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ABSTRACT

A single particle model derived from a Lagrangian formalism has been
used to describe electron cyclotron heating, with the view to
investigating relativistic effects on the velocity diffusion
coefficient. It is shown that large microwave fields lead to less
diffusion in velocity space than anticipated by linear models and that
ultimately the behaviour is not amenable to a diffusive treatment.
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I. Introduction

The use of Electron Cyclotron Resonance Heating (ECRH) 1in heating
magnetic fusion experiments is now widespread (Riviere (1986)). The
advantages of ECRH include straightforward coupling of the wave power
to the plasma, heating that is localised in the plasma which allows
profile control and mode stabilisation (TFR and FOM Groups (1985)), and
the potential for driving non-inductive currents (Robinson et al
(1986)). Also, ECRH has been used profitably to boost Lower Hybrid
Heating and Current Drive (Ando et al (1986)).

Until recently, the main drawback of ECRH was the lack of high power rf
sources at these frequencies. However over the past decade both the
frequency and output power of gyrotron oscillators have increased
rapidly. Earlier results include cw devices that have generated powers
ranging from 200 kW at 28 GHz (Jory et al (1980)) to 22 kW at 150 GHz
(Andronov et al (1978)). In addition short pulse gyrotrons have
produced powers in excess of 100 kW (see Carmel et al (1983)) and
Kreischer et al (1985) have examined the possibility of constructing
gyrotrons of up to 10 MW at 120 GHz. Recently the possibility of
producing microwave power using pulsed free electron lasers (FEL's) has
been described by Orzechowski et al (1986). The proposed microwave
tokamak experiment (MTX) at the Lawrence Livermore Laboratory will use
a pulsed FEL to heat the Alcator-C tokamak. Their microwave system has
an average power output of 2 MW at 250 GHz with a pulse length of 50
ns. This is expected to produce electric fields of the order of
107Vm~1, see Nevins et al (1987).

Theoretical analyses of ECRH usually adopt one of two approaches. One
consists of linearising the Vlasov-Boltzmann equation in the perturbing
fields and following quasilinear theory (Kennel and Engelmann (1966));
the other uses single particle equations applied to a Fokker-P1anck
model , describing the effect of many transits through a heating beam as
a random walk in velocity space (e.g. Cairns and Lashmore-Davies
(1986)). Both approaches lead to a diffusion equation in velocity
space (see Demeio and Engelmann (1986)) and are equivalent, at Teast at
Tow applied powers when the linearisation processes inherent in each

can be justified.

The aim of this paper is to investigate the behaviour of electrons in
high power ECRH. In our study we begin with a Fokker-P1anck approach
but will show that for large applied fields the behaviour becomes
non-diffusive. In Section II we shall introduce a Lagrangian formalism
(after Littlejohn (1983;1984;1985)) which provides a systematic
technique for deriving gyro-averaged equations which are relativistic
and generalise for any arbitrary vector potential. These equations are
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averaged over the fast timescale associated with the cyclotron motion.
Comparison of the averaged and exact Lorentz force equations show that
the former provide a good approximation. The simplification and
economy of computational requirements associated with the averaging
allows us to carry out numerical experiments on particle diffusion.
For this purpose we have devised a single particle code to simulate
high power ECRH in tokamaks which is described in Section V. In
Section III we shall consider a simplified form of the velocity
diffusion coefficient and show how it is reduced by high field effects.
We discuss in Section IV analytic forms for the probability function
P(u,Ap) which describes the probability that a particle with magnetic
moment p receives a kick Au, and compare these analytic results with
those from our numerical code in Section V.

II. Lagrangian Formulation of Gyro-averaged Equations

This technique is based on the gyro-averaged forms that have been
devel oped by Littlejohn. Here we will consider a simple magnetic field
geometry so that the gyro-averaging process is straightforward. The
results for a more complex magnetic field geometry will be stated at
the end of this section.

We consider a phase space Lagrangian as used by Littlejohn
(1983;1984;1985), This is defined in terms of a Hamiltonian H(E,g,z)

by
= H(Psgs_t_) (1)

o

L) = ps

1De

Lo(gsps

The standard Euler-Lagrange equations applied to the variational

principle
&fLdt = 0 (2)

with p and g allowed to vary independently give Hamilton's equations in
their usual form.

g=;p--3 G
o}

In applications we can transform to any set of six independent
variables and the equations of motion are still given by the
Euler-Lagrange equations corresponding to (2).

Applying this to an electron with charge -e moving in an electro-
magnetic field, the canonical momentum is

p = ymv-eA (4a)

mu- eA (4b)

-2=



where u = yv, y is the relativistic factor and A is the total vector
potential of the wave and background magnetic field.

The Lagrangian L, in (1) can be written in terms of u and x as
Lo = [mu-eAl.x - {m2c+m2c2u?)® + eo (5)
where @ is the scalar potential.

Now suppose A is of the form

1klx+1k“z—1wt —iklx-ikﬁz+1wt
5 = _P_\o (X,Z,t) + BI(X)E +‘51(X)e (6)

where A, is slowly varying in time compared to the cyclotron frequency
and in space compared to the Larmor radius. The wave field represented
by A, is assumed small enough to be regarded as a small perturbation to
the basic cyclotron motion. We now go to guiding centre co-ordinates
with

x =X+ (u/@)sinéx - (u /@) cosby (7)

]

i +
u = u,cosbx + usinby + u,z (8)

X=X+ (ﬁl/9)51n95 + (ulé/Q)cosQE
- (0 /@)cosy + (ulé/Q)sian (9)

where (x,y,z) are the usual Cartesian unit vectors, and X is the
position of the guiding centre with ul/Q the Larmor radius.

Let us suppose first that A,=0. Then if we substitute (7), (8) and (9)
into (5) and average over the gyro-angle 6 we get

z-ehy]. X + muié/g - {m2c*+m2c2u?}1/2 + 3 (10)

Lo = [mu,z

which is the relativistic analogue of Littlejohn's equation (20)
(1983).

As another special case we consider the vector potential

A =Bgxy * Ajcos(kx-wt)z (11)



which corresponds to that used by Suvorov and Tokman (1983) to look at
averaged particle behaviour in an O-mode wave propagating in the X
direction across a steady field in the z direction. Then

Lo = [mulc0595 + mu sin®y

u
- eBo(_f siné + Xy + mu,z
Q

uls1ne

Q

- eAjcos(kx-wt)z]. (X +

u,8cosb u u
+ .__l_.____ X - _f cosei + __f
Q

Q Q

- {m2cl§ + m2c2u2}l/2 + ed (12)

Multiplying out and averaging over the © oscillations we get, putting
& =0,

2.

) mule

LO- s mu
29

W2 - eAjcos(kx-wt)z - eB X! - {m%c* + m2c2y2}l/2  (13)

In the cosine term we put
x =X + (ul/Q)sine, (14)
or, more simply
X = (ul/Q)sine (15)

as X can be taken to be zero. Then as

kul in8-iwt ku_L -in6+iwt
cos(kx-wt) = % En{Jn(___]e + Jn(-——]e } (16)
Q Q

and for a wave at the cyclotron frequency 8 ~ w the slowly varying term
is that with n=1, we have finally, with the approximation

Jl(kul/sz) ~ l/2(kul/€2) (17)



Lo = 1/2(mu28/Q) + muz - 1/2(mey2u /@)cos(6-wt)

~eBoXY - m{c*+c2utcuZ}/? (18)
wi th
Q, = ekA;/m (19)

Constructing the appropriate Euler-Lagrange equations to make SLgdt
take a stationary value gives six equations in the six variables
X,Y,Z,ul,u", and 6. Of these the most important two are those
involving the perpendicular motion of the electron and the behaviour of
its gyro-phase with respect to the wave phase. These are of the form

0= 1/2(8,2s1n¢) (20)
and
= 0/y - w+ 12(2)2/u Jcose, (21)

where & = 6 - wt is the phase lag between the wave and the particle.
Equations (20) and (21) are similar to equations (4) of Suvorov and
Tokman (1983). The latter though would appear to have mixed up sines
and cosines at some point, since differentiating the first of their
equations (3), using (4) and substituting into their (2) gives a cosine
rather than a sine on the right hand side.

Retaining the generalised wave terms for an arbitrarily polarised r.f.
wave propagating at an angle to a constant background magnetic field
results in more complex expressions. For the perpendicular motion we
find

2
mu u, . u, .
d—( - e—[ﬁk1 _J'ew -] - ?_[Alx_lew +cc]) =
it 22 21 Y @ 2 o
k., u ; u . u .
-8 (A, 22 deltrec -E (A Loel¥occ)- 8la, L de' + cc]
2 Ix g 2i 1x 75 2 1xXTg
k. u : . u . u b ;
- ?é [Aly N PR A +§ [Aly_f el + ¢c] - :_ [Aly L oet ]
@ Q i Q
K, u " .
-8 a, —2e'V i cclz (22)
g £ g

We now simplify the analysis by considering only two modes propagating
perpendicularly to the background magnetic field. For the O-mode



we shall choose a wave vector potential

Ay = (0,0,iA /2) (23)
This yields
e kzE
U = =% — 'HFE cosd (24)
u, =0 (25)
" e kiEZ
¢=Y—-_m+l§r—n-—-Tl—wSin¢ (26)

These equations agree with Suvorov and Tokman (1983) (to within a sine
or cosine as already discussed). Physically the meaning of (24}, (25),
(26) is straightforward. Equation (25) shows the conservation of
z-momentum. This is due to the fact that in the O-mode the electric
field is in the z-direction. Averaging over the cyclotron frequency,
which for heating at the fundamental is close to the wave frequency,
gives <EZ>=0. The Lorentz force perpendicular to the background field
is linearly polarised. It can be divided into two circular components
one of which is resonant with the electron gyration. The component of
the force tangential to the electron transverse velocity determines the
transverse energy variation described by (24). The change in phase of
the electron gyration is determined by the difference between the
relativistic gyro-frequency and the wave frequency - the first two
terms on the right hand side of equation (26), and by the normal part
of the same resonant component of the Lorentz force, which is the third
term on the right hand side of (26). In fact uand ¢ can be regarded
as the polar co-ordinates of the particle in a frame rotating with
angular velocity w.

The l/ul dependence of ¢ is just a geometrical effect. The greater u
the smaller the change in ¢ produced by the same change in velocity.
As is well known, for the O-mode the effective electric field is

E .o = kiEZ/w (27)

eff

which depends on the parallel velocity.

The electric field of the X-mode is typically elliptically
polarised and can be decomposed into two rotating components E_ and E_,
E_being that rotating in the same sense as the electrons. In cold



plasma theory the E_ component vanishes at the cyclotron frequency.
However when finite temperature corrections for plasma waves in a
magnetic field are included an E_ component exists at the cyclotron
frequency with Jf vath/c|E+, (see Stix (1962)). For the X-mode we

choose a vector potential
A= (Ryyohyy,0) (28)
which yields
. e
u = -% - E_cos¢ (29)
u, =0 (30)
5= $ ~w+ gt %z sing (31)

which are of the same form as (24), (25) and (26) with kv"EZ/w repl aced
by E_.

We now proceed to a more realistic magnetic field configuration. As a
particle moves on a field line in a tokamak it feels a changing
magnetic flux density. To model this we choose a vector potential

Ag=(0,Box(1+z/R),0) (32)

which yields
B=(-B ox/R, 0,B,(1+2/R)) - (33)

where R is the scale length for the variation in the magnetic flux
density. The most important component of this field is in the z
direction and varies linearly with z.

Similar fields have been considered by other authors including Eldridge
(1972), 0'Brien et al (1986) and Lieberman and Lichtenberg (1973). The

governing equations then become

O-mode
u u,R kE_ u
u= ilo s % A cosd (34)
2Ry m w Yy
. uz(c'b+m)£?0
Uy = = ——— (35)
202R



e _ R L € z .
¢ - w + %o Y, sind (36)
where Qo = eBO/m (37)
0 = eBo/m (14z/R) (38)
X-mode
. u u Q °
g = Loy %Ef ¢ + w)cose (39)
20RYy
208
. u?(drw)e, E u (¢tw)
u"=-_l______ +£5%_u_) i_._nosincb (40)
202 Q2R
. _Q Ler (bFw)_
b=g-uwthg E_ g sin¢ (41)

We have compared results from equations (34)-(36), (39)-(41) with
solutions of the exact Lorentz force equations appropriate for the
fields considered. The results show good agreement and substantial
savings in processor time.

III Reduction of the Diffusion Coefficient

We now introduce a simplified velocity diffusion coefficient of the
type considered by Cairns and Lashmore-Davies (1986). We consider a
system as illustrated in Fig L.

A particle in resonance with the beam when it intersects the flux
surface is accelerated according to

ﬁl = (e/m)Eeffcos¢ (42)



For example for the O-mode we have equation (24)

kzE
u, = - % = Zcose
and equation (26)
e kzE
o Q Z .
=0 =-wt+ho ——sing
Y m U

For low powers of heating in resonance ¢ is approximately constant and
we can integrate equation (24) to get

kE
z

bu, = =% o — icos¢oAt (43)

3l

with
At = L/z, L = beam width (44)

Equation (43) describes the kick in u  given to the particle as 1%
traverses the beam. If we consider the particle to be sufficiently
close to the g=1 surface so that it continues to return through the
beam after a trip round the torus, then after n passes

<Au2> .

L _ e kLy2 2

— =18 (F ) E] - 4S)
where we have averaged over an ensemble of particles with randomly
distributed phases. An expression for particles not on the g=1 surface
is given by Dendy (1985).

The diffusion coefficient is then
<Au2> E. -

L N (IR T (46)
t 16 m ¢

This is the diffusion coefficient for particles in the beam. If the
particles spend some time between exiting and reentering the beam (as
in a tokamak experiment for example) this and subsequent expressions
for D should be multiplied by the fraction of time spent in the beam.

However for large EZ it is not appropriate to set the right hand side
of equation (26) to zero. A somewhat better approximation is to take ¢
constant, so that



¢ = dytat, (47}

a reasonable approximation if

a << 2n/t (48)

then substituting equation (47) into -equation (24) and integrating

gives
= = g sin(¢ *tat) + const (49)
KE_z
wi th A=ns L,
so equation (49) becomes .
= ~ (A/a) {singy[cos(ant) - 1] + cosb,sin(ast) ) (50)
on evaluation at t = At.
So
(Aul)2=(A/a)z{sin2¢0[cos(aAt)-l]2+c052¢osjn2(aAt)} (51)

+ cross terms that will average out.

Taking an ensemble of particles and averaging over ¢, gives

VE 3 sin(i%f)
<(au )2 = B (8 SiZo)? (gt )?
(52)
Giving a revised diffusion coefficient of the form
w3 e KEE 51”(223)
L 2 (B 2 2 2
Drep= 5 ¢ 7 ——)7 (—=—) (53]
As one would expect
oM OM
Drep < D
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and

I oM
1im Ogep = 7

Thus we have derived an expression for the diffusion coefficient in

velocity space for an ensemble of electrons subjected to an O-mode

wave. Replacing equation (24) by equation (29) and equation (26) by

equation (31) in the above analysis yields

g
pM =1 (g YL (54)
16 m z
and
, - sin(34Y)
XM ] Z 2 2
Bics =% = E_ ) Slew——u) (55)
RED i L *

These expressions are compared with numerical calculations in Table I
showing that there 1is indeed a reduction in D for large fields.
However once the effect becomes significant the analytic approximation
above tends to be rather inaccurate. A more significant source of
error is the fact that the behaviour at large field strength 1is no
Tonger diffusive and so it is appropriate to Took for a non-diffusive
approximation, a problem tackled in the next section.

IV Non-diffusive Wave Heating

If the wave amplitude is large then the jump in particle velocity on
crossing the beam may no longer be small. Assuming that the phase is
randomised between crossings of the beams we can treat the effect of
the wave on the electrons as a Markov process described by an equation

of the form

af . 1 i P(_v—Al/,A_\i){f(lf-A_y)-f(_y)}daAg (56)
dt At

where P(!,Ax) is the probability of a change from y»v + Av on
traversing the beam.

We use co-ordinates p=v#/2 and v, with B the background magnetic field
a constant. Then fEf(u,v") and P(X,A!)EP(Q,V";Ap,AV") and we assume
changes in p only.

Then w=1/8u_|? if u,=0 . (87)

-1 1.—



where u, = u, * iuy. Choosing u =0 initially

Ap = 1ma{[u_|2} (58)

A{’u_‘z} can be calculated from the Lorentz equations for an electron
in'an'rf field and we find for sufficiently small wave amplitude

Ap= lK_ZEi' cosé + 1/8 [K|2 (59)
where P
LBK|S << [K]u, (59a)
and ‘
K=-SE L/Vuexp[i(9+k v,-w)t' ]dt’ (60 )
m O0°0 ([l

is the impulse given to the particle by the wave. L is the beam width,
E0 is the modulus of the effective electric field and 6 is the phase
lag of the particle with respect to the wave.

For the O-mode with v, = vﬁ =107 ms~! and L = 0.1 m (59a) corresponds
to

|EZ, << 7 105 vp~!

Note that for a 200 kW gyrotron, typical of those used in current
experiments, assuming a square cross-section of width L = 0.1 m, the
electric field strength is 9 x 10% Vm !, Hence the inequality (59a)
will usually be satisfied in O mode ECRH experiments. However, for the
more strongly absorbed modes not covered here (X mode fundamental
heating with k, # 0 and X mode 2nd harmonic heating) which are
described by similar equations, Eeff will be larger than for the O mode
and (59a) may be violated, at least for some combinations of v, and Vi
We also note that in experiments with more than one gyrotron, it is the
electric field strength and hence power of a single gyrotron which
enters (59a), as different gyrotrons will be incoherent and probably
heating different spatial Tocations.

Now P(ap)f(an) = P(e)d® (61)

-12-



50 P(ap) = P(e)‘ us l (62)

d(an)
Now from equation (59) we have
6 = cos~! ( —2_(mu-1/8[K[2) ) (63)
K uy
Hence
2 4 -5
P(an)= (1- e T (Au-178(K|2)2) (64)
K fu,= (K fu,)
for |awe[K 2] < K]u,
8 2
=0 for | bu- ,KIZI>,K,ul
8 2

where we have assumed P(0) constant and uniform on (0, 2x).

Our expression satisfies

[ZP(p,0u)dop = 1

and gives
<ap> = |K|2/8 (65)
and
Kz
B} = e P e (66)
4 64
These satisfy
<ap> = 52 [<(ap)?] (67)
op

So that if we expand the r.h.s. of (56) in a Taylor series to second
order in Av we obtain the diffusion equation

dt dp At dp? At dp At dp

2 25 2
O L 2 [Bpgy O [ Tep 0 [P O (g

..13_



In the derivation of (59) we assumed the cyclotron frequency to be a
constant. This assumption may break down either because the magnetic
field is inhomogeneous or because the change in u is sufficient to
produce a significant relativistic shift of @. If @ is linear or
quadratic in t, the phase integral in (60) can be evaluated in terms of
Fresnel integrals or Airy functions. However, these analytic
approximations are of limited scope and more progress can be made by
numerical solution of the gyro-averaged equations, as described in the
next section.

V. Behaviour of the Probability Function

In this section, we compare the analytic forms for P(n,An) derived in
Section IV with the results of a numerical code which simul ates high
power ECRH in a tokamak. The code is a single particle code which
empl oys the averaged equations of motion derived in Section II. The rf
beam s assumed homogeneous and locally coherent and of wuniform
intensity across its width. Both ordinary and extraordinary modes are
included in the code. A1l particles are taken to have the same initial
velocities but with phases uniformly distributed in (0,2r).  After
passing through the rf beam, the particles phases are randomised to
simulate going around the torus before being reinjected into the beam.

As all the particles are taken to have the same initial parallel and
perpendicular velocities and differ only in their phase with respect to
the wave, the initial probability distribution can be described by the
form:

f(v,0) = &(v - vi) (69)
Substituting this expression into that determining the evolution of the
distribution function:

f(v,at) = [ fly - Ay, 0) P(y - Ay, Ay) d(Ay)

yields

v - V) (70)

Flw, 48] = P(yi, v Vi

Hence the distribution function produced by the code in a single pass
through the beam 1is identical to the probability function
P(vis v - ¥;). This is shown in Fig. 2. The continuous line
represents the output from the code and the dashed 1ine theory in the
form of equation (64). Here the applied electric field is 105 vml, a
value typical of gyrotrons used in current experiments, in the O-mode
and the results show good agreement. As the beam power 1is increased,

-



the theory breaks down at large values of p, see Fig. 3, because
expression (64), is non-relativistic. There is still good agreement
for small p. As the field is further increased, a new spike appears
which is not modelled by (64), Fig. 4. The reason can be seen by going
back to the more general equation (62). Spikes in P(ap) occur for
dae 0; typical (m, 8) curves are illustrated in Figs. 5, 6. In the

de

Tower rf field case (Fig. 5) Eff is zero at 8 = 0, =, and these
d

correspond to the spikes in Fig. 3. In Fig. b, diu has become zero

de
around m/2 which corresponds to the central spike in Fig. 4.

The origin of this new characteristic is clearly explained by
considering a phase plane analysis of the equations

U, = - %A cosy (71)
b=2_ 0w+ P sing (72)
Y 2“L
v, k-
A =8B, 1 (73)
2m W

which describe the behaviour of an electron in an O-mode field. Curves
in the (u;, ¢) phase plane are integrals of

A
dG - Oy - m ¥ % o sing
= (74)

dul - % A cosd

and a typical phase plane diagram is shown in Fig. 7. At ¢ = n/2 there
is an elliptic fixed point and particles which start close to it all
end up with values of u, near their starting values. A large change in
¢ produces a small change in u; so dp/d¢ is small. A similar phase
space diagram has been considered by Nevins et al (1987 ), who use it to
obtain analytic estimates of the non-Tinear absorption to be expected
in the MTX experiment.

The important point to note here is that in order to find P(p, Ap) it

is not necessary to do time-consuming numerical experiments with large
numbers of particles. If it can be assumed that the initial phase of

-15-



the particle with respect to the wave fis random, then a single curve
giving the change in p as a function of the initial phase yields the
probability function through the general relation (62). Both trapped
and passing particles in a more realistic tokamak field can be
considered by the same method. We shall not discuss such results in
detail, but simply point out that in high fields, some rather
compl icated probability distributions can occur.

YI. Conclusions

In this paper we have considered the behaviour of electrons in high
power waves -in the electron cyclotron frequency range, with a view to
gaining a better understanding of electron cyclotron heating with high
intensity sources. First, it is shown how a Lagrangian technique,
adapted from the work of Littlejohn, provides a straight forward and
systematic way of constructing gyro-averaged equations for the electon
motion. In inhomogeneous background fields the effect of the waves is
combined with the usual drifts.

We then show that non-linear effects may be expected to reduce the
usual quasilinear diffusion coefficient, but that where this effect is
significant, the description of the effect of the wave on the particles
as a diffusion in velocity space breaks down. For the powers used in
current experiments, the analytic linear theory appears to be valid for
most conditions, although for the more strongly absorbed modes (X mode
fundamental heating with oblique launch, and X mode 2nd harmonic
heating) there will be some electrons (particularly those with small vIl
which linger in the beam a long time) for which the analytic theory is

inadequate. In Section IV we suggest a more general form for (b )wave

involving the probability function for changes in the perpendicular
component of energy of the particle as it traverses an incoming rf beam
of finite extent. The calculation and behaviour of this probability
function is discussed, and it is shown how some of its properties can
be understood in terms of a phase-plane diagram for the averaged
electron equations of motion.

The next objective of this work is to incorporate the more general
description of the effect of electron cyclotron waves on the particle
distribution into computer codes for the prediction of heating and
current drive in tokamaks. Some work on this has a1ready begun and
will be reported in a later paper.

A.W.Taylor acknowledges the support of an SERC Studentship.
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TABLE I:

Comparison of Analytic Forms for the

with Numerical Experiment.

Diffusion Coefficient

OMODE
2
<Ay “2>
oM oM 1 1
E, D Do el
2 At
1 5 .3 2 3 3
(Vm ) (m™s 7) (m™s ) (m .’ )
3 16 16 16
10 2.15 10 2.15 10 2.13 10
3 11 17 1
510 5.40 10 5.40 10 5.35 10
4 18 18 18
10 2.1510 2.1510 2.1510
4 19 19 ]
510 5.40 10 5.3510 5.30 10
5 20 20 20
10 2.1510 2.0910 2.0910
21 21 21
5 10 5.40 10 2.48 10 1.74 10
XMODE
2
o M 1 <Avl >
E_ b Diep -
2 At
-1 2 -3 2 -3 :
(Vm ") (m™s ) (m~s ) (mzs 3)
3 16 16 16
10 1.74 10 1.74 10 1.74 10
3 17 17 17
510 43610 4.36 10 43610
P 18 18 18
10 1.74 10 1.74 10 1.7510
4 19 1 19
510 43610 42610 43310
5 20 20 20
10 1.74 10 1.59 10 1.7010
5 21 21 21
510 4.36 10 1.4510 2.40 10
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Fig. 1 Schematic Diagram of ECRH.



Fig. 2
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Graph of numerical and analytic forms for the probability
function P(r) with p normalised to its initial value. The
analytic form is that given by equation (64). This is for
O-mode heating with E, = 10 V/m, L =0.1 m. Initially
ol b 107 ms~1,
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Fig. 3 As Fig. 2, but with E, = 5 x 105 V/m.



Fig. 5
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Fig. 4 As Fig. 2, but with EZ =8 x 105 v/m.
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Graph of p after passing through the ECRH beam as a function
of initial phase for the conditions of Fig. 2. The numerical
and analytic forms are identical here, with the analytic form
given by equation (63).
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Phase plane diagram from equation (74) for E, = 106 ¥/m. u
is normalised to 107 ms~! which corresponds to

_Q/-Y=









