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Abstract

The non-hyperbolicity of the simplest, single pressure, formulation
of the multiphase flow equations has apparently raised concerns in the
literature about their usefulness. It is shown, by a number of examples,
that when properly interpreted these equations may be solved without
explicit regularizing terms by the use of faithful numerical schemes,
which preserve the positivity and conservation properties of the physical

system.
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1. INTRODUCTION

Multiphase fluid dynamics is a relatively new branch of fluid
mechanics of great practical importance. As a discipline of continuum
mechanics it also poses fascinating theoretical and numerical challenges.
In recent years, much analytical and computational effort has been devoted
to the solution of practical problems using the multiphase equations
reviewed by Harlow and Amsden (1975), Spalding (1980) and many other
authors. As a result of this work it has become clear that in engineering
applications (see, for example, Thyagaraja and Fletcher (1987)) the key
limitations of these equations are contained in uncertainties associated
with the constitutive relations (e.g. for inter-phase drag) and the
correct determination of suitable boundary and initial conditions relevant
to 'real life'. It is also clear that progress in these areas can only
come about by a very close mutual fertilization of theory (inevitably
computational, although analysis does play a role) and experiments. It is
therefore somewhat surprising to find that in parallel with the
'engineering type' calculations mentioned above, a large body of authors
[e.g. Holm and Kuperschmidt (1986), Drew (1983), Gidaspow (1974), Ransom
and Hicks (1984) and Stewart and Wendroff (1984)) seem to hold the view
that the simplest single pressure formulations of the multiphase equations
are ill-posed in a specific way (described below) and are consequently
useless for computational purposes. In our opinion such a view is
extreme, and unwarranted by the actual facts. It is analogous to the
rejection of divergent asymptotic expansions as useless for analysis

simply because they do not converge!

If such arguments were to be logically followed, one would not use
steady, inviscid gas dynamics in transonic flows simply because the system
is mixed and hyperbolic equations are, in general, ill-posed for boundary
value problems. As it will turn out, this view fails to take account of
the fact that multiphase flow is a singular perturbation problem for which
the standard equations are asymptotic outer limits, valid and relevant
over most of the flow domain except in boundary and shock layers. They
are no less useful than the incompressible Euler equations of classical
hydrodynamics which also have various 'pathologies' associated with them

(i.e. non-existence, non-uniqueness, violent instability etc. in many



situations of practical interest). See Birkhoff (1960) for some

examples.

The purpose of the present paper is to demonstrate by a number of
concrete examples, that hyperbolicity of a system of nonlinear partial
differential eguations is a concept of limited usefulness. We shall also
demonstrate that equations which are not hyperbolic can nevertheless be
extremely useful in engineering applications in the sense of an asymptotic
expansion. We would like to stress that many of the basic ideas in this
paper can be traced to the excellent papers of Ramshaw and Trapp (1978)
and Lax (1954), (1980) although the emphasis and some of the conclusions
are decidedly different. Indeed we should mention that Harlow (1974) has
expressed very similar views. In particular, he distinguishes between the
possibility of linear instabilities implied under certain circumstances by
non-hyperbolic systems and ill-posedness. To paraphrase Harlow, the
occurrence of complex characteristics in the equations is a manifestation
of genuine features that actually occur in nature and consegquently
suitably interpreted, non-hyperbolic equations can be useful and no more

alarming than laminar instability in single phase flows.

2. HYPERBOLICITY AND WELL-POSEDNESS

For simplicity we consider problems in a single spatial dimension x
and the time t. Suppose u is a real column vector function of x and
t, with n components. Suppose further (we are specializing somewhat to
avoid fussy and irrelevant detail) that the following system of

quasilinear equations govern the evolution of u;

R R, (1)
at o

where A is a real n xn matrix function of u, x and t (but not the
derivatives of u !) and f is an arbitrary real vector function of u, x
and t. Suppose A 1is regarded as a function of the parameters u at
some x and t and possesses n linearly independent real eigenvectors
and n real, not necessarily distinct, eigenvalues. The system (1) is
said to be hyperbolic at (x,t) for the values of u considered, if &

has n 1linearly independent real eigenvectors and n real eigenvalues.



If it .. hyperbolic for all x,t,u (this will happen, for example, if A
is real symmetric) then the system (1) is simply referred to as
hyperbolic. If A 1is diagonal, clearly (1) is hyperbolic. To see the
significance of this concept, suppose f = 0 and that u = uO is a
steady, homogeneous (i.e. independent of x) solution of (1). For
simplicity, we shall assume A is a function only of u. The linearized
equations about this 'equilibrium' state may be written as

~

LT - (2)
bt o

ox

where u represents the perturbation vector whilst A(uo) is the matrix
evaluated for u = uo. Since A(uo) has n real eigenvectors and real

i +
e"'(th kx)' w'k is always

eigenvalues, for any given perturbation
real. Hence we conclude linear stability of the basic equilibrium for
arbitrary wavenumber k. Hyperbolicity, together with certain assumptions

about A and £, is seen to assure linear stability.

The next notion to be dealt with is well-posedness in the sense of
Hadamard (1923). Let us first discuss this in connection with the linear
system (2). If G}x,o) is specified, equation (2) describes its time
evolution. For definiteness, consider the bounded domain x ¢ [O,L] and
impose periodic boundary conditions on G}x,t). Fourier analysis and the
knowledge of the eigenvectors and eigenvalues of A(uo) gives the
solution wu(x,t). It is easy to verify that the hyperbolicity guarantees
that the solution vector G(x,t) depends continuously on G&x,o). In
particular, if a very short wavelength disturbance of small amplitude
(relative to G}x,O) itself) is added, the disturbance is no larger for
any finite value of t. All this can be explicitly verified, if desired,
by the one-component form of (2) which is always hyberbolic. 1In a
well-known paper Lax (Lax, (1958)) demonstrates this in greater detail.
With this preparation, we are ready to formulate Hadamard's concept of

well-posedness.
Definition:

A linear homogeneous system, such as (2), is well-posed in Hadamard's



sense if the solution vector u(x,t) depends continuously on the initial

vector Ekx,o).

The key point of this definition is exemplified by Hadamard's classic
example of an ill-posed system. Let wu(x,t), v(x,t) to be two scalar

functions satisfying,

ou ov

it T Y]

ot o

(c = constant) (3)

ov u

—_— = = —

ot ox

; - ; , 2T X 271 X
Consider the initial function u(x,0) = sin T v v(x,0) = cos
-2nct =2 Tmct
L ., 2mMX L 2
The solution is wu(x,t) = e sin — ; v(x,t) = e cos —-
L L
Unfortunately, the system (3) (none other than the Cauchy-Riemann
2nnct

; 5 ; L . 2nmx

equations) admits solutions u;(x,t) = e sin 3
2nmct E
L 2n ™ , . . .
v;(x,t) = -e cos for arbitrarily large integers n. This
L
means that for given t and € (however small) we can always find n
2nmct

L
such that ee > 1. Thus an arbitrarily small (but sufficiently high
n) disturbance 'overwhelms' the solution at any given time t. It is
plain that hyperbolicity of linear systems is equivalent to Hadamard's

well-posedness and in this case the system is not hyperbolic.

Note that so far we have only considered well-posedness for linear,
homogeneous systems. What does it mean for linear inhomogeneous or more
importantly, nonlinear systems? It is our thesis, that in so far as this
concept can be defined at all in a meaningful way for nonlinear systems,
it is inequivalent to hyperbolicity and so restrictive that it is
virtually useless in physics and engineering. We propose in this paper a

new definition of asymptotic well-posedness of certain classes of



conservative nonlinear systems. In order to motivate our definition and

its origin in multiphase flow dynamics, we consider some examples.

3. SOME EXAMPLES

We return to the inhomogeneous form (1) and show that even a linear,
hyperbolic system can be 'badly' behaved. Thus, consider the infinite

domain (-=, «) and the equations

o _ou_, (4)
c ot ax

and
1.92 + EE = -1 . (5)
c Ot X

Eliminating v, we get the familiar, strictly hyperbolic, Klein-Gordon

equation,

2 _ Efu = e . (6)

1
c? at2 ax.?

Solution by Fourier analysis leads to the dispersion relation

[L%]

Yo= k24 (73

c?

If A< 0, there is a low-k instability. Unless the initial function is
restricted so that k? - |hl # 0, the solution is unbounded (in time). If
the time interval is fixed, the problem may be well-posed in Hadamard's
sense. However, if the problem is one of obtaining the solution for all
t, an initial 'error' can, and will, dominate the true solution after a
sufficiently long time. This example illustrates the fact that if a
system of equations describes a physically unstable system, only existence
and uniqueness of solution to the initial value problem can be expected in

general.



Suppose now we consider a more general case where instead of -A1 in
(5) we have =-V'(u), where V is some differentiable, even function of
u. For example, consider

1 3% _ 3% _

—_— = =V'(u). (8)
C2 at2 axz

Assuming appropriate boundary conditions, we may obtain the conservation

law,
2
@ u
| {j_._E 3k ui + V(u) }Jdx = Const. (9)
c?2 2
-
u? ultt

Let us consider V(u) = -5 + uz T (p real). Eguation (8) has a

{1}

low-k linear instability about u 0 but is linearly stable about

1
u = 1:7T Furthermore (9) can be written in the form,

® 2

[ =

1
- c23 2

e

1

u2

u£+L2 (u? - ) 2}ax = const. (10)
4
showing that it has a positive definite integral invariant implying
nonlinear stability. This demonstrates that linear low-k instability may
be a rather artificial phenomenon under certain circumstances. It is also
clear that systems with positive invariants can be linearly unstable but
may be nonlinearly stable (another well-known example is provided by the
nonlinear Schrd&dinger equation and the Benjamin-Feir instability,

Thyagaraja (1979)].

Our next example shows that even (quasilinear) hyperbolic equations
require a wider concept of well-posedness than that provided by the
Hadamard definition. Consider the well-known (c.f. Whitham (1974))

'kinematic wave' equation

+ =0
ut uu (11)



This has the implicit 'exact' solution
u = F(x-ut) (12)
where u(x,0) = F(x) (13)

Clearly, u = cO (a constant) are equilibrium solutions of (11). Such
states are linearly stable. 1In addition, (11) has an infinity of integral

invariants I(f) of the form

@

I(f) = [ f(u)dx (14)

- O

where f is an 'arbitrary' (subject to fairly weak restrictions)
function. Yet all of these properties are insufficient to prevent the
well-known 'shock' catastrophe. Arbitrarily small (in amplitude)
perturbations of certain types 'blow-up' in arbitrarily short times in the
sense that u becomes unbounded. This is an 'ultra-viclet' or high-k
catastrophe. The system does not even EEEE a solution (in the usual sense
that is used by Hadamard) beyond times which depend not on the amplitude
of the initial perturbation (which can be arbitrarily small) but the slope
of the initial function. Thus, hyperbolicity has no bearing on the
well-posedness (i.e existence, unigqueness and continuity with respect to
initial data) in this case. The resolution of this problem is of course
extremely well-known. Since the problem involves an ultra violet
catastrophe, Burgers simply added vuxx to the right side of Eq.(11)
originating Lax's (Lax (1954)) 'viscosity method' of regularization. 1In
this view, Eg.(11) is regarded as the asymptotic outer limit (in the
sense of singular perturbation theory, see Van Dyke (1968)) as v + o of
the Burgers' equation. Its weak solutions (for a definition see Whitham
(1974)) are generated from the latter. They are asymptotic to the proper
solutions of the parabolic Burgers' equation. All of this has been
explicitly demonstrated in the literature using the exact solutions (due

to Cole (1951) and Hopf (1950)) of Burgers' equation.

This single example proves that neither hyperbolicity nor the
existence of non-negative invariant functionals can by themselves

guarantee the absence of high-k nonlinear instabilities in a given system



of nonlinear equations. A less trivial example is proviu.d by the
inviscid gasdynamic equations. Finally, as Whitham (1974) remarks, the
general water-wave equations are a curious mixture of an elliptic spatial
equation (Laplace's equation for the velocity potential) and a time
dependent boundary condition which cannot be put in the form of a
hyperbolic system. This system has positive integral invariants but needs
regularization by imbedding (in the full Navier Stokes system with

surface tension) to describe 'breaking' waves and bores. These examples
indicate that dismissing certain idealized sets of evolutionary equations
as "ill-posed" and therefore practically useless simply because their
high-k behaviour could lead to linear or nonlinear instability or even non
existence of solutions beyond a certain time could be gravely misleading.

This is exactly the point made by Harlow (1974).

We now apply these ideas to the multiphase flow equations and show
how physically relevant results can be obtained from them in spite of

their well-known non-hyperbolicity.

4. MULTIPHASE FLOW EQUATIONS

We consider the simple, source-free, dissipationless, two component,
one-dimensional incompressible flow. The single pressure formulation (see

Harlow and Amsden (1975)) leads to

bal+ 3 _
S ._..(cxlvl)-O
ot fore
avl avl
_+Vl_.__+1_E=0
da
2
—+ 2 (ayp =0 (15)
ot o
ov
2
ot X p, &

a, toa, =1



These equations are supplemented by the constitutive relations

p) = constant, p, = constant, characteristic of incompressible flow.

The above system is unusual in several respects. The hydrodynamic

pressure is determined by the constraint

3]

— (ayv) + ayvy) =0 (16)

ax
rather than a time evolution equation. However, two non-negative (see Lax
(1980)) conservation laws can be derived. Assuming periodic boundary
conditions on a bounded domain [O,L] (other possibilities can also be

considered), we find that

L —
J @d@x = I, , constant in t.
0

(17)
fL1 2+1 2)dx—I tant in t
. LE LIS 5 PV, = I, constant in t.

It is well-known that if @, 20 at t = 0, the equation of
continuity implies that @ is always non-negative. To prove this,

suppose vl(x,t) is given in x € [O,L], te[O,T]- The linear hyperbolic

equation
L - S (18)
ot ax 2

with the initial condition V¥ (x,0) = +¥ 2a,(x,0) defines a real function

2
¥ (x,t) in the same domain. We find that .E satisfies the continuity

2
equation and matches the initial function altx,O). Thus the result is

established.

We further note that the variables sV, and p may all be
eliminated. The functions ¢ (= al) and v, are seen to satisfy the

equations,



oa e}

.—.—+—(CIV1)=0
ot ox
(19)
2 2
v o] a v
Frp 2 (1)~ 2 j+ 2 (—1y=0
ot ox 2 p2a+ pl(1-o:) > 1-a

The second equation can also be put in a conservation form

CN2 av3
o) o} 1 2 2
2. (poa + py(1-a) } + = f—— (pya? + py(1-m %)} = 0
. (1-a) x (1-a)?

Alternatively, the system (19) is in the normal form (1) with £ = 0

and the two-by-two matrix A

Vl ¢4

o
1]

= 2 (20)
(pv,9) 2 pyv, .
vy - =)

1
(pza + pl(1—a))(1-a)2 (p,a+ (1-a)pl) 1-a

It turns out that the system is always (provided ¥y # 0) non
hyperbolic (Gidaspow (1974)]. However, this is very far from saying that
the equations (19) are not useful as they stand. The integral invariants
are non-negative and hence ensure nonlinear stability of the low-k (just
as in the nonlinear Klein-Gordon equaticon). It is not obvious, though
probable, that the 'shock' catastrophe is inherent in the above system.
Thus if p, << p;, (this can occur in a water-steam system), the v,
equation is well approximated (at least initially) by the 'kinematic wave'
equation. An arbitrarily small perturbation can lead to a 'shock'
catastrophe. Thus, the system (19) is perfectly adequate as it stands for
low-k evolution, whereas it requires viscous 'regularization' for
determining shock-like structures. The addition of drag between the
species leads to a decay of I, in time (hence stabilization of low k
instabilities) but does not ensure the existence of the solutions for all
t. This is analogous to adding =-wu to (11). The exact solution shows
that the shocks still occur. Physically, the correct regqularization is

achieved by writing (15) in the conservation forms



—a— (pyajvy) + l (plalv12 ) + a E = i (ajp ..a.il) (21)
ot ox ax o ox

v
—9— (poagvy) + a— (p2a2v22 )+ “292 = 9_. (ayp; .9._2 ) (22)
ot & ox o ox

It then becomes possible to discuss the initial boundary value problem of
this parabolic system along the lines of Ladyzhenskaya (1964). It is
believed, but not yet proved rigorously, that there is a unique solution
to this system valid for all t > 0 . We note however that nonlinear
parabolic equations can exhibit linear instability. But this is not
ill-posedness! It is also probable that in the asymptotic limit of Bye
Hp > 0, the system (19) represents correctly the 'outer' solutions
(apart from singularities like shock layers). Thus, provided we mean by
'solution' a weak solution of (19) which is an asymptotic outer limit of a
solution of the full nonlinear parabolic system, the system (19) is just
as 'well-posed' as the full system. This suggests the following

definition.
Definition:

A system of evolutionary partial differential equations with
non-negative integral invariants is said to be asymptotically well-posed
if it is the outer limit of a system of parabolic equations which imply
the decay of the invariants (in the absence of external sources) and which
uniquely identify a class of weak solutions of the original system in the
sense of Lax (1954). The solutions of the full system must exist for all
time and must be unique for given initial data but are not required to be

linearly stable.

What are the implications for practical multiphase calculations? We
note that not all numerical methods are suitable for handling systems like
(19). It is clearly necessary that over and above the usual definition of
consistency, we must require faithfulness or qualitative consistency if
erroneous results are to be avoided. BAny finite difference method (for
example) for solving the system (15) is said to be faithful if for
arbitrary M (At appropriately chosen) the approximants to a are

maintained non-negative and the invariant I, is only allowed to



decrease. The scheme must be devised to keep the decrease as small as
possible. It is obvious that requiring the scheme to be convergent to a
solution of (15) as Ax, At » 0 is far too strong. At best we can
compute a weak solution. There is no point in refining Ax beyond the
underlying high-k limit on the asymptotic wvalidity of (15). 1If such
refinement is wanted then the parabolic, viscosity terms must be included
in the numerical analysis. For larger Ax (still satisfying &x << L)
the numerical method (provided it is faithful to the conservation and

positivity constraints) itself provides a dissipative regqularization.

We remark that high-k instabilities may also be suppressed by
dispersive physical effects, such as surface tension (Ramshaw and Trapp.
(1978)). Such conservative regularizations are analagous to the
Korteweg-De Vries or the non-linear Schrédinger equations which are
dispersive regularizations of equation (11). As Whitham (1974) remarks,
in general both dispersive and dissipative effects are encountered in
water wave theory. 1In the present work we do not consider dispersive

regularization.

5. NUMERICAL SIMULATIONS OF MULTIPHASE EQUATIONS

It remains to consider whether the non-hyperbolicity of multiphase
flow equations in the common pressure formulation constitutes a serious
obstacle to numerical calculations. Before we consider this topic, it is
useful to clarify certain issues. In a concise but deep paper, Lax (1980)

considered real systems of the form
u + A u = 0 23
A (23)

where u is a column vector of n components and A is an n x n
matrix function of u, x and t . He makes a set of plausible
assumptions and shows that non-negative conservation laws of the system
can be derived for the system, if and only if the system is hyperbolic.
How can one reconcile this result with the manifest non-hyperbolicity of
the system (19) satisfied by ¢ and v ? The answer lies in the fact
that physically a and v, are very different kinds of variable. We
have seen that while the A matrix for the system is not hyperbolic, it

has the property that « must lie in the interval [0,1]. Furthermore,



in this instance, the conservation laws (Il, 12) can be shown to exist
independently of Lax's general method! This simply means that one or more
of his assumptions are not valid for the multiphase equations. His
results, valuable though they are, do not apply in our case. 1In effect,
hyperbolicity is not a necessary but a sufficient condition for the
existence of non-negative conservation laws in systems of partial
differential equations provided other conditions on the nature of the
dependent variables apply. We might mention that armed with the example
(19) it is relatively easy to 'manufacture' systems of non-hyperbolic
nonlinear equations which nevertheless possess non-negative conservation
laws. The mathematical theory of such systems seems non-existent at
present. In particular, it would be very useful to have a theory of

regularization of such systems by the 'viscosity' method.

Returning to multiphase numerical simulations, we present two
examples to illustrate our opinion that transient initial-boundary value
problems using these equations yield perfectly acceptable solutions in
practice. Care must of course be exercised in ensuring the faithfulness
or qualitative consistency of the numerical schemes. However, this is no
different from the situation in transonic turbomachine hydrodynamics [see
Thyagaraja (1982)) where mixed systems (i.e. elliptic-hyperbolic) and

shocks are encountered.

The first example considered is the welI—known, (Liepmann and Roshko
(1960)] shock-tube problem. This problem can be solved by writing
two-fluid gas dynamics equations in conservation form to ensure shock
capturing. Using the suffices 1 and 2 to denote the two gases, the

interacting gas-dynamic equations are the following:

ot %

Opz 4 8 (pvy) = 0 (25)
ot ox

° (pyvy) + LA (plv:i) + 21 = Dv(vr2 - vy (26)
ot ¢

- 13 =



0 2
i (pzvz) + — (p2V2) + Ez — Dv(vl e V2) (27)
ot a o
o} 2 o) P 2
= (pyley + /2 v ) + — (pyvyle, + =1 + 172 v]) )
ot ox P1
(28)
= D (T, = T)) + 1/2D (v} - vy)2+ vD (v, - v))
2 2
8 (pole, + 1/2 v5) ) + - (pvole, + B2 s 172 vy) )
ot % Pa
(29)
= - 2 =
= De(Tl - T2) + 1/2 Dv(vl v2) + VZDV(V2 vl)
P; = PRT) Py, = PR,T, (30)
gy = Cv Tl ; e, = Cv T2 (31)
1 2
The coefficients Dv' De are the momentum and energy equilibration
constants which are chosen as follows:
pC pC
Dv=—pr—2—- and D = L3 i3 (32)
(p; + Py) e (Plel i PZCVZ)‘ET
where the parameters Ry, Ryy C» C v 7T and Tp are suitably

¥y v2 D

chosen, as in Fletcher and Thyagaraja (1987a).

Note that the egquations do not involve any explicit viscosity.
Although they are irreversible (due to Dv and De), they are still
hyperbolic since the A matrix is unaffected by Dv and De. In
accordance with kinetic considerations, each gas 'feels' only its partial
pressure. All the interactions are due to momentum and energy
equilibration mechanisms. The shock-tube problem can be considered as a
valid initial value problem for a two-component 'multi-phase' fluid
mixture governed by the compressible generalizations of (15). 1In the

following, a, @, are the volume fractions and Pyr Py refer to the

2



thermodynamic densities of the two components (i.e. quantities which occur
in the equations of state). The common pressure is denoted by p . The

governing equations are:

o+ a, = 1 (33)
ot
o)
P_ (ppay) + — (pyav,) = 0 (35)
ot %
) 2
— (pyayvy) + 2 (proyv)) + a % . D (v, - v (36)
ot forld &
= (ppagvy) + 2 (92“2"?5.’ * “22 = D, (v, - v, (37)
ot ox ox
2 (a,p le; + 1/2 v%)) + EL'(alplvl(el + 2.+ 172 vﬁ))
ot ox o}
1
= D(T,-T,) +1/2D (v, -v,)2+vD(v,-v,) - bal (38)
a2 1 D 2 ™ 2 1 p—
ot
9— (a2p2(e2 + 1/2 v%)) + EL (a2p2v2(e2 + 2 % 1/2 v%))
ot o p
2
= De(Tl - T2) + 1/2 Dv(vl - v2)2 + erDv(v2 - vl) - pﬂz (39)
ot
P = pIRIT] = pRT, M88)
e, = Cv;rl 7 e, = CVZ'T2 (41)

The coefficients Dv and De in the gas dynamic formulation were
functions of Py and pyr In the multiphase formulation the same
functional forms are used except that the independent variables are P10y

and p,a,. Just as in the gas dynamics case the 6 evolution equations are

- 45 -



sufficient to determine the 6 unknown Pys Par Vyr Vy T and T, ,
the & multiphase evolution eguations determine P1ayr  poltyr Vir Vo T,

and T,. The pressure is obtained from the symmetrical relation
P = poRT) + praR,T, {42)

since p1ay. Polor Tl and T2 can be simply evolved. From p , we
get p, = p/R|T,, p, = p/R2T2. The a's are now simply calculated. No
explicit evolutionary equation for p is needed. The details of the
numerical methods needed for solving these systems ensuring faithfulness
have been published elsewhere (see Fletcher and Thyagaraja (1987a) and
(1987b)). We merely remark that whilst the gasdynamic equations are
always hyperbolic (in this instance leading to a shock structure
determined by Rankine-Hugoniot conditions and regularized by "numerical
viscosity'), the multiphase eqguations are well-known to be non-hyperbolic

(Stewart and Wendroff (1984) ) if the following inequalities hold:

2 2
0 < (v, -v)2< { €1 %o b (Bl M8 % {pm g4 ]E  pAgy
pzalc§ + plach

where ¢, and c¢, are the usual sound speeds defined by

A =l E.®]
dp dp
1 52 2 52

In the present examples, this condition is satisfied almost everywhere.

In Figure 1 we show the initial data for the shock-tube problem. For
illustrative purposes we present two cases: a 'high-drag' case in which
Dv is set so large that (v, - v2)2 << vﬁ, v%; the second case involves
a smaller value of Dv so that (v, - v2)2 = v%, v%. When the drag is
high, both gases move with a common velocity which is determined by the
total momentum conservation equation. The shock-tube problem can be
solved analytically in this case. In Figure 2 we present the results

obtained. Thus, Figure 2a shows the combined pressure p(x,t) + Po(x,t)

obtained from the gas dynamic equations 8 ms after t = 0. The



agreement with the analytic solution is excellent, showing rather good
shock resolution and monotonic shock pressure rise. Figure 2b shows the
results from the multiphase equations; this time the common pressure
p(x,t) 1is the function plotted. The characteristic relaxation time

T, = 5 Ws in this case. When v, and v, are nearly equal equation

D
(43) shows that non-hyperbolicity is marginal.

When the drag is high, both solutions coincide with each other and
the exact analytic solution of the gas dynamic equations. When the drag
is low, the two gases can have a substantial relative velocity. Figure 3a
shows that even in the gas dynamic case, there can be no simple shock
structure and the combined pressure is smeared relative to the analytic
solution assuming a common velocity. Figure 3b shows that the common
pressure obtained from the multiphase equations agrees gquite well with the

gas dynamic combined pressure. T = 1 ms 1in this low drag case.

We must emphasize that the gas dynamic and multiphase equations are
physically and mathematically inequivalent models, valid generally under
different conditions. We make no claim that they lead to the same
solutions under all conditions (indeed our next example is designed to
illustrate the differences). We do claim however that the well-known
nonhyperbolicity of the multiphase equations do not lead to numerical

difficulties which might vitiate numerical simulations.

The above example also illustrates that although Dv has no effect
on the hyperbolicity or otherwise of the equations, under suitable
conditions, the system mimics the behaviour of a hyperbolic equation
closely. Since both systems are ultimately regularized by imbedding in a
parabolic equation, it would appear that the nature of the outer equations
as far as the reality of their characteristics are concerned is
irrelevant. We do not present plots of other variables and the time
evolution in this problem for lack of space. These and results for other
values of Dv are given in Fletcher and Thyagaraja (1987a) and (1987b).
Suffice it to say that the conserved quantities (mass and total energy)

are preserved to an accuracy of better than 0.1% of their initial values.

The second example involves finite amplitude, compressible subsonic

motion in a tube with both ends closed. 1In this case, we have



deliberately set Dv and De to zero. The initial conditions and
parameters used in the simulation are given in Figure 4. Figure 5 shows
the total pressure in the gas case and the common pressure in the
multiphase case at a number of different times. The velocity
distributions at these times are shown in Figqures 6 (a) and (b). The
Figures show that the motion is regular (i.e. no evidence of high-k

instability) and that symmetry about the mid point is preserved.

The two gases have no dynamic interaction at all. Both gases are
governed by the standard Euler equations. In the gas case since v, and
v, 'feel' different partial pressures, they can sometimes be in opposite
directions, as shown in Figure 6(a). In the multiphase case, even when
Dv and De are zero, the two components are always coupled by the common
pressure. This is reflected in the fact that v, and v, are in the
same direction in this case. The accelerations are always in the same
direction. Yet, remarkably enough, the qualitative features of the
solutions as far as pressure i1s concerned are quite similar. There is no
evidence of a high-k instability characteristic of "ill-posed equations"
spoiling the symmetry in space or periodicity in time of the multiphase
solution. It has been checked that the multiphase equations are

everywhere non-hyperbolic.

The constants of the motion are conserved in both codes to a high
accuracy. In the gas case the individual energies are conserved as
required. Figure 7 shows the change in the different energy sums (from
their initial value) as functions of time. We see that each gas does
indeed behave as though the other gas was absent but in the multiphase
flow case clearly energy is transferred between the species due to the

common pressure. In both cases the periodicity of the motion is evident.
6. CONCLUSIONS

The notions of hyperbolicity, well-posedness and regularization have
been examined with particular reference to the single pressure formulation
of multiphase flow. The equations which govern such flows are generally
not hyperbolic but are known to possess non-negative conserved constants
in the absence of dissipation and sources. We show that these properties

are apparently sufficient to control the high-k instabilities which cause



ill-posedness in linear, homogeneous, non-hyperbolic eguations. In
theory, the multiphase equations can always be imbedded in a well-posed
nonlinear parabolic system by explicitly invoking viscosity and thermal
conduction. In practice, if the equations are solved by 'faithful'’
numerical methods, explicit regularization is seen to be unnecessary
although feasible if required for reasons of accuracy. It is our
experience that unless care is taken with proper definitions of Dv and
De numerical simulations sometimes lead to spurious high-k instabilities
in regions where one of the species is nearly depleted. 1In such regions
the thermodynamic density, velocity and temperature of the depleted
species need to be properly defined even though the volume fraction

approaches zero.

Our views are illustrated by comparing the numerical simulations of
two test problems (the first is analytically solvable) using multi-gas
equations (hyperbolic, multi-pressure), and multiphase equations
(non-hyperbolic, single pressure). The latter present no special
difficulties. To avoid confusion, it must be remembered that these two
sets of equations represent different physical models which are generally
applicable under different physical conditions. The fact that they
produce similar (in the first case the same) results does not imply that
the models are isomorphic. However, it does demonstrate that the
numerical treatment (provided it is faithful) does not distinguish between
hyperbolic and non hyperbolic conservative nonlinear systems, and that the
claim that the latter have ill-posed solutions cannot be sustained. It is
appropriate to end this paper with a quotation from Lax (see, Harlow
(1974)] "all guidance to correct formulation must come from a careful

consideration of the physical principles involved" (our emphasis).
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HIGH PRESSURE SECTION

LOW PRESSURE SECTION

Pl=20 MPa, P2=0 P1=0| P2= 0.1 MPa
T, =414 K T, = 300 K
vy =10 Vvye=0
(a) Multigas case
HIGH PRESSURE SECTION LOW PRESSURE SECTION
p = 20 MPa p = 0.1 MPa
al = 1 G2= 1
1 = 414K T, =300 K
Wiy (2 0 vy = 0
(b) Multiphase case
Cv = 13550 J/kg K , R, = 4517 J/kg K
1
Cv = 1355 J/kg k , R, = 451.7 J/kg K
Leggth of shock tube = 44 m
Position of diaphragm = 14.6 m
Comparison time = 0.008s
Number of grid points = 960
Time-step = 1ps

Fig. 1 Details of the shock tube simulation
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Fig.2 Shock tube simulations (rp=77=>5us).
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Fig.3 Shock tube simulations (rp=77=1ms)
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2
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(a) Multigas case

vi=v,=0, T, =T,= 413 K
a, = 0.5 + 0.1 sin /L

p=12 (1 + sin m™/L) MPa

(b) Multiphase case

Cvl = 1355 J/kg K , R, = 452 J/kg K
Cv2 = 2710 J/kg K , R, = 903 J/kg K
Length of tube (L) = 50m

Number of grid points = 100
Time-step = 5 us

DV = De = 0

Fig.4 Initial conditions and parameters used in the subsonic simulations
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