



Law

Indices of Table 1

or Table 3 (Ohmic)

Name

Form of <

Neo-Alcator (Ohmic)

Merezhkin-Mukhovatov

Goldston

na1.04R2.04q

nT-O-5a0-25R2.75q

-1,_-1
n

T BZa1.26R0.5q-2

x=1 y=1 2=3.08

| |
p=1 q=-_}’2 r=1 s=3
I |

r=3 s5=1.76

Table 4.

Empirical Laws for Tokamak Confinement

An alternative role of the constraints is in reducing the number of

parameters it is necessary to vary in order to establish an empirical law.

Thus if we believe, for

example,

that confinement is indeed described by

the quasi-neutral high-f Fokker-Planck model then we can establish the

nature of the function F(naz, Talfz, Ba5’”) by varying just n, T and

B - the variation with

(c)

a 1is then completely determined.

Similarity and Similar Devices

As we noted in the Introduction viscous fluid flows with the same

Reynolds number R may be regarded as similar (LAMB,

LIFSHITZ, 1959) - i.e.

infer those for all other flows with the same value of R.

1932; LANDAU and

if we know the properties of one flow then we can

Likewise if we

believe the confinement properties of a device are controlled by the

physics of some particular model, then it may be possible to define a

-]19-



family of similar devices whose confinement properties we can confidently
predict (LACINA, 1971; KADOMTSEV, 1975; CONNOR and TAYLOR, 1979).
Suppose, for example, that confinement is describable by the quasi-neutral

high-B Fokker-Planck model

BT = F[na2, Tal’?2, Ba5/“) (28)

Then one can define a one-parameter family of similar devices (i.e. such

that the arguments of F are held fixed) by scaling

n~a-2 T~a"1/2, B ~a-3/% (29)

r

for which

T ~B~l ~ ad/H ; (30)

Note that B is invariant but that the 'fusion product' f = nTt scales

as

£ ~B ~a-2/4 (31)

suggesting the advantages of compact, high-field devices. Although these
ideas were explored by LACINA (1971), his results differ somewhat sirice
‘his collisional model included collisions with neutrals and therefore did

not scale as the Coulomb collision frequency v ~ nT-3/2,

For simpler models we can define two-parameter families of devices.

In the guasi-neutral high-f vVlasov case

-20-



n~a?2, T ~ag2 (32)
for which
t~B"l, f ~B : (33)

peinting to the advantages of high-field devices.

For the quasi-neutral electrostatic Fokker-Planck model the family is

definedﬂby

n ~adp", T ~a?g? (34)
implying

t~B"1, f ~ (aB)?> (35)

suggesting the merits of large, high-field devices (in this case f is

not invariant: B ~ a®gty.

One could, of course, employ control parameters other than a and
B, say n and, for non-Ohmically heated situations, heating power P

where

3
Ta
D e (36)

=-21-



Then for the quasi-neutral high-f Vlasov model

£f ~pl/3z-1 (37)

and for the quasi-neutral electrostatic Fokker-Planck model

£ ~ (pra)>/7 (38)

both showing the advantages of intense heating in compact devices.

Although the above families of similar devices indicate advantageous
directions for designing experiments, these are not necessarily optimal -
true optima will require scaling between families, which requires some
knowledge of the function F over a range of its various arguments. In
this way we can extend the concept of similarity from one set of values of
these arguments to a range of their values (CONNOR and TAYLOR, 1979).

Consider as an example Ohmically heated devices for which

T = B*lF(naz, B4a?®) (39)

If we know the performance 10(n,B) = r(n,B,aO) of a parent device of
given size ag, but over a range of n and B, then these observations
have a universal nature and can be applied to similar machines of a

different size aj. Thus Tl(n,B) = t(n,B,al) is given by

5/4 4 5/4
5(nB) = 1) 7 (B2, B AL ) (40)
ao ao ao

-22-



provided the new arguments of Tg belong to the range of observation on

the parent machine.

(d) Dimensional Analysis

The intimate relationship between scale invariance and dimensional
analysis leads to an interpretation of the constraints in terms of
dimensionless parameters as discussed by KADOMTSEV (1975). The physics of

a pure fully ionised plasma can be described by the four basic parameters

p. A A
2, =, s 2 (41)
a a a

where pi is the ion larmor radius, Ke the electron mean free path and

KD the electron Debye length, together with geometrical ratios, such as

'q . a/R (42)

in a torcidal confinement system, and the ratios Te/Ti and me/mi.

The four basic parameters (41) can be related to the four control

parameters n, T, B and a so that the confinement time can be written

m, p. A A
Br=_rF(2 _% 5 D) (43)
e a a a

This provides an interpretation of our previous results. The most general
model H contains four independent variables corresponding to all four

parameters in Eg.(43). For the models A - D we assume charge neutrality

=



and the dependence on one variablé, Ab/a, is therefore removed from
Eq.(43). For the vlasov models a second, ke/a, is removed leaving a
function of two variables. Alternatively, the electrostatic assumption
removes P leaving a function of two different variables. Finally,
removing ke/a and B we restrict F to be a function of just one

variable pi/a.

However, this assignment of dimensionless parameters to a model
depends on a judicious choice. Since we can express
2 = c 2, wh is the collisionl skin depth
Py (Bmi/me)( /gpe) ' ere c/wpe i e co ess in depth,
the scaling law for the electrostatic models could appear to depend on .
Correspondingly the guasi-neutral high-f Vlasov model could be related to

the physics of c/gpe and B, (OHKAWA, 1978; PARAIL and POGUTSE 1980;

KADOMTSEV and POGUTSE, 1985) rather than pi/a and f.
In the case of the ideal and resistive mhd models the only available
parameters are B and the Lundquist number S, the ratio of resistive
. . ; _ ; : _ 1/2
diffusion time TR = puaz/n to Alfvén transit time TA = a(“Dp) /B.
Thus we can write

BT = (pomin)l/za F(B, S) (44)

so that confinement is a function of two variables. The ideal mhd limit

removes S, leaving a function of only one variable.

Since one expects the confinement properties to depend on the values

of physically significant parameters such as pi/a, Aé/a and B it is

-24=



important to establish empirical laws in relevant ranges of these
quantities and preferably by varying one at a time, holding the others
fixed. As emphasized by KADOMTSEV (1975) some, such as pi/a and he/a,
may not vary appreciably in moving from present experiments to reactor
parameters and large extrapolations of empirical laws may not be

necessary.

(e) Scaling with Geometrical Ratios and Dimensionless Numbers

The intuitive discussion of dimensional analysis given above recovers
the results of the invariance approach that we have obtained so far.
However the invariance approach, which might be regarded as the systematic
approach to dimensional analysis, has the potential to extract more
information from a set of equations. 1In this way it is possible to
determine features of scaling of confinement with dimensionless quantities

such as aspect ratio and ionic charge.-.

As an example of scaling with geometrical ratios, we introduce a
large aspect ratio tokamak ordering e = a/R ~ BP/BT ~ P/Bg << 1 , where
a and R are the minor and major radii and BP and BT are the
poloidal and torcidal magnetic fields, into the equations (20-23) of
resistive mhd to obtain the reduced equations of STRAUSS (1983). 1In a
co-ordinate system r, 6, {, where [ 1is a toroidal angle and r and 8
are polar co-ordinates in the poloidal plane, so that the major radius
R=R,+ r cos 6, the poloidal field and fluid velocity can be expressed

0

in terms of stream functions ¢ and ¢

Vg x e e x Vo
' 2é i (45)
Rg By

B
~p

_25_



where BU is the toroidal field at R = RU and e is a unit toroidal

vector.

The flux function ¢ evolves through the induction eguation

R nV2¢
- 0
EE = _—B*V¢ + - (46)
ot By Ho
where
BU 3
E-V = ¥ B ey (47)
Ry 0C
The velocity stream function ¢ satisfies the vorticity equation
R (BeV)V2y e.V x (R2Vp)
e Vicp = - - (48)
where
2 -2 sy (49)
at ot ¥

In the large aspect ratio ordering, Vev is small and the set of reduced

equations is closed by the equation for convection of pressure

d_P=0. (50)

dt

Because of the large aspect ratio geometric limit these equations allow
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independent scalings of a and R and of Bp and B0 which provide
information on scaling with geometric ratios. In fact four independent

invariant transformations exist and we find

pl/2
2 pr e Rgn
R 0
T F( e & ; q) (51)
n Bo2a Bua2 )

or, with the specific definition of the Lundgquist number
s = pé/zazBO/ﬂplszq (i.e. the ratio of resistive diffusion time
g = p0a2/n to poloidal Alfven transit time Tap = (“Op)l/zRq/B0 ) the

dimensionless form

TE T F(B/e. s, q) (52)

Clearly we have deduced geometrical information which could not have been
obtained from the full set of resistive equations (20-23); these would

only have yielded
EE T F(B, S, g, €) -« {53)

The resistive mhd model supplemented by a radiative energy loss term
also furnishes an example of scaling with dimensionless numbers such as
atomic mass A and ionic charge Z. The loss of energy by Bremsstrahlung
or impurity radiation can be represented by adding a general. radiation

loss term

k
P g ~nT i (54)
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to the energy balance Eg.(22). We also recall that the resistivity

n ~ Z/T:'”2 in Ohm's law (23) and that the mass density p = An. With
these modifications the resistive mhd equations (without geometrical
simplifications) admit just three independent scale transformations. The
general case (54) is discussed by CONNOR and TAYLOR (1977) but for the
special case of Bremmstrahlung, when k =2, 2= 1/2 and m = 1, (ROSE
and CLARK, 1961) we obtain

1/2
BT = nl/23p172 F(EE 5 Ta aB] (55)

22 ZhIE g Lok

which might tax intuition.

III. Local Turbulent Transport Coefficients

Global confinement properties may well be determined by the
interaction of a variety of processes in different parts of a device. For
example, conventional descriptions (DUCHS, POST and RUTHERFORD, 1977;
ROMANELLI, TANG and WHITE, 1986; WALTZ, et al., 1987) of tokamak
confinement involve three radial zones: an inner sawteeth dominated
region, a 'confinement' zone controlled by anomalous transport due to
micro-instabilities, such as trapped electron drift waves and ion
temperature gradient modes, and an edge region. This edge region may be
affected by turbulence due to instabilities specific to the plasma
periphery (rippling modes, resistive ballooning modes and collisional

drift waves) or by non-plasma physics phenomena such as radiation.
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It is therefore more profitable to consider the scaling properties of
local transport coefficients. These are more likely to be described by a
single plasma physics model than are the global confinement properties and
a study of their empirical scaling laws within the framework of invariance
constraints would be more fruitful. However local transport coefficients
can, in principle, depend on many more parameters. Whereas 1T depends
only on global dimensions such as a and R (since all profile effects
are themselves determined by the governing equations and are accounted for
automatically by the invariance principle), a thermal diffusivity y will

depend, in general, on a variety of local lengths, e.g.

d -1 d -1 dg\-! _ R
Lp=(Eamr) . = Ema) L o= (L By =X
dr dr Rq2 dr s

with s = (r/q)(dgq/dr), which are determined by the global confinement

properties and not just the local problem. Fortunately these extra
degrees of freedom in the form of y will be seen to be offset by
additional constraints arising from the assumption of a local transport
coefficient. These arise because the local turbulence causing the
transport has a scale characterised by a microscopic length such as a
larmor .radius, the collisionless skin depth or a resistive layer, which is
distinct from the macroscopic length a . As a result an extra invariant
scaling is possible which further constrains the form of x « This aids
the empirical identification of a plasma physics model for ¥ and limits
the possible forms of theoretical models - indeed in certain cases it
completely determines them as demonstrated by CONNOR and TAYLOR (1984) for
resistive fluid turbulence. Thus the invariance technique is a powerful

tool to complement explicit non-linear turbulence calculations.
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In the following subsections we shall describe a number of
applications of the invariance technique to local transport coefficients.
We begin with the minimal assumption that transport is caused by local
turbulence described by the non-linear gyro-kinetic equations and
Magwell's equations and then move towards simpler geometries, such as the
large aspect ratio torus, and simpler models, such as resistive mhd. In
this way we shall encompass many mechanisms thought to be involved in

anomalous transport in tokamaks and pinches.

1. Non=-Linear Gyro-kinetic Model

FRIEMAN and CHEN (1982) derived a non-linear gyro-kinetic equation
for the fluctuation &f in the distribution function f in response to

electrostatic potential and magnetic field fluctuations &¢ and B

respectively, by ordering

~ o0 ~P, v o~ (56)

for the fluctuations and (1/Q) ¥d/dt ~ (p/a)3 for macroscopic
quantities. Here p 1is a Larmor radius, a is a macroscopic length, @
a gyro-frequency, while V“ and Vl are gradient operators parallel and

perpendicular to the equilibrium field B. Writing

se=-e X 4 g (57)
T P

they obtained an equation for g which, in the electrostatic Vlasov

limit, is
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rl.Vg-EFM_a_éf+lxlx V6¢-VFM= 0
ot B T ot B

(58)

where n is a unit vector aleong B, FM is the eqguilibrium Maxwellian
distribution and the magnetic drift velocity

vo= (1/@) [m x pWB + v

¥ 2 Q'VQ]' This eguation has been written in the

I
co-ordinates (E, e Kir C), where R =1r - n X vl/Q is a guiding centre
position, p = vlz/ZB, K = v“2/2 + pB and ( 1is the gyro-phase, and an
overbar represents a gyro-phase average. The potential fluctuation 6¢

is determined self-consistently from gquasi-neutrality. A turbulent heat

flux g arising from such fluctuations can be calculated from

mv 2 _IlXVGQJ
g=Ja¥v — < 6 ———> (59)
2 B

where the angle brackets represent an average over an ensemble of

fluctuations.

HAGAN and FRIEMAN (1986) have applied the scale invariance technique
to these equations. In the collisionless limit they conclude that, if g

is expressed in terms of a thermal diffusivity x .
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« ~T3/2/B2 (60)

Alternatively, this could be established through the relation x~(AX)2/At,
where Ax and At are characteristic lengths and times of the turbulent
fluctuations whose scaling properties can be derived using the invariance

approach (CONNOR and TAYLOR, 1984).

One should note that Eg.(60) does not correspond to Bohm diffusion
Y ~ T/B. This could be obtained by using the Larmor period as a
characteristic time At, but the gyro-kinetic model averages over that
timescale leaving only the thermal transit time implicit in Eg.(60). [It
is also possible to derive the Bohm result by considering E xB motion

in a potential ¢ ~ T/e with any scale length & << a (KROMMES, 1984).]

Thus, apart from geometrical ratios, x has been completely
determined up to an overall constant! If we estimate a global confinement
time from T ~ az/x, we find

a3p?

T ~_____ (61)
p3/2

- in other words the function F[T/asz] appropriate to the guasi-neutral
electrostatic Vlasov model A has been completely determined and the index

in Eg.(15) is given by gq = -3/2.

This extra information has arisen from the assumption of a local

turbulence model which allows us to express

£f=F + & (62)
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and scale F and &f separately. The existence of such a separation in
the non-linearly saturated state is, in turn, a consequence of the
existence of a microscopic scale p . distinct from a , in the ordering
(56) so that both p and a can be scaled independently. The continuous
scalings of the co-ordinate perpendicular to the magnetic field and within

the magnetic surface of a torus are permitted, despite the periodicity in

such a direction, because we are considering high mode number turbulence.

An interesting aspect of the work of HAGAN and FRIEMAN (1986) is

their concern that the ensemble averaging operation < & &¢ > in Eg.(59)
may affect the scaling properties. Therefore they develop the Direct

Interaction Approximation eguations for the two point correlation function

< 6 6¢ >. The scaling properties of these equations confirm the above

results.

Had we considered geometrical and profile parameters in Eq.(58) we

would have concluded

_r3/2

X F(z/R , L/L « LJ/L . s) (63)

B2 L
n

but, since the transport processes themselves determine Ln' LT and LS,

we can deduce

a3 B2
‘r-w

F(a/R , q) (64)
3/2
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In practice a/R and ¢q do not vary greatly so that we have a well

defined prediction for 1 from this model.

Including collisions (HAGAN and FRIEMAN, 1986} and finite B effects
but suppressing geometrical and profile parameters, leads to

3/2
T T
p (02 n )

5 = (65)

—y —

BZa T2 B2

This has a simple interpretation in terms of dimensionless parameters:

~ P
X = Ven F(va/vth, B) (66)
where vth is a thermal velocity and v a collision fregquency.

It is interesting to note that the conventional drift wave models of
transport satisfy the low-f limit of Eg.(65) - indeed a number of results
in the literature can be classified by their power of (na/T2) as in

Table 5.

A



Drift Wave Index p Reference

Collisional 1 1,2,3

0 1,2

2/3 4

1/3 1
Dissipative Trapped -1 1:.2,5,6
Electron -4/3 7

-2 8
Collisionless
Trapped Electron 0 1.2,5
ﬂi—mode 0 2,5,6,9,10
Dissipative Trapped
Ion -1 1

Table 5

Classification of Drift Wave Transport Models by

3/2 P
the Index p , where ~E.2__. (E%)
B“a T

Key to References in Table 5§
1. DUCHS, POST and RUTHERFORD (1977). 2. WALTZ et al. (1987).
3. YOSHIKAWA (1970). 4. TERRY and DIAMOND (1985). 5. ROMANELLI, TANG
and WHITE (1986). 6. KADOMTSEV and POGUTSE (1970). 7. SIMILON and
DIAMOND (1984). 8. CHEN et al. (1977). 9. HORTON, CHOI and TANG

(1981). 10. LEE and DIAMOND (1986).
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2. Geometrical Simplification in a Large Aspect Ratio Torus

In order to discuss the dependence of 7y on geometrical factors it
is necessary to introduce a specific geometry. In a large aspect ratio

torus with circular concentric surfaces Eg.(58) takes the form

2
v v
[6_+___II_ [3_+ sx E_)-_m_ [_‘L+ vﬁ-) (sinea_+ cosea_)
ot Rg 06 oy eBR 2 ax oy
_— S eF S—— N
+l[a_6¢i_-a_6¢g_)]g—_bda_6¢+lg‘xv&p.VFM:o (67)
B Ox oy oy ox T ot B

where we have introduced co-ordinates x, y and 6 with respect to a
rational magnetic surface of radius rj . x 1is the radial distance from
the surface, y 1is perpendicular to the magnetic field but in the surface
and @ is a periodic variable along the magnetic field which allows for
ballooning effects. Turbulence is described by this equation together

with quasi-neutrality.

Scale invariance then implies

' et F(e, €y Myr Mgr v Su Te/Ti. me/mi) (e8)

where En = Ln/R, nj = d( in Tj)/d(xn n) and e = rO/R. The collisionless
trapped electron turbulent transport coefficient (DUCHS, POST and

RUTHERFORD, 1977; ROMANELLI, TANG and WHITE, 1986; WALTZ, et al., 1987)
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' 2
pr v, . . :
TE th
~ gls2 i thi , (691

is seen to be an example of this model.

In the cylindrical limit g, En + 0, we can réplace the parallel

gradient operator (03/36 + sx 9/0y) acting on a Fourier mode centred on a

surface x = X, by s(x-xk)b/ay. Then scale invariance arguments allow

us to condense expression (68) to the form

P{ Vens
X S —— F[En S/q ' T]ll T]el Te/Tit me/miJ (70)

L
n

where En s/q = Ln/Ls. The calculation of turbulence due to the universal

mode by HIRSHMAN and MOLVIG (1979)

R T L L, 772 Pi" Vens
X e s e (71)
(v + 1 /7 )92 L L
e 1 n n

is an example of this situation. Another is furnished by the slab version

of the ni-mode but we shall discuss that case later in the context of a

fluid model.

The incorporation of electro-magnetic effects into this slab model

can be achieved by substituting

5¢ + &¢ - VHGA" (72)
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where the parallel component of the vector potential 6A“ satisfies

Ampéres law

2 — -
V2, “szej Jadv P 6fj (73)

In general this extension will add the parameter B to the arguments in
Eg.(70), but if we consider short wavelength turbulence such that

klpi >> 1 when the ions will take up a Boltzmann distribution,

;) (74)

where we set Te = Ti for simplicity. Demanding a finite result as

B »=o (i.e. Per B +0), the B dependence of F 1is determined and

2 v
~ S She F(n ) (75)

wpe2 L,
reminiscent of the results of OHKAWA (1978) and PARAIL and POGUTSE (1980).
In the limit ne »>> 1 it can be shown further that F(ne) + constant,
inconsistent with the result of GUZDAR et al. (1986) for the ne-mode, but
agreeing with that of ROZHANSKII (1981). Related results for the limit of
magnetised ions when x is a function of wv__ /v = /EEI?E; appear in

the” A
CONNOR and TAYLOR (1985).

Returning to electrostatic turbulence we consider the effect of

collisions which also introduce a further parameter into the argument of
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the function F in Eg.(68). In particular we focus on dissipative
trapped electron turbulence, thought to play an important role in tokamak
confinement, but which has spawned a variety of theoretical calculations
for x. The conventional model describes the ions and passing electrons
by the collisionless gyro-kinetic equation, Eq.(67), but trapped electrons
are affected by collisions. The turbulence is assumed to satisfy

d/0dt < vthe/qR so that passing electrons are adiabatic and follow a
Boltzmann distribution §P = 0. Provided collisions are sufficiently
rare, v = ve < El/QVthe/qR, (i.e. the effective collision frequency

eff ~
for the small angle scattering of trapped particles is lower than their
bounce frequency) the trapped particles satisfy a bounce-averaged
Fokker-Planck equation. If we further assume that <ub> and 9/3t <« Vers!

where <mD> is the bounce-averaged magnetic drift, then the trapped

electron distribution function gT satisfies

v 2 _ eF S— e .
-_.E_a__<gT> o _a_<6¢> "1-‘3." V<5¢>-VFM (76)
2e B(k?2)2 T, ot B

Here k2 = [1 - ABg(1 - EJ]/ZE is related to the pitch angle A and the

bounce-average operation is defined by

<a> = ([fae A/lv”|)/(fd9/|v"|J (77)

where VH2 = 2K[1 - A 30(1 - € cose)] and the integration over 6 is

between turning points 61 and 62 (i.e. v"(el) = v“(92) = 0). Because
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the trapped electrons only occupy a small range N = 2E/B about
A = 1/By, the Fokker-Planck collision term can be represented by the

pitch angle scattering contribution appearing in Eq.(76).

If we consider the scale invariance properties of Eg.(67) for the

ion distribution gi and Eq.(76) for the trapped electron distribution

a and the €172 << 1 1limit of the quasi-neutrality equation linking
T q

g, 9, and §P, then (CONMNOR and TAYLOR, 1985)

_f vthiF(e3’2v /VL , € n,, T_/T,) (78)
X m———m=—= thi’ Yetn’ "nr 9 S¢ ne' i’ e’ i

Despite the variety of geometrical ratios in Eg.(78), the crucial n and
T dependence only occurs in one of the arguments of F and the B
dependence of y is completely specified. We can again proceed to a

'cylindrical' limit € + 0, but holding e finite, to obtain

= 3/
R F(E thhi/VeLn ' Ln/Ls) (P

where we suppress dependence on Ngr T4 and Te/Ti for simplicity. It
is now possible to classify a number of turbulence theories in the
literature according to the form of the function F. Thus, in the strong

turbulence mixing length theory of KADOMTSEV and POGUTSE (1970)
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F(x,y) ~ X ‘ (80)

(corresponding to the choice p = - 1 1in Table 5) which differs from the

weakly turbulent mode coupling theory of CHEN et al. (1977)

F(x,y) ~ x 2 (81)

(p = = 2 in Table 5). These contrast with the theory of SIMILON and

DIAMOND (1984) involving toroidal mode structure when the guantity s

appears:

F ~x4/3 g=7/3 (82)

(i.e. p = - 4/3 in Table 5).

It is clear that scale invariance can provide some valuable

information but rarely completely determines the form of y in these

complex gyro-kinetic models.

3. Ion Temperature Gradient Turbulence

By employing a simpler fluid description of turbulence we can expect
more success in determining the form of thermal diffusivities by scale
invariance than in the case of the gyro-kinetic models above. 1In this
subsection we consider the turbulence due to the ion temperature gradient,
or . m,. mode. This turbulence is described by the equations of
continuity, momentum along the magnetic field and energy balance for the

ions and a Boltzmann distribution for the electrons. We consider
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fluctuations P, about the mean ion pressure Poyr ¢ the electrostatic

potential and ;H the parallel ion velocity. 1In a cylindrical limit they

satisfy the equations (HORTON, ESTES and BISKAMP, 1980)

20 )
(- ==-—-Vyv+[o+p ?l?q’]

o1 dy
-vaf’f+[3,3‘f]+[f,ff] (83)
dy dx ox oy oy
X e- v+ - [0 V] L84
oT
PE=-[¢.p]-I‘V"v-£ (85)
ot Oy
where
[A,B]-—a_Aa_.B—_a__A.._B
ox oy oy ax
T YT. T,
v"=b_+_ﬂxa_, r=_2, k=2(14+1) (86)
L
fo} Ls oy Te Te

The equations have been simplified by suitable normalisations: we
have normalised distances to p = (miTe)1/2/eB, times to Ln/Cs where
e, = (Te/mi]:“2 and the normalised fluctuations in potential, ion

pressure and ion parallel velocity are defined by
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=
n n n

~ e ~ ~
o= =P ¢, p. =2 P o, v,y =c, L v (87)
L

respectively. The advantage of introducing normalised variables is that
it exhibits clearly the remaining dimensionless parameters Ln/LS, I' and
K« The invariance principle would of course extract this information
itself but the use of normalised variables reduces the effort reguired,

allowing concentration on more subtle invariance properties.

Clearly a turbulent diffusivity must have the form (CONNOR, 1986a)

X, = F(Ln/LS, k. T) (88)

By considering additional limits we can deduce the form of the function F.
Thus we can demonstrate a posteriori that the limit ni = Ln/LT > 1,
already required for the validity of the fluid model of the ni-mode, is
consistent with the approximations V12 >> 1, ¢ << p and the neglect of
the parallel compression in Eq.(85). It then follows from scale

invariance that (CONNOR, 1986a)

ple, B 12 4. °
% = =) Fl—) (89)

L L L L

.n n T s

Further progress is possible in the two limits an/LTLs << 1 and

an/LTLS >> 1, allowing the approximations d¢/07T << 0¢/dy and
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2¢/d1 >> 0¢/dy respectively (consistency can also be verified a
posteriori). The extra invariant scale transformations permitted by these

simplifications allows a determination of the form of F (CONNOR, 1986a)

odc L 372 L2
S n n
w o~ —2 ) L
LS LT LTLS
(90}
2 2
p CS Lﬂ
g ™ =g, ¥ —
4
LT LS LTLs

These expressions resemble explicit non-linear calculations (LEE and
DIAMOND, 1986) but differ in particular by logarithmic factors depending
on viscosity. Attainment of a true steady state for ni~turbulence
requires viscous dissipation which is absent from the model egquations
(83-86) (LEE and DIAMOND, 1986; WAKATANI and HASEGAWA, 1984).

HORTON, CHOI and TANG, (1981) have considered equations describing
the toroidal version of the ion temperature gradient turbulence. These
involve extra parameters Ln/R and g , where R is the major radius of

the torus and g the safety factor. Invariance arguments indicate

pic, L2
e = o Floa (91)
H [ 5, J442 (RL il
nT T

This is consistent with the result of HORTON, CHOI and TANG (1981), but
not with those of ROMANELLI, TANG and WHITE (1986) and
WALTZ et al. (1987), where somewhat arbitrary statements are made about

klp . In the interesting limit L2/RLT >> 1, x, 1is further constrained
n 1
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to the form

p¥c,
X, = ———— F(dg,s) . (92)

i 3/4n1 /4
L 3/R

independent of Ln-

The expressions obtained in this subsection are all seen to be

special cases of the general collisionless gyro-kinetic form (63).

4. Resistive Fluid Models

The above discussion of the ni-turbulence has demonstrated the extra
constraints on the form of y arising from a simplified fluid
description. 1In this subsection we explore the conseguences of a
resistive fluid model, which encompasses pressure gradient driven
turbulence, resistivity gradient driven turbulence and resistive drift
wave turbulence. The former has been suggested as an explanation of
degradation in confinement with increasing B in tokamaks (CARRERAS,
et al., 1983) and pinches (AN, et al., 1985; CARRERAS, et al., 1987), and
the latter two as explanations of transport at the periphery of tokamaks

(GARCIA, et al., 1985); TERRY and DIAMOND, (1985).

(a) Pressure Gradient Driven Turbulence

In order to discuss pressure gradient turbulence in a tokamak we use
the reduced mhd equations (45-50) and decompose the independent variables

into a mean and a fluctuating part
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¢ = ¢b + ¢1: b = ¢1: p = P0 + P1 (93)
where the fluctuations vary on a scale ag, with & ~ S'1/2, in the

directions x and y perpendicular to B. We introduce dimensionless

variables to exploit the information obtained in Section II.

_ . . rs Lo rzag - ho L/ 2Rapl /2

P= PP ¢+ b, = 2 40 by = ———e 820t = ()
q wol/ ZaRrpl B

(94)

Employing an ordering which balances linear and non-linear effects

Egs.(45-50) become (CONNOR and TAYLOR, 1984) °
& -~ 1 -~
ﬂ’=-v"¢+_vi¢ (95)
dt S
- - g % o =
E_ Vi¢ = - Vu Vi ¢ = [¢.Vi¢] + E,[sinegg + cosagg] (96)
drt q2 ox oy
S Bul «y (97)
dt oy
where
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V" = ___ 4+ sSx —.
fo]:] oy
~ 2 2
E_A=a_A-[¢,A] , Vf-.‘l v 8
dt ot ax?  ay2
d
r dg r P0
S KE o (298)
q dr p, dr

and we have locally defined values of S and a reduced B

ug/%r? 2pRa? p
s = = ﬁ* o (99)
npl/2rq r B}
The invariance properties of these equations enable one to deduce a
thermal diffusivity
- 1
X = — F (ass) (100)
Ho
where
a = - (2u0Rq2/B§) dp/dr (101)

is the parameter governing ideal mhd ballooning stability (CONNOR, HASTIE

and TAYLOR, 1978).
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However we can determine the form of F in the electrostatic
approximation /0T << Vi if we assume that the dominant non-linear
process is convection of pressure, and ignore gradients of the
fluctuations in the poloidal y-direction relative to the radial
x-direction. It can be shown, a posteriori, that thege last two
assumptions are valid if a/s << 1. These approximations allow a
systematic expansion of the equations in the radial localisation of the

fluctuations and from the resulting simplified equations we learn
F ~ a/s (102)

Furthermore, we can determine the scaling properties of the
corresponding fluctuating magnetic fields 65 and, using the
Rechester-Rosenbluth formulae (RECHESTER and ROSENBLUTH, 1978), deduce the
thermal diffusivity due to the stochastic magnetic fields arising from
this pressure gradient driven turbulence. In the collisionless limit the

Rechester-Rosenbluth electron thermal diffusivity takes the form

st B 7
Xe Vene )% % (103)
B
where ic is a correlation length of the turbulence and LA is the

electron thermal velocity.

Application of the invariance principle implies (CONNOR and TAYLOR,

1984)
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m, B
st _ 1 i 1/2
% T [f“-e_) F,(as) (104)

or, in the limit a/s << 1

(miBlez (0‘]3/2
i = (105)
e

st 1
X N s

e
Ho

Thus it has been possible in this model of stochastic field transport to
introduce additional physics associated with electron thermal motion

while still completely constraining the form of g This result closely
resembles that obtained by CARRERAS et al., (1983) in their calculation of

transport due to resistive ballooning modes.

Not surprisingly similar results can be obtained for resistive
interchange turbulence in a cylindrical pinch. Considering a low 8

pinch we introduce the parameters

2y r dp B a rB
=0 dm.oof (106)
B2 ar B dr By

and find that the analogues of Egs.(100) and (104) are

x m,Bl/Q

n s n i

= _ F|[§ ' = e F,l6&, 107)
Xt (6:0) » x “o[me) 1(8,0) (
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If we again assume that convection of pressure is the dominant non-linear
process and make the electrostatic approximation, valid when § << 1,

then we £ind

1/2 3/2
miB

m 2 st 1M 2
X~ &/0?, oo~ (=) (&/0%) (108)
%o = fom,

where the Suydam criterion (SUYDAM, 1958) is &/ 0% = 1/4.

It is interesting to note that in the pinch we have not assumed
B/dx >> d/0dy. If this further approximation is introduced an extra
invariant transformation is allowed but this does not affect the results
(108). It corresponds to an arbitrary characteristic wave-number in the
y-direction which remains unspecified, but the transport properties are

independent of this parameter.

The expressions (108) are similar to those obtained by AN et al.
(1985), but they differ from later results (CARRERAS et al., 1987) by a
logarithmic factor. As in the case of the ni-turbulence, dissipation at
high wave-numbers is necessary to achieve a steady state and this is
absent from the present model. However if this is provided
self-consistently by a turbulent viscosity and thermal diffusivity
(CARRERAS et al., 1987) the result remains as a special case of Eg.(107).
A different result 1y « (n/po)(miﬁ/me)1/261’2 obtained by HAMEIRI and
BHATTACHARJEE (1987) would appear to be related to pressure gradient
driven tearing modes, rather than the electrostatic interchanges

considered above.
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(b) Resistivity Gradient Driven Turbulence

As a further example we discuss electrostatic, resistivity gradient

driven turbulence in cylindrical geometry with a strong axial magnetic

field (GARCIA et al., 1985). This depends on fluctuations in resistivity

ni Lif 1 1is decomposed into a background part ul and a fluctuating

part ﬁl' the latter satisfies the equation

d ~ 5~ 1 b¢'1 an
— T - x" vl! M= — ———— (109)
dat rB 36 dr

in a pure plasma, since n ~ r=3/2, Here Xy is the parallel electron

thermal diffusivity which dissipates the E x B convection of the

background resistivity Ng* The description of the turbulence is
completed by the vorticity equation and the parallel Ohm's law including

the perturbation in 1.
Introducing similar normalisations to Eq.(94) we obtain the equations

18 y25=- 92} 3v,5 (110)

S Ay 1l 1
2 R-xvR=12 (111)
dt L oy
where 1 = Hl/no and
x"plxzpol/z Rapyd ., dng
XK = ' J = ' —_F —_ —_— (112)
Rg B B L pgdr



with Jz the axial current.

The invariance properties of these equations imply a diffusion

coefficient (CONNOR, 1986b).

2 4/3
p=X" _ % T @) r(x¥ 2%l asdg) (113)

If we make the customary assumption that @/dx >> 8/3y , then an extra

constraint emerges which implies

F ~Kl/2g1/6;,1/35,31/3 (114)
or
J d in 7
z 0 ’
D ~ n3/2xu112 Rg pl/2 (115)
s B2 dr

The consistency condition for &/3x >> d/dy is, a posteriori,

J << si/k3/2y43 (116)

This result (115) differs from a detailed analytic and numerical treatment
of resistivity gradient turbulence (GARCIA et al., 1985) because that was

expressed in terms of (m , a mean value of the square of the poloidal

2
)rms

mode number over the turbulent spectrum. The value used resulted from a

numerical calculation with specific physical parameters. However (m2)rms
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has scaling properties itself (CONNOR, 1986b).
2 wal/?2 5/293
{m )rms s J/K Ais (117)
and, when this is used, the results are reconciled.

In an impure plasma, when 1 ~ Zeff/Tafz, it is possible to have
resistivity gradient turbulence excited by a gradient in Zeff' In the
simplest model ™m; 1is determined by E x B convection of Zeff' In this

case (m2)rms cannot be controlled by parallel transport as in Eg.(117)

and one must consider ©9/dx ~ d/0dy , with the result
2 2 _.2/3
R
D ~ (22 ) [p1/2n32 (a(n z__ )/ar) ] (118)
sB

However, if the motion of ions and impurities along the field lines are
included, one finds that their mutual friction can play a similar role to
that of Xy in the pure plasma case and can be described by the
substitution (RUTHERFORD, 1981)
2
-> ~ 1

Xy > Xg ™ Vens ey LI

Provided that the condition eguivalent to (116) is satisfied one can then

obtain a result analogous to (115) (CONNOR, 1986b).

(c) Resistive Drift Wave Turbulence

Finally we discuss electrostatic resistive drift waves in cylindrical

geometry (YAGI et al., i987). These are described by combining the

_53_



vorticity equation with an Ohm's Law containing the Hall term. 1In an

isothermal limit this takes the form

~ gt ~ ~
— (¢y + —ny) + Mol = 0 (120)

~

where the density perturbation n) is determined by the electron

continuity equation

7 o= _1 (121)

Again, introducing normalisations similar to Eq. (94), the turbulence is

described by the eguations

14
2 §= 923+ @i (122)
S dz

5‘_?{-&=rd_,vl2$ (123)
dz oy d=t

where n = Hl/no and

Q= s ' = K= (124)
er?p? ot/ 2neqr n, dr

Scale invariance implies
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p= ()21 I r(s2sr3/201/2/) (125)

or, more physically,

K 5 K veRq Rg
(5 ) P (52 Veni T ) tze)

n

vepe2(Rq/r)2 is the pseudo-classical diffusion

where D
pc
coefficient (YOSHIKAWA, 1970; ARTSIMOVICH, 1970). 1In the limit
K<<s2sT3/291/2 it can be demonstrated that 0/0x »>> 0/%y and this
simplification leads to the determination of F as a constant. This
limit resembles results quoted in DUCHS, POST and RUTHERFORD (1977) and
WALTZ et al. (1987) for collisional drift wave turbulence and corresponds

to the choice of index p=1 in Table 5.

v Discussion and Conclusions

This review has been concerned with the consequences of the
Invariance Principle for the scaling of confinement times and turbulent
transport coefficients. It has been shown that for any particular model
for anomalous transport the principle constrains the form of these
scalings in a manner characteristic of that model. These contraints arise
from the invariance properties under scale transformations of the
equations describing the model. The simpler the equations the more

invariant transformations they possess and the tighter the constraints.
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This.invariance approach is intimately related to dimensional
analysis - whether it differs 1s a matter of semantics. Dimensional
analysis is often regarded as a heuristic technique involving a list of
significant dimensionless ratios such as B, the collisionality

parameter v, etc., thought to characterise a plasma. However these

*
concepts arose from examining the eguatlons governing plasmas and writing
them in a dimensionless form. Such a form is arrived at by suitably
normalising, or scaling, the variables in the egquations and the
dimensionless ratios emerge as parameters in the eguations. The
invariance approach offers a systematic procedure to achieve this
situation but, more importantly, can extract hidden scaling properties
that the usual approach might fall to ;xpose as in Subsections II.3(e) or
III.3 for example. The invarlance approach could be regarded as the
correct approach to dimensional analysis! However, it may well be more
efficient to undertake a preliminary attempt at writing the equations in a

dimensionless form before applying the invariance technigue, as was done

in the cases of ni-turbulence and resistive fluid turbulence.

In Section II we classified the possible mechanisms underlying
anomalous transport rather generally. We considered situations in which a
particular set of basic equations such as the electrostatic Vlasov
equation and quasi-neutrality, or the resistive mhd equations, etc., were
adequate to describe the confinement of the plasma as a whole. (This
assumed that additional physlcal processes such as atomic physics
phenomena at the plasma boundary did not have a significant influence on
the overall confinement propertles, say by affecting the boundary
conditions of the governing plasma physics equations.) We were then able

to identify the characteristic constraints that each such model imposed on
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the form of the global confinement time regarded as a function of n, T,

B, and a .

All theoretical calculations of confinement must, of course, conform
to the appropriate constraints and this allows a useful classification and
concise description of the large number of such calculations in the
literature. More constructively, examination of empirical data on the
scaling of confinement times against this theoretical framework of
constraints provides a technique for associating the observed anomalous
transport with one of these models. Conversely, if one were confident
that a particular model is appropriate, these constraints limit the number
of parameters whose scaling properties need to be determined empirically.
The constraints also allow one to construct families of similar
confinement systems whose properties can be deduced from the behaviour of
one member. These properties generally indicate the advantages of

high-field devices for fusion reactors.

If geometrical approximations are introduced into the governing
equations, say a large aspect ratio tokamak limit, it may be possible to
discover scale transformations involving separate scalings of lengths in
different directions. It is then possible to find constraints on the
scaling of confinement with geometrical ratios for a particular plasma
model - the reduced resistive mhd model provided an example. Similarly if
invariant transformations involving scaling of dimensionless numbers such

as charge Z or atomic mass A exist, then the constraints can involve

this type of guantity also.
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Global confinement time scalings may well result from the interaction
of different plasma physics models operating in different spatial regions
of a confinement device and will therefore only exhibit the weaker
constraints appropriate to a model encompassing all these processes. It
is more informatiye to examine the implications of the invariance
principle for the scaling properties of local turbulent transport
coefficlents - assuming that anomalous transport can indeed be described

in such a way - and this is the topic of Section III.

Because it 1is possible to separate the roles of turbulent
fluctuations (which vary on a microscopic scale such as the Larmor radius,
collisionless skin depth or resistive layer wldth, for example) from the
background equilibrium gquantities in the governing equatlions, more
invariant scale transformations are possible and hence turbulent transport
coefficlents are more tightly constrained than confinement times. At the
same time, however, a varlety of local gradient lengths Ln' LT, Lsetc.
are introduced which allows conslderable freedom in the possible forms of
these transport coefficients. 1In the global problem all these lengths are
determined self consistently in terms of the size of the device by the
self same equations of the model considered. This has the corollary that
if overall confinement 1s determined by such a local transport
coefficient, then the extra constraints imposed by the locality assumption
do manifest themselves in the global confinement. Indeed if the
collisionless electrostatic gyro-kinetlc description is appropriate the
confinement scaling 1s completely determined up to a dependence on a/R

and q , parameters which vary little in practice anyway.
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In Subsection III.1 we have classified the constraints on the
depen@ence of the thermal diffusivities on local collisionality and B
for the conventional gyro-kinetic plasma models and this is a valuable
framework against which to compare corresponding empirical scaling laws
with a view to identifying the cause of anomalous transport. In order to
address the dependence of the transport coefficients on local gradient
lengths and geometrical ratios, we considered geometrical approximations -
large aspect ratio and cylindrical limits - and examined more closely
specified forms of turbulence thought to be relevant to confinement in
tokamaks and pinches. It should be emphasized, however, that the more
specific the model the less general is the result deduced from the

invariance principle, so a judicious balance must be sought!

In the case of the drift-wave turbulence considered in Subsection
I1I.2, we find there is often considerable arbitrariness in the fofm of
associated thermal diffusivities, but the constraints do specify some
dependences and serve to classify the many theoretical calculations
available. For simpler models, such as ni-mode turbulence (Subsection
III.3) and resistive fluid turbulence (Subsection I1II.4), their form can
be quite tightly constrained and sometimes completely determined up to an

overall constant.

In this role the invariance approach is a valuable addition to the
theoretical techniques for obtaining transport coefficients, supplementing
analytic and numerical non-linear calculations. It is more robust than
many specific analytic non-linear calculations since it relies only on
invariance properties of the governing equations, not on the method (and

approximations) invoked to solve them. Thus it provides a measure of the
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generality of such specific results. Insofar as many such calculations
are in reality only precise to an overall constant of order unity, the
failure of the invariance technigue to determine such constants is not
particularly to its detriment. Indeed vigorous discussion of the merits
of detailed non-linear calculations yielding apparently precise
predictions emphasizes this point (KROMMES, 1986; TERRY and DIAMOND,
1986). On the other hand the technique does assume that the equations
considered have a non-trivial, steady state turbulent solution, whereas
specific non-linear calculations can demonstrate whether one exists. Thus
analytic turbulence calculations of ion temperature gradient and pressure
gradient resistive fluid turbulence have indicated the need for additiomnal
dissipation in the model equations to achieve a steady state, although
this was found to introduce only a weak logarithmic dependence on the
extra dissipative processes. This application of the invariance approach
should not be confused with heuristic methods like the mixing length
estimate (DIAMOND and CARRERAS, 1987). It is, in fact, a rigorous method
for obtaining all the constraints on a transport coefficient calculated
from a given set of equations. If one is tempted to oversimplify those
equations in order to completely determine the form of the transport
coefficient, then it is that oversimplification that should be criticised,

not the scale invariance technique.

A potentially important role of the invariance technique is in
conjunction with numerical computations of turbulence and transport.
Because of cost, these can only be carried out at a limited number of
parameter values but this might be sufficient to establish 'empirically'

the functional dependences allowed by the invariance approach. The
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invariant scaling of the numerically derived mean wavenumber for
resistivity gradient turbulence discussed in Subsection III.4.(b) provides

an example of such a procedure.

Finally we note that the invariance principle can be used to discuss
not only turbulent transport coefficients but also characteristics of the
turbulence itself - amplitudes, correlation lengths and correlation
times (CONNOR and TAYLOR, 1984; CONNOR, 1986a; CONNOR, 1986b).

In conclusion the constraint; imposed by the invariance principle
offer a valuable theoretical framework for discussing empirical
confinement scaling laws and a useful technique to classify and supplement

analytic and numerical calculations of turbulent transport coefficients.
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