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Abstract

A formula is obtained for the action transferred between two weakly
coupled harmonic oscillators, where the time-dependent frequency of one
oscillator passes through resonance with the fixed frequency of the other.

The analysis shows the similarity between this discrete system and the

process of linear mode conversiocn in inhomogeneous continuous media.
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I. INTRODUCTION

There is at present considerable interest in the development of
Hamiltonian and Hermitian <51escript:i.ons1_3 of phenomepa involving high
frequency normal modes in plasmas. In particular, these technigues have
been appliedz'3 to the problem of linear mode conversion 12 in
inhomogeneous plasmas. That is, the calculation of the flow of energy
between the linear normal modes, where at some point xc the
inhomogeneity causes the frequencies of two initially distinct normal
modes with wavenumber k; to become degenerate, before again diverging.
These studisasz'3 include the derivation of results previously obtained by
Cairns and Lashmore-Davies,S'9 who used a generalised analysis of the
local dispersion relation in which wavenumbers map to the operator
-id/dx. The resulting coupled first order differential equations gave
rise to a secona order system which was solveda'9 in terms of Weber's
equation,13 reproducing where appropriate the results of earlier fourth
order calculations.5'7 The fact that relatively simple Hermitian
approachesz'3 - which however rely on the prior derivation of dispersion
relations by other methods - can generate the mode conversion formulae
obtained in Ref.9 motivates the present study of a simple discrete
Hamiltonian system. This system is a classical mechanical analogue of the
wave mechanical system that was considered in Ref.3. It consists of two

weakly coupled one-dimensional harmonic oscillators: the fundamental

frequency Wy of the first oscillator remains constant; that of the



second oscillator is initially less than w;, but increases slowly with

time. At a particular time tc' we have

so that for a finite interval of time the fundamental frequencies are
degenerate or close to degenerate. We shall calculate the action
transferred between the oscillators during the resonant interval at

t = tc when the fundamental frequencies remain nearly degenerate. This
will show how systems of equations related to those derived in Refs. 3
and 9 arise in the present context, so that the earlier results have
applications in the theory of discrete systems, beyond their original
field of wave interactions in inhomogeneous plasmas. Physically, these
links reflect two underlying features. First, in Ref. 3, spatial position
and wavenumber in the plasma were replaced by a single independent
variable, the time t £following the wavepacket. Linear mode conversion
was then formulated in terms of the time evolution of the wave amplitudes’
in a Hermitian system LV = id¥/dt. Second, the existence of the wave
mechanical model suggests the existence of the present Hamiltonian

description, which again has a single parameter +t, in terms of which the

fundamental fregquencies and oscillator actions evolve.



II. ACTION TRANSFER IN THE DISCRETE HAMILTONIAN SYSTEM

The oscillator system outlined in the preceding section can be

represented by the explicitly time-dependent Hamiltonian
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It is convenient to carry out a canonical transformation of H

into
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action and angle variables using the generating function
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and the transformed Hamiltonian K = H + 3F/0t becomes
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Here (, denotes dwy/dt. We shall assume that bz is small in the
sense that bz/wz << wyr wy, and that the coupling between the oscillators

2 2 ; : :
is weak in the sense that 1 << wj,wp. The canonical evolution equations

for the actions 51 = -bK/b@i can be written in the form
1/2
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using standard trigonometric identities. The canonical evolution

equations for the angles éi = aK/aJi become
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The long-timescale conseguences of the terms involving LQ/Ub in Egs. (7)
and (9) have been investigated, for the case of a single harmonic

; 15
oscillator (mn = 0), by Vandervoort. Here, we shall concentrate on the



two-oscillator resonant interval, defined to be the interval of time when
the relative phase Bl = @2 varies slowly compared to el and 92

themselves. By Egs.(8) and (9), we have to leading order

8 (61850 = w) = wylt) . (10)
at

Referring to Eq.(1), let us define a new independent variable

T t - tc ' (11)

and for future convenience we define

w=[oy2] _ (12)
c
Combining Egs.(1) and Egs.(10)=-(12), it follows that to leading order

during the resonant interwval
0) = 0y = =u12 = ¢ , (13)

where ¢; is a constant. This is equivalent to the wave mechanical
result given by Eg.(30) of Ref. 3. In contrast to 91-92, the other
angular variables 292 and ®l+e2 that appear in Egs.(6) and (7)
oscillate rapidly during the resonant interval. On the timescale of
interest, namely the duration of the resonant interval, we assume that the
changes in the actions Ji arising from these rapidly oscillating terms

are negligible, since they integrate almost to zero. Let us denote the



slowly varying amplitudes of the actions Ji by Ji' Then, using

Egq.(13)}, Egs.(6) and (7) give

qa - l/2 - 172

— 3y = 3, ‘sin(utZ ¢y 14l
qa - Ll/2 - 172

53, =-_3 sin(pr¢p) (15)
dt 2w1

Here, we have simplified the coupling coefficients using the fact that

w, = w; during the resonant interval. We note that the total averaged
action 31 + 32 is conserved by Egs.(14) and (15). This is the discrete
system analogue of the wave mechanical result Eg.(22) of Ref.3. Because
we shall differentiate Egs. (14) and (15) again with respect to 1, it is
convenient to consider the complex system of which Eqgs.(14) and (15) are

the real part:

d 172 . ) . - 172 . 9
— J, =i — exp(-i¢y) T, exp(-ipt9) (16)
drt 2wl

- 1/2 =
9% F, =i exp(i¢y) J,1/2 exp(ip?). (17)
dt 20.)1

Then defining complex variables ag = 511/2 exp[i(u12+¢0)/2] and
a; = 3,1/2 exp[-i(p1%¢,) /2], and differentiating Egs.(16) and (17) again
with respect to 1, we obtain two uncoupled second order differential

eguations:



2
dal

+ [(n/2uh)2 + p212 - ip]al =0 (18)
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Egs. (18) and (19) are formally identical to Egs. (35) and (36) of Ref.3.
A sequence of transformations,3 some previously noted by Budden, . leads
from these equations to Weber's equation.13 The asymptotic properties of
the roots of Weber's equation have been employed by Cairns and

8,

Lashmore-Davies to calculate the energy transfer during linear mode
conversion. It follows that the formula that describes the action
transfer for coupled harmonic oscillators with a resonant interval can be
obtained by relating the parameters arising in Egs.(18) and (19) to those
of Ref.9. The fraction of the action initially possessed by the first

oscillator that is transferred to the second during the resonant interval

is
=1 = -2 2
o= 1 exp(=m7n /4m1p.) (20)

where p is defined by Eg.(12). The combination of parameters that
occurs in the exponential in Eg.(20) is physically reasonable. It can be
written as the product of two dimensionless quantities, one large and one
small: (n/u%)z(mf/p). Here n/wf << 1 1is a measure of the strength of
the coupling between the oscillators, and wf/p >> 1 1is a measure of the
number of rapid oscillation periods for which the oscillators remain in

approximate resonance.



IITI. CONCLUSIONS

A simple formula has been obtained for the action transferred between
two weakly coupled one-dimensional harmonic oscillators, where the
time-dependent frequency Wy of one oscillator passes through resonance
with the fixed frequency w; of the other. During the resonant interval,
the coupled canonical evolution equations yield uncoupled second order
equations of a form that has been shown3 to transfqrm to Weber's
equation]3 The analysis of Weber's equation by Cairns and
Lashmore—Davies,B'9 developed during studies of energy transfer during
linear mode conversion in inhomogeneous plasmas, is adapted to give the
action transfer between the harmonic oscillators. The result reflects the
similarity between the discrete harmonic oscillator system, and the

process of linear mode conversion in a continuous medium.
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