CLM-P838

A non-linear model of
the sawtooth collapse

in tokamaks

<

.Bishop
.Cowley

no
9

UK ATOMIC ENERGY lham
AUTHORITY Cyihan




This document is intended for publication in a journal or at a conference and
is made available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the
authors.

Enquiries about copyright and reproduction should be addressed to the
Librarian, UKAEA, Culham Laboratory, Abingdon, Oxon. OX14 3DB,
England.




CLM-P838

A non-linear model of the sawtooth collapse
in tokamaks

C.M. Bishop, S.C. Cowley¢

Culham Laboratory, Abingdon, Oxon. 0X14 3DB, England

{Euratom/UKAEA Fusion Association)
* ; .
Princeton Plasma Physics Laboratory, Princeton, N.J., U.S.A.

Abstract

The usual resistive reconnection models of the sawtooth phenomenon in
tokamaks are inconsistent with recent experimental data from the large
devices such as JET. A more likely description involves an ideal motion
during the collapse phase, associated with an almost flat g-profile. 1In
this paper we present a non-linear calculation of the final plasma
configuration resulting from any initial equilibrium having g = 1 over
some central region. The problem is formulated both in cylindrical and

toroidal geometry, and solved for example profiles.
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I. Introduction.

One of the remarkable features of the sawtooth phenomenon in the
larger tokamaks such as JET is the fast timescale of the collapse [1],
which appears to be inconsistent with the original picture of the sawtooth
proposed by Kadomstewv [2]. This assumed a g-profile which increased
monotonically towards the outside of the plasma and which had a single
d = 1 surface. The collapse phase corresponded to an m = 1, n = 1
mode leading to resistive reconnection within the g = 1 surface and a
flattening of the q—profile‘ in the inner region of the plasma. The
criginal g-profile was then restored by resistive diffusion of the
current profile during the ramp phase.

In JET, however, resistive diffusion during the ramp is so slow [3]
that g can only change by an amount &/q n-10'2, so that a g-profile
once flattened, will remain essentially flat. Furthermore, for the
monotonic g-profile of Kadomstev the linear eigenfunction is a rigid

displacement of the plasma core:

§R = E r < r(g=1)
(1)

=0 r > r(g=1)
2

Soft X-ray tomography on JET [4] (which measures ~ nr? ~rp2) shows that
the plasma motion during the collapse is quite different from this.

Fig.l1a shows the plasma profile immediately before the collapse. The



initial phase of the collapse is shown in Fig. 1b and represents

an interchange of the hot core and the colder plasma surrounding it. The
final state at the end of the collapse, shown in Fig. 1c, is again
axisymmetric. Note that the pressure profile is now hollow. Finally, the
timescale of the collapse (~100ps in JET) is too fast for significant
resistive reconnection to take place. This suggests that an ideal MHD

motion is involved.

Wesson [3] has suggested that the g-profile in JET is essentially
flat and equal to unity up to some radius, and then increases
monotonically. An example of such a profile is shown in Fig. 2. The
corresponding ideal internal kink mode gives a convective flow pattern

[3,5] which corresponds well to the soft X-ray tomography results.

In this paper we shall present a non-linear model of the sawtooth
collapse based on the type of g-profile shown in Fig. 2. When g is
exactly equal to unity in the inner region, the field lines join onto
themselves after a single transit of the torus. There is no shear in the
magnetic field, and ideal MHD permits the free interchange of flux tubes.
This allows the final configuration of the plasma at the end of the crash
phase to be calculated for a given initial eguilibrium. The calculation
makes no linearity approximation and does not require knowledge of the
detailed route by which the final state is reached. Any final state which
is accessible by ideal MHD is automatically considered. 1In section II we
present the calculation in cylindrical geometry; this allows the physics
to be discussed in a situation which is algebraically simple. A general

formulation in toroidal geometry is given in section III, and the



equations are solved for an example equilibrium in section IV using the
large aspect ratio expansion. The importance of the results is discussed
in section V. Appendix A describes a procedure for solving the equations
at finite aspect ratioc; and a calculation including the effects of the

plasma outside the g = 1 surface is given in appendix B.



II. Interchange of Flux Tubes in Cylindrical Geometry.

Consider a tokamak having the g-profile shown in Fig. 2. Within the
surface r = a each field line is a closed loop, topologically linked
with every other. However, ideal MHD permits the free interchange of
these field lines. For a given initial equilibrium we can consider those
states which are accessible by such interchanges. The particular route by
which the final state is reached is unimportant and only the mapping of
initial field lines into final field lines need be considered. Nc
linearity approximation is made, and indeed the final state may be very
far removed from the initial one. Since we wish to calculate the
configuration at the end of the sawtooth collapse we shall consider only
axi-symmetric final states. In the case of cylindrical geometry this
allows us to consider the mapping of field lines at radius ry in the
initial equilibrium into field lines at r in the final state, with a
mapping function defined by

r = F(r (2)
Clearly the mapping should be (locally) continuous, and 1 to 1. This
requires that the function F be monotonic. We shall begin by confining
our attention to the region 0 < r <a And suppose that there is a rigid
wall at r = a. The modifications due to the plasma outside r = a are

described in appendix B.

The initial plasma state satisfies the cylindrical equilibrium



equation

2 2 2
Py 4By a2 BZ
T & " 7 a " - 0 (31
0 0 0 0
where Py is the initial pressure profile, and BBO' BZD are the initial

magnetic field components. Since 9 = 1 throughout the region considered

we have

q = =1 (4)

where R plays the réle of the tokamak major radius.

The plasma in the annulus rD + r0 + dr0 will move to a
corresponding annulus r > r + dr in the final state where

dr = F'(ro)dru. This motion is subject to two constraints:

(1) conservation of flux. This follows from ideal MHD and for the

Z-component of magnetic field it implies

Bzrldrl = Bzoroldr DI (5)
il.e.
o
Bz(r) = BZO(IO),;T;‘ (6)



where primes denote differentiation with respect to ro.

A similar relation holds for BG' but we can instead simply use the fact

that g = 1 is preserved by the ideal MHD motions, so that in the final

configuration
rB

By= — - (7)
R

(2) conservation of entropy. The MHD timescale is very short compared to
the characteristic thermal conduction time. The motion is essentially

adiabatic and we have

ptxy Y r|ar| = po(r0)1/Yr0|dro| (8)
i.e.
p(r>=p(r>|r_°|’f (9)
i
F'F

The final axisymmetric configuration is stationary on the MHD
timescale and thus satisfies radial force balance. We can therefore write

a final state equilibrium equation

dB2
a 2
_.E’.+_1(1+§_)_Z+EB2=0 (10)

ar 2 RZ2 ar R @



where we have made use of eg.(7) to eliminate Be.

We now express the final state quantities in eg.(10) in terms of

initial state quantities, using egs. (2), (6) and (9), to give

0 11 F2, 4
s _{po(ro) !——-lY}‘*—-—' (1"'_—)—{3220] IZ}
F' drg EE - B RZ arg BF
2F r
+—82 | D 12
g2 20 | F'F |

It is convenient to introduce the notation:

r?2 F?
x=— , h=1+_— ;
RZ R2
then eq.{11) becomes
d dh -y 1 d dh |_ h_
— o | = J+—h — {B2 | — 2}+132(d_)1=0
dx ol 5 | 2 ax Zo[axl 2 ax

This is a non-linear equation which determines the mapping function

(11)

(12)

(13)

h(x)

once the initial equilibrium has been specified. Note that the identity

map h(x) = 1 + x 1is clearly a solution.

We can also give a variational formulation in terms of the final

state energy functional



a p(r) 1362 Bz2
Wwe=an®R [ rar | }
0 y-1 2 2

(14)

Expressing this in terms of initial state quantities, and the mapping

function h(x), we obtain

e B
won]=2a%3 | ax { L | 2TV 2y 21y (15)

where e = az/EZ. Requiring wf[h] to be stationary with respect to

variations in h(x) then gives eg.(13).

We end this discussion of cylindrical geometry by finding the mapping

h(x) for an example equilibrium given by
= b2 - 2 —p2
po(x) bD (e X) BZo b0 (16)
where b0 and f are constants. Clearly egqg.(16) is a solution of
eg.(3), with g = 1. We now seek a solution of eg. (13) corresponding to
an inverse monotonic map, i.e., one satisfying the boundary conditions

F(r = 0) = a, F(r0 =a) =0 . (17)

We write the mapping in the form



hix) =1+ e - x + ¥(x) (18)

where Y = O(ez). Substituting into eg. (13), expanding in e<<1, and

making use of eg.(3), we obtain

Y(x) = = x(e - x) (19)

This mapping is plotted in Fig. 3 for e = 0.1. We can check that the
final state has lower energy than the initial state by evaluating eq.(15)

both for this map, and for the identity map h(x) = 1 + x. These give

W,

—r = e+ (3B- 1)e?

22 32
TR b0

We 1
= e+ (3B- Ne?-—ed+0(e"
ﬂ2R3bg 3

for the initial and final energies respectively. The final pressure
profile is easily found from eg.(9), and is plotted in Fig.4, again for

e = 0.1. We see that the initial equilibrium can relax to a state of
lower energy, having a hollow pressure profile. This result is in accord

with the JET results shown in Fig.1.

The reduction in the plasma potential energy at o(ed) 1leads to an
increase in kinetic energy which will be dissipated, through viscosity, as

heat. This will result in a correction to the pressure profile plotted in

Fig.4 of O(e) which can be neglected.



III. Toroidal Geometry.

We now formulate the interchange calculation in general axisymmetric
toroidal geometry. Consider a fluid element of volume dVD at position
EO undergoing a finite displacement to position 5_(&0) with final
volume dV. We define the Jacobian J by

av = Jav (20)
Now imagine the displacement of a small flux tube of length qEO'
Cross-sectional area (normal to the field) dAO and field strength EO'

Using the flux-freezing property of ideal MHD, the final field strength

will be

|B|=|_130|dao/dA (21)

where dA is the final cross sectional area. From the chain rule we then

have
B B da
L
| a | az | aa 7 -
e L B .Vr (22)
-0 00—

where Vb denotes the gradient operator with respect to the initial

coordinate Iyr and we have made use of eq.(20). Again we consider the

- 10 -



mapping of an initial equilibrium with pressure po into a i1ainal

equilibrium with pressure p-. From entropy conservation we have
p = pDJ-Y. (23)
The initial and final equilibria satisfy

(24)

(25)

Using eg.(22) we then have

-y 1 =N
B.V (pOJ ) _'EO'(VﬂE)'V (PDJ )

[}

= = =
prJ EO.VOJ 0

and therefore

Thus the Jacobian J is constant along an initial field line. However,

these lines lie on constant po surfaces, and hence by axisymmetry

J = J(po). (26)



Eg.(26) implies that initial pressure surfaces are mapped into final
pressure surfaces (as was the case in the cylinder). This result

considerably simplifies the toroidal formulation.

To proceed further it is convenient to introduce a straight field
line coordinate system (ro, 90, $) to describe the initial equilibrium,

where ¢ is the usual toroidal angle, and

R

% - (V X =
650~ ‘%% * %?® 2 b
00
where R is constant, and RO = RO(rO, qD) is the major radius. The

magnetic field in these coordinates is given by [6]:

By =B R {fglzy) Yyr, x V¢ + g,(x)V; ¢} (28)

From eqg.(24) it follows that p0 = po(ro), so that r is a pressure

0

surface label. The safety factor is given by

B .V ¢ r g
= 9 = P20 (29)
EO'VOGO R fO

qo(ro) =

We can write an analogous coordinate system for the final state (with the
same notation but omitting the suffix), in which r is a final pressure

surface label, and hence r = r(ro), 8= G(ro, GO). Using eg.(27) the



Jacobian J can then be written

2 2
3 =R2 dr2 0o . (30)
R i dro 06

0

If we integrate eq.(30) over 60 and demand periodicity, we obtain

2
J=dr2 1 > (31)
ar < R2 /R? >
0 o’

where the flux surface average is defined by

1 27
<Q@> = — [ @as (32)
2n 0

From egs.(30) and (31) we then have

ol RZ

- 0 ! - (33)
2 2

aeo R <R0/R >

Finally the conservation of flux in ideal MHD allows us to relate £(r)
and g(r) to the corresponding initial gquantities fotro) and go(ro).
Consider an axisymmetric ribbon of area A AO joining two pressure

surfaces rH and r, + A I, in the initial equilibrium. The poloidal

field which intersects this ribbon is given by



r.) — (34)

while the area of the ribbon is

Aro
2R, e (35)

0
| %% o
and hence the flux which intersects this ribbon is
21 B R £,(rg) b (36)

This must equal the flux which intersects the corresponding ribbon in the

final equilibrium, given by
2n B R £(r) Arx (37)

and hence f(r) is given by

dr0
f(r) = £ (r )| —
o7l —

. (38)

The safety factor in the final equilibrium will be

r glr) (39)

q(r) —
R f(r)



which together with e, (29) and (38) gives the equation for g(r):

dr 2
0
glr) = gylry)| — | - (40)
dr?
Egs. (23), (31), (33), (38) and (40), together with the initial and final
equilibrium (Grad-shafanov) equations constitute a complete set of
equations determining the allowed final states for any given initial

equilibrium. In the next section we shall find a solution for an example

equilibrium using the large aspect ratio expansion.



IV. Large Aspect Ratio Solution.

Using the standard tokamak ordering p/B2 ~ €2, £ ~g g ~ 1, (where
€ is the inverse aspect ratio) we can find solutions of the Grad-Shafanov
equation in terms of the straight field line coordinates introduced in the
previous section. These solutions have the form of nested circles (to
lowest order) with major radius coordinate R(r,6) given by [6]:

2
Sé-lr_} (41)

Wl H

dr 2 R2

where harmonic terms have been omitted at highest order (we shall see that
they do not contribute to the energy functional), and where A(r)

represents the shift of the centres of the flux surfaces. Expanding the

2 (2)

Grad-Shafanov equation we find that g =1+ g€g ', and
P oyg o+ fee)y =0 (42)
32 2 r
1 1 L
e {2 -l - e E R (43)
rf R REZ2 B2

where primes denote differentiation with respect to r. Anologous
equations hold for the initial equilibrium. As for the cylinder we can

find the mapping function, which we write in the form:

22 .2 - 42 4 2
r a r0 Y(ro) (44)



where a is the boundary of the g = 1 region, and is taken to be fixed.

Using eq.(40) we have

o' zy) = ¢t Fx ) + T, (45)
0 0 2
dr0

]

The initial and final eguilibrium eguations, together with g = 1, then

give

Q(az_rg_) / R2 . (46)

2y = -
Y(ro) r0

If we define x = rg/ﬁg , and e = a2/§2 we have

r?
._.__=e-x-x(e.—x). (47)
R2
Note that to this order the mapping is independent of the particular
initial equilibrium.
The final state energy is given by
W o= J’(_p_+B_2) av (48)
£

-1 2

with volume element



dr 2 1 R? r0
av = Jav_ =

2 9 ar a0 (49)
drg- <R§/R2> R

Performing the 80 integration then gives

W 1 dr2
_f -1y a? | —2 |ax
2R 3B 2 2 0 dr?
2 2. 2 2
. l J1 ) | dr0 l l Vr | RO I dr 1 =
0 %' ar? R2 dr20 < RS/RZ >
P 2 < R2 >
+2 =2 | | dr 1 273 __0 " 4.
2 B? d.rz0 < Rg/Rz > RZ

(50)

where we have taken vy = 5/3.

It is convenient at this point to introduce a specific example for

the initial equilibrium. Following the cylindrical calculation we choose

go(ro) = 1 +to all orders, giving (for g = 1), fg = x , and

— = pe - x (51)

where PB is a constant of order unity.

To evaluate the various terms in Wf to the order required, we need



the 0(e) terms in G(%V rU). These are obtained by integrating eq.(33)

to give

(r-ro)
cosf = cosB_ - — (52)
0 -
R
where again harmonic terms at highest order have been discarded.
Next we need to find expressions for A(r) and Ab(ro). From
eq.(43) , together with g = 1, we have
2L eyl sR %o, (53)
ar? 4ar? 4R B?ar?
Integrating, and using the boundary conditions A(a?2) = 0 (no shift of

the boundary), and A(0) finite, we have

2 2
L r 2,2 2 F
X P A I AL L L L (54)
R B8RZ 0 B? 8RZ a? 0 B2
For the particular initial equilibrium being considered we then have
-% =-2 X (55)
R 8

Similarly for the initial state we have

- 19 -



A
b (56)
R 8

From Ref. [6] we have

1 2
IVr|2=1-2(:1i‘-c<:vse+—[(£B)2+-3-f—+i—S (57)
ar 2 dr 4 RZ R
which allows the following averaged quantities to be evaluated
lvr|2R2
_______9 = 1+ JEE e - 123 x (58)
R? 32 32
69 5
< | Vor |2> = 1+ —x-Ze. (59)
0" 0
32 8
Similarly, we also have
< Rg/Rz > =1+ 3e - 6% (60)

We can now evaluate the initial and final energy functionals to give

W

_ 3t me+ (3p-ne?+ (3p- el + 0(e™ (61)
n?Rr 3B 2 32

W
_f - e+ (3p-Ne2- (B-3xed+ 0(eh (62)
n2R 3B 2

Since we must have B > 1 (for the initial pressure profile to be
everywhere positive) we again see that the energy is lower after the
interchange. The final pressure profile again takes the form shown in

Fig'4-

- 20 -



V. Conclusions.

We have shown that a flat g-profile with g = 1, which permits the
free interchange of flux tubes in ideal MHD, gives access to
guasi-equilibrium states of lower energy. The transition to such a state
can take place on a fast timescale, and corresponds in many respects to
the sawtooth collapse seen in large tokamaks such as JET. In particular

the final state has a hollow pressure profile.

The collapse of the central temperature during the sawtooth may occur
through three routes: (a) quasi-interchange, as described in this paper,
(b) a large amount of resistive reconnection, as in the original Kadomstev
model [2] for instance, and (c¢) rapid diffusion aleng stochastic magnetic
fields [7,8,9]. In practice a sawtooth collapse may involve a
combination of more than one mechanism with one or another predominating,
(depending possibly on the experimental circumstances), and this may
provide a useful classification scheme. Note that conservation of helical
flux [2] produces mixing of the high and low pressure regions for a
strongly monotonic g-profile and so averages out the pressure profile.
Also, diffusion along a stochastic field cannot give rise to a reversed
radial pressure gradient. Thus processes (b) and (c) tend to flatten the
pressure, and therefore hollow profiles arise only when process (a)
predominates. Since quasi-interchange requires a flat g close to unity
the observation of hollow final states on JET supports the idea of such

a g-prefile.



Recently direct measurements of g on-axis have been made on several
experiments. On both TEXT [10] and TEXTOR [11] it is found that g(o)
is significantly below unity during all phases of the sawtooth, with
values typically around 0.7. By contrast, on ASDEX [12] g(o) is found to
be close to unity. The resclution of this apparent conflict is unclear;
however, one possibility is that there are different forms of sawteeth in
which the value of g(o) determines which of the three processes discussed

above is dominant.

The nature of the collapse mechanism leads to a relation between the
radius of the g = 1 surface and the sawtooth inversion radius. A
Kadomstev reconnection involving a strongly monotonic g-profile, for
instance, predicts these to be about equal. For the cylindrical model
with flat g(r) discussed here, the strong toroidal field means the

plasma is almost incompressible, and we have immediately

2R nr(inv)2 = 271 R {nz(g =12~ 7 r(inv)?} (63)

where r(g=1) denotes the radius of the flat-q region, and thus

r(inv) = L r(g = 1) . (64)
Yy 2

The final state of the plasma in the non-linear model discussed in
this paper is in MHD equilibrium but has a discontinuity in the
pressure profile. In practice such a discontinuity will not arise as

sharp gradients in pressure will be removed on a transport timescale by

= D



diffusion and thermal conduction. This gives rise to the usual sawtooth
heat pulse and density pulse. Departures from exact g = 1 require a
small degree of resistive reconnection leading presumably to a hybrid
timescale close to the ideal one. 1In such a case the gross predictions of

the model should remain substantially unchanged.

- 23 =



Appendix A. Arbitrary Aspect Ratio Tokamak.

In this appendix we examine how in principle the final state may be
calculated numerically at finite aspect ratio for any given initial

equilibrium. This is best done through a variational formulation.

Consider first the case where the boundary of the g = 1 region is
fixed. This is analagous to the cylindrical problem treated in section

II. The initial magnetic field is given by

B =1vg xe +1 I () e (A1)
= = N o' Yo’ =

where ¢b satisfies the Grad-Shafranov equation

5 dPO dI0
2V0¢b) =-Rf — - I — (A2)

R 2 7 o]
o o
0

0 0
a4, ad,

and we assume that p0(¢b) ' IO(¢b) and ¢b(R, Z) are all known.

Consider an initial surface with poloidal flux ¢b which is mapped
to a final surface with poloidal flux ¢. Since flux is preserved between
any two flux surfaces we have | A l = | A¢b| (where Ad, is the flux
between surfaces ¢b and ¢0 + A¢b, etc.), and so the mapping which

inverts the order of the surfaces is given by

- 24 -



W) = ¢, = ¢ () (A3)

where ¢1 labels the (fixed) boundary of the gq = 1 region.

From eqg. (A2) the volume enclosed between the flux surfaces labelled

by ¢ and ¢+ A¢ is given by

() =27 Ay § —B (A4)
¢

where dRP is the element of arc length along the line of constant ¢ in
the poloidal plane. Note that R and I V¢ ‘ are to be expressed in terms
of ¢ and £p. and the integration is over the closed contour. Using
conservation of entropy we then obtain the final pressure function in the

form

dav
p() A

Pl |

dRPRO
jé_l_féfél ¥ (A5)

p.(¢) |
00 df R
P

§“’IV¢!

where qb is found, for a given ¢, from eg. (A3). Note that the
integration over the original surface qb can be performed since the

original equilibrium is given, whereas the integration over the

- 25 =



corresponding final surface ¢ cannot be done until the final eguilibriuu

is known.

In a similar way the final state flux function is obtained from

equation (A1) using conservation of flux to give

ax
b

55% (9,4, R
¢

e = 104 { il L) (A6)

as

P

Y vl R

The remaining reguirement is that the final state satisfy the
Grad-Shafranov equation. We now show that this is egquivalent to

minimising the final state energy functional given by

|V¢|2 12 P
+ + } (A7)

w o= [av |
2R? 2R? Y- 1

subject to the entropy and flux constraints. This is essentially a

special case of the variational principle of Kruskal and Kulsrud [13].

When I(¢) is varied at fixed position there is a term 1I'(¢)é¢ and
a contribution &I due to the change in the functional form of I(¢).

From eg. (A6) we have

- 26 =



§ dlp
68 = -1 6¢ T (A8)
EIE

dﬂp
T

If we now use the relation

as
2 = ¥ B < (A9)

¢,V¢|R 2ndg ¥ R2

where the volume integral is over the volume enclosed by the flux surface

¢, then we can write

d as 8¢
T 52 ¢ e
& = (A10)
an
P
| a6 | R

The variation in the energy due to the I? term is now easily evaluated

using eq. (A10) and integrating by parts, making use of the identity

¢ df
av o = d¢ ¢ —F 27RrRA (a11)
01 ¢ 2
| Vo |

for any integrand A. The contributions from the pressure term and the
poloidal field terms can be found in a similar way, giving a total energy

variation

- 9 =



&=-IdV5¢{V'(—Y§)+L+p}. (A12)
R

R

Thus when the energy functional is stationary, the final state
Grad-Shafranov equation is satisfied. The numerical solution can
therefore be carried out by choosing trial functions for ¢ (R,Z)
evaluating W from eq. (A7) using eq. (AS5) and eq. (B6); the choice which

minimises W giving the required approximate solution.

In principle this method can be extended to include displacements of

the plasma outside the g = 1 region. Eg. (A3) then becomes

¢ (x)

[}
<

]
£
—

[
o
A
O-G
A
=

-

(A13)

¢ (x)

I
=
H

¢1 < ¢b < ¢a .

In deriving eg. (A12) we assumed continuity of p, I and ‘V¢l. For the
two region problem this no longer holds and there is a contribution to &

from the ¢1 surface given by

= &¢ I o
W= - Hgﬁ 4% R —< Kp * o B9 “ (Rn14)
s ¢, P ,V¢| 2

where the double bars denote the jump across ¢;. Since the displacement

of the ¢1 flux surface, given by E = - 6¢ / |V¢ , must be continuous

¢

the final equilibrium must satisfy the force balance relation

|l(P+le)||=U- (A15)
2

We therefore minimise W using trial functions which satisfy eq. (a15).

= P8 =



Appendix B. Solution of the Cylindrical 2-Region Problem.

We examine here the extension of the cylindrical calculation of
section II to include the effects of the plasma outside the g = 1

region.
Consider the g-profile defined by

=1 0 <r <
q 0 a

(r0 - a)?
q={1-____._2_}'1/2 a <r <A (B1)
12a

which is plotted in Fig. 2. The fixed boundary of the plasma is at

rD = A, and we take A = 2a. We look for an initial-state equilibrium

having this g-profile and (as in section II) a uniform toroidal field

BZ2 = b02 = constant. We reguire the pressure to vanish at the boundary,

and we also demand force balance across the surface r0 = a
(see Appendix A):
1302
p. + — =0 . (B2)
¢ 2

-29..



Solution of the equilibrium equation then gives the following pressure

profile:
2
b
0 17
Po(x)-—{—-e-Zx}
2 4
0 <x <e (B3)
b 2
17 - 2 - 3
Pot")=-—{4—e—2x+-(x e)? (x-e)’)
2 12e 9e?
0 <x <de (B4)

where, as before, x = roz/ﬁz, e = a2/1-'\;2 and R is a constant.

We now seek a mapping of initial flux surfaces into final flux
surfaces, which preserves the order of the surfaces for x > e, but which
reverses the order of the surfaces for x < e. Suppose the surface at

X = e is mapped to xf= Ae. Then we can write the mapping in the form

]
-
+

h1(XJ

1+ AMe - x) + Y1(x)

0 <x < e (B5)
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I
—
-+

h2(X)

X
=1+ §.(4 - A+

w]

e (A1) + Yz(x)

e € X £ 4e (B6)

where Y1(0) Y1(e) = Yz(e) Y2(4e) = 0. Such a mapping is illustrated

in Fig.5. Because of the strong toroidal field, Y1~ Y2~ 0(e2) and

A=1+ 6 where & ~0(e?). From the final state eguilibrium eguation

(eq.(10)] for the region x < e, and using the mapping n1(x), we obtain
Y1(x) = - x{e - x) (B7)

to leading order. Similarly for the region x > e with the mapping

hz(x) the final state eguilibrium equation gives Yz(x) = 0, to the same

order. Force balance in the final state across the surface x = )e

reguires

2
R

which gives
_ 3
6—-59 (Bg)

We now have an explicit mapping from initial to final states, which

- 39 =



together with the initial equilibrium allows initial and final state

energies to be calculated. We obtain

W,
L o de 302 B2 (B10)
1t2R3b02 16
W
E o g JBE a2 397 3 (B11)
112R3b02 16 96

so again the final state has lower energy. Note the (Wf = wi)/wl is
larger here than was found in Section II; the freedom to expand the plasma

in the inner region has allowed a lower final state energy.
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Fig.1 Results from soft X-ray tomography on JET showing (a) the profile before
the start of the collapse (¢’ =0), (b) an early stage of the collapse (¢' =300ps), and
(c) the final state with a hollow profile (r' =2980us). (Reproduced from Ref. [4]
with the kind permission of JET Joint Undertaking).
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Fig.2 The g-profile used in the 2-region cylindrical calculation
described in appendix B.
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Fig.3 The mapping of initial flux surfaces into final flux surfaces.
The dashed line shows the identity map.
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Fig.4 The initial and final pressure profiles.

fo

Fig.5 The mapping function for the 2-region problem.
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