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ABSTRACT

In this paper we describe a new mathematical model of melt/water detonations.
This model has been developed to study the escalation and propagation stages of a
vapour explosion. After describing the physics of this problem we give a complete
description of the conservation equations and constitutive relations which form the
model. We then describe the the solution procedure and present some results from

example simulations.
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Nomenclature

A
cd
Cfrag

BT NETY N RF TS

area factor

drag coefficient

constant in the fragmentation model
specific heat at constant volume
internal energy

stagnation energy

heat transfer coefficient
stagnation enthalpy

momentum exchange function
length-scale

pressure

energy exchange function
temperature

time

velocity

axial coordinate or mass quality

Greek Symbols

o
p
v
r

volume fraction or void fraction
density

specific volume (= 1/p)

mass transfer rate

Crag length-scale source term

I', Grineisen coefficient
At  space step

Az time step
Subscripts

e effective fluid (water plus fragments)
f  fragments

lig saturated liquid

m  melt droplets

sat saturation value

vap saturated vapour

w water

il



1 Introduction

If a hot liquid (melt) contacts a cooler volatile liquid, in some circumstances the energy
transfer rate can be so rapid and coherent that an explosion results. Such explosions
are a well-known hazard in the metal casting industry [1] and it is postulated that they
may occur in submarine volcanisms [2]. They are also studied in the nuclear industry, to
assess the consequences of the unlikely event that in a severe accident molten material
contacts residual coolant and such an explosion results [3].

Explosions of this type are known to progress through a number of distinct phases
[3]. Initially, the melt and water mix on a relatively slow timescale (~1 second). During
this stage the melt and water zones have a characteristic dimension of the order of
10mm. Because of the high temperature of the melt a vapour blanket insulates the
melt from the water and there is relatively little heat transfer. If this vapour blanket is
collapsed in some small region of the mixture, high heat transfer rates result and there is
a rapid rise in the pressure locally. In some circumstances this pressure pulse can cause
further vapour film collapse and may escalate and propagate through the mixture,
causing coherent energy release. The propagating pressure pulse (which steepens to
form a shock wave) has two main effects. Firstly, it collapses the vapour blanket,
initiating rapid heat transfer. Secondly, it causes differential acceleration of the melt
and water, which in turn leads to relative velocity breakup of the melt and a large
increase in the melt surface area. As the energy of the melt is rapidly transferred to
the water high pressure steam is produced, which expands, with the potential to cause
damage to any surrounding structures.

In earlier work we have developed a mathematical model, called CHYMES, of the
mixing stage [4,5,6] and are in a position to predict what type of mixtures are formed in
many different situations. In this paper we present a new mathematical model, called
CULDESAC, of the detonation process. The analogy between thermal detonations and
classical chemical detonations was first investigated in 1975 [7]. Since then a number
of steady-state [8,9] and transient [10] models have been developed. We have improved
upon this modelling by relaxing some of the assumptions which have, in the past, been
made to make the problem tractable. We also have the benefit of a model of the mixing
stage, which we can use to generate input data for the detonation model.

In section 2 of this paper we describe the partial differential equations which make
up the model and the constitutive relations used to close it. In section 3 we describe
the solution procedure and in section 4 we describe the results from some example
calculations. Finally, in section 5 we draw some conclusions.

2 Description of the Model

In this section we describe the partial differential equations and constitutive relations
which constitute the model. The model is transient and one-dimensional (although this
may be planar, cylindrical, spherical or any user-specified slowly varying shape). We
treat the mixture as consisting of melt particles, water and steam. Behind the deto-
nation front the particles are fragmented by boundary layer stripping and the water is
heated by energy transfer from the fragments. This situation is shown schematically
in figure 1. In the model we represent this situation using three different components,



namely melt droplets (m), melt fragments (f) and water (w). Since the water is rapidly
heated to supercritical pressures and temperatures we make the simplifying assump-
tion that when distinct phases exist the steam and water are in thermal and mechanical
equilibrium. We also assume that the melt fragment and water species are in mechani-
cal equilibrium, which is reasonable since the melt fragments are very small (~ 100pm)
[11]. We assume that the fragmentation process is boundary layer stripping [12], al-
though the model is sufficiently general to apply to any hydrodynamic fragmentation
process. We have formulated this problem mathematically using the usual multiphase
flow equations, where the presence of each species is specified by a volume fraction and
all the species are at a common pressure. We make the simplifying assumption that
the melt and fragments are incompressible, so that py = pm = constant. Also since
the water and the fragments are assumed to have the same velocity we set V5 = V.

2.1 Conservation Equations

Conservation of mass applied to the water, melt and fragments gives:

0 18
a(awpw) + Z'é;(AawaVw) =0 (l)
a 18
a(am.ﬂm) + zg;(A&umVm) =-Ty (2)
e 3 10
5 (@rpPm) + 772 (A%sPmVu) =Ty (3)

In equations (2) and (3) Ty is the mass transfer rate due to fragmentation and is
specified later.

Conservation of momentum for the melt and effective fluid, consisting of the water
and the fragments, gives

Z(ampmVim) + I (AempnV2) =

—am 32 + Kmu(Ve = Vi) = T Vim (4)
and

gf((awpw + O-'fpm)Vw) + %%(A(awpw + prm)v-u%) =

—(aw+ﬂr;)g£+me(Vm—Vw)-l-['_,er. (5)

The terms on the RHS of equations (4) and (5) represent the effect of the pressure
gradient force, drag between the melt particles and an effective fluid, consisting of the
water plus the fragments, and momentum transfer due to mass transfer. Viscous forces
have been ignored, since they are always negligible in situations of interest to us.

We also have an energy equation for each species. It is convenient to work in terms
of the stagnation energy, defined by e; = e+1 /2V? and the stagnation enthalpy defined
by hs = es + p/p. Conservation of energy for the melt, fragments and water gives:

%(ampmesm) + ;lgaa;(Aﬂrumthsm)

= —p3m 1 R (T = T) + VinKimuo(Vas = Vin) = Tsham (6)
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%(afpmesf) + %{a%(-’qafpm thsf)
0 -
= —pgt + Rpu(Tw = Ty) + Tyhom (7)
and

% (awaeaw) + %E%(Aawpwvwhaw)

= =p82% 4 Rino(Ton = Tu) + Ryu(Ty — To)
+Vmew(Vm = Vw) + me(Vw - Vm)z. (8)

In the above equations the terms involving Ry, etc. represent thermal equilibration
and the terms containing K, are the drag work. We have assumed that all the
irreversible drag work heats up the water. A detailed derivation of these equations is
given elsewhere [13].

We also have an equation for the length-scale of the melt droplets, given by:

7] 18
a(aumLm) + Za_:(AaumVmLm) = _rfLm - Ffrng- (9)

In the above equation the term involving I'y is due to mass transfer (it is a consequence
of writing the transport equation in conservation form) and the term —I'frag models
the chosen fragmentation process.

In addition to the above equations we have the constraint that

am + aj + ay = 1. (10)

This completes the specification of the differential equations. In the next subsections we
will describe the constitutive relations, the Equations of State (EOS) and the boundary

and initial conditions.

2.2 Constitutive Relations

In this section we describe the constitutive relations for drag, heat transfer and frag-
mentation currently employed in the model. These may be changed very easily as
improved data becomes available.

2.2.1 Momentum Exchange

If the volume fraction of droplets is a,, there are 6a,,/mL3, spherical droplets per unit
volume. The drag force on a single droplet may be written as

1 A
_FD = -g—cdpe‘rrTlvw = le(vw - Vm) (11)

where pe = (@wpw + asps)/(aw + ay) is the effective density of the fluid dragging the
melt drops. Thus the total drag force is

Fr= ZrPeamIVw = Vaul(Ve = Vi) (12)



and comparison of equation (12) with equation (4) shows that

.3 Pe

In the present work we have used a constant value of cg = 2.5. This value is higher than
the usual value of 0.4 to account for the increased drag when drops are fragmenting
[12]. It is a simple matter to make cg a function of the volume fractions etc., if required.

2.2.2 Heat Transfer

If the heat transfer rate is specified as the product of a heat transfer coefficient and the
temperature difference it is easily shown that

h
Ropw = bam T (14)
Ly
and "
Ry = 6oy (15)
Ly

where R is the heat transfer coefficient between the melt and water, hj,, is the heat
transfer coefficient between the fragments and water and Ly is the fragment size. The
heat transfer mechanisms between the melt and water are very complex and clearly
depend on the time-history of each particle. The only experimental data available is
rather crude and consists of time-averaged heat transfer coefficients for the duration of
the fragmentation process [14]. Thus in the present model we have decided to choose
constant values for the heat transfer coefficients. A value of Ay = 10° W/m/K was
used for the melt when it was surrounded by a vapour film. This is a typical value
obtained from a combination of radiation and film boiling [14]. This value was increased
by typically four orders of magnitude when vapour film collapse was judged to have
occurred. The treatment of vapour film collapse used here was simply to increase the
heat transfer coefficient when the pressure exceeded a certain value, since this models
pressure induced vapour film collapse. Because of the high initial temperature of the
melt (~ 2500K) in situations of interest to us, temperature controlled vapour film
collapse was not considered to be important [15].

The fragment size Ly is not determined by the fragmentation model currently em-
ployed (see section 2.2.3) and was specified by reference to experimental data. A typical
value of L; = 100pm was used [11].

2.2.3 Fragmentation Model

As already mentioned we have chosen to use a boundary layer stripping model for
fragmentation as this is thought to be the most appropriate for the study of vapour
explosions [10]. We have used the model proposed by Carachalios et al. [10], who
suggest that the stripping rate from a single fragment is given by

dm

T = Cfraglvm - le”LEnVPmPe (16)



where the empirical constant cy,,, takes a value of approximately 1/6. Multiplying
equation (16) by the number of drops per unit volume and comparing the result with
equation (2) gives

rf = Q’mcjraglvm = Vw|vPer/Lm (17)

where all the constant terms have now been included in ¢4, so that cfrqy ~ 1. Thus
the mass stripping rate is proportional to the relative velocity and the square root of
the effective density. As fragmentation occurs, the density of the surrounding fluid is
increased by the addition of fragments and thus the fluid has more inertia to fragment
the drops further.

The length-scale of the droplets is changed by the mass loss due to boundary layer
stripping. For spherical drops it is easily shown that the mass loss rate given in equation
(17) implies a length-scale source term of

1
Lirag = EI‘Jer (18)

which is not surprising, as equation (18) implies that a droplets length-scale changes
at one third the rate of its volume. We have also added an empirical function of
our own to ensure that breakup only occurs for Weber numbers above a critical value
(Weerit = 12). Details are given in reference 16.

2.3 Equations of State

The melt equation of state is very easy. We assume the melt to be incompressible
so that p, = p; = constant and to have a simple caloric equation of state so that
En = cymTn and Ey = cymTy. (This EOS is easily modified to take account of the
latent heat of fusion, although it is simpler to increase cym to account for this [14].)

The EOS for water is more complicated and there is virtually no thermodynamic
data on the properties of water at high temperature and pressures. In this study we
have used an approximate EQS, which will be described below. Before doing this
it is important to determine exactly what form of EOS is needed in the calculation.
We show, in section 3, that at the end of each time-step the water mass conservation
equation gives the new density and the water energy equation the new internal energy.
Thus from the EOS we need to determine the pressure and the temperature. The
procedure used depends on whether the given values of p and e locate a point inside or
outside of the two-phase region. Given p, a look-up table is used to determine whether
€ > esqt and the point is outside the two-phase envelope or e < e,,¢ and the point is
inside the two-phase region. .

If it is inside the two-phase region then there exists z (the mass quality) such that

v = Zvygp + (1 — 2)uig (19)
and
e = Zeyap + (1 — x)eyig (20)

where v is the specific volume and the suffices vap and lig refer to values on the vapour
and liquid saturation lines, respectively. If z is eliminated between equations (19)
and (20) we obtain an equation for p, since vyap, Viig etc. are a function of only one



thermodynamic variable. This equation is solved by the bisection method to determine
the pressure and hence the temperature. Test calculations showed that for a look-up
table containing 40 data points, this algorithm reproduces steam table data with an
error of less than 0.5%.
Outside of the the two-phase region the pressure is obtained using a Gruneisen EOS
[17], which gives:
P = Psat + I‘vp(e - esat) (21)

where psa: and esq; are the saturation pressure and internal energy for a density p and
T, is the Griineisen coefficient, which is assumed to be a function of the density only.
This type of EOS is often used to determine the pressure at points removed from a
reference line, given data along the reference line (often a shock adiabatic) [17]. Due
to a lack of experimental data I, was set to a constant value of 0.3. The temperature
1s given by

T = Tsat + (e - esat)/cv (22)

where ¢, is the specific heat at constant volume. A constant value of 3000 J/kg/K was
used for the specific heat. (The Griineisen approximation requires that all quantities
are a function of volume only but thermodynamic consistency relations show that c,
can be a function of temperature only, hence ¢, must be a constant.) This EOS was
also tested against the (limited) data available from steam tables and was found to give
results which were in agreement to within approximately 10% for both the pressure and
temperature. This is perfectly adequate given the other uncertainties in the model.

2.4 Boundary and Initial Conditions

We are interested in solving the above equations in a closed vessel. Thus the only
boundary condition needed is to set the velocities to zero at the vessel walls.

Initially, the volume fractions, void fraction, velocity and particle size distribution
are specified. To simulate triggering some of the melt is fragmented in a small region of
the solution domain. This causes a high heat transfer rate in these cells, the pressure
rises locally and a detonation wave may develop.

3 Solution Procedure

We solve the partial differential equations using a finite difference method which em-
ploys the usual staggered grid arrangement. All convective terms are modelled using
upwind differencing for stability. As far as possible we use explicit methods, where
appropriate treating source terms implicitly, to ensure that positive quantities remain
positive [18]. A version of the scheme, used to model detonations in gas mixtures, is
described in [19] and its extension to multiphase flow is described in [13,20]. A brief
sumnmary of the solution procedure as it applies to this problem will be given below.

1. Equations (1), (2) and (3) are used to time advance awpu, @m and ay, respec-
tively. Equation (10) is then used to determine ay, and hence p,, can be deter-
mined.



2. Equations (4) and (5) are used to obtain the new velocity fields. The drag and
mass transfer terms are treated implicitly and the convection and pressure gradi-
ent terms are treated explicitly. Thus at each point a 2 x 2 matrix is inverted to
obtain both velocities simultaneously. This practice has proved to be very stable.

3. The new stagnation energies are found by time advancing the three energy equa-
tions (6) — (8). Using the stagnation form ensures that the Rankine-Hugoniot
equation can be built into the solution scheme to give it good shock-capturing
properties. The new velocity field is then used to determine the new internal
energies.

4. The caloric equations are used to determine the new melt and fragment temper-
ature. The water EQS is then used to determine the new pressure field and the
water temperature.

This completes a cycle of the solution procedure.

4 Example Simulations

We have used versions of this model to study shocks and detonations in gas mixtures
[19], shocks and detonations in multiphase mixtures [13, 21] and shocks in dusty and
droplet laden gases [16]. In all cases we have obtained excellent agreement with analytic
theory, provided that we ensure that the spatial and temporal discretization is adequate
to resolve the important physical processes [20,21] e.g. to obtain an accurate solution
all the energy must not be released in a single cell.

4.1 Description of the Calculations

In this section we describe the parameters and initial conditions used in the simulations.
Table 1 contains a list of all the parameters not specified in the earlier sections. All the
simulations were started by assuming that there was a spatially uniform mixture with
a specified melt volume fraction and void fraction. This mixture was assumed to be
at rest. An explosion was triggered by instantaneously fragmenting 90% of the melt in
the first 0.01m adjacent to the right-hand wall (or centre in the case of the cylindrically
and spherically symmetric simulations). In the next subsections we will describe the
results of simulations performed to study the effect of varying the initial void fraction
of the water, the geometry and the heat transfer rate.

4.2 The effect of Void Fraction

In this section we present the results of three simulations performed in order to study
the effect of void fraction on the escalation/detonation behaviour. Values of the void
fraction (the fraction of the water in vapour form) of 0.5, 0.7 and 0.9 were used in
the simulations. (The time-step was reduced by a factor of 10 in the @ = 0.5 case
because of the lower compressibility of the water-steam mixture.) Figures 2(a)-(e)
show the volume fraction, water density, pressure, temperature and velocity profiles as
a function of distance after 0.8ms for the a = 0.7 case. Figure 2(a) shows that the



Parameter Value unit
Time-step 10" s
Space-step 0.005 m
Initial particle size 0.005 m
Initial pressure 0.1 MPa
Heat transfer rate -

vapour blanketed 10® | W/m/K
Heat transfer rate -

liquid-liquid contact 107 | W/m/K
Pressure required to collapse

vapour blanket 0.2 MPa
Initial melt temperature 2500 K
Melt density 7000 | kg/m~=°
Melt heat capacity 500 | J/kg/K
Melt surface tension 0.4 N/m
Initial melt volume fraction 0.1 -

Table 1: Parameters used in the detonation simulations

melt is rapidly fragmented and that the fragments tend to follow the detonation front.
Figures 2(b) and 2(c) show the rapid rise in density and pressure at the shock front,
with the characteristic Von Neumann spike evident. Behind the detonation front the
pressure and density fall and attain a constant value in the downstream region. Figure
2(d) shows the rapid heating of the water as the fragments are formed and transfer
their energy to the water. Both the melt and fragments equilibrate their temperatures
quickly with the water. The temperature behind the detonation front is seen to be
in the supercritical region. Finally, figure 2(e) shows the velocity profiles. The water
velocity profile is that characteristic of flow which is induced by a shock wave, showing
a very steep rise at the shock front. The melt velocity rises more slowly, as the melt
particles have more inertia. The large velocity difference which results causes very rapid
fragmentation, as shown in figure 2(a).

Figures 3, 4 and 5 show the development of the pressure profile for initial void
fractions of 0.5, 0.7 and 0.9, respectively. (Predicted pressure fields are displayed since
they are often the only diagnostic data available from experiments.) The figures show
that the shape of the pressure profile is very different in the three different cases. The
higher the void fraction the more compressible the water/steam mixture and conse-
quently the less ‘spiky’ the pressure plot. This is because high density water has a
very high sound speed so that small changes in density cause very large changes in the
pressure. In the two higher void fraction cases there is sufficient vapour present to stop
the thermodynamic trajectory of the water ever entering the subcooled liquid region,
where the sound speed is very high. There is also a physical instability in the pressure
at the shock front which is present in the @ = 0.5 case. We will describe and explain
this in subsection 4.4.

Table 2 compares the main features of the different simulations. The results in
table 2 show that the detonation velocity, peak pressure and wall pressure (the pressure
at z = 0) are all very sensitive to the void fraction. The detonation velocity increases



Case | Detonation | Peak Pressure | Wall Pressure
speed (m/s) (MPa) (MPa)

0.5 580 160 25

0.7 725 285 60

0.9 770 210 74

Table 2: The effect of Initial Void Fraction

Case Detonation | Peak Pressure | Wall Pressure
speed (m/s) (MPa) (MPa)
Planar 725 285 60
Cylindrical 670 250 50
Spherical 645 230 48

Table 3: The effect of Geometry

with void fraction. The peak pressure is a maximum for the a = 0.7 case and falls
if there is either too much or too little water. The downstream pressure increases
monotonically with void fraction. This is because in all cases the shock wave is strong
enough to cause complete fragmentation of the melt, so that the final pressure is that
corresponding to the ‘mixing-cup’ temperature for the melt and water, since figure 2(e)
shows that the system is at rest in this region of the tube. Note that the pressures at
the wall are super-critical and that the model predicts extremely high shock pressures.
This is a consequence of assuming a 1D planar geometry and using parameters which
ensure complete fragmentation of the melt.

4.3 The effect of Geometry

In this section we describe the results from two further calculations carried out to
examine the effect of geometry. We have repeated the o = 0.7 calculation described
above for the cases of cylindrically and spherically symmetric detonations. These cases
were simulated by changing the factor A in the conservation equations from a constant
value to z and z?, respectively. The resulting pressure profiles are shown in figures 6
and 7 respectively. The figures show that changing from a planar geometry reduces the
peak pressures and the detonation velocity. Table 3 summarises this data. Note that
the final pressure is somewhat reduced in the cylindrical and spherical cases because
more of the energy is in the form of kinetic energy. We may conclude from this data
that although the geometry affects the propagation behaviour, its effect is not great for
the chosen initial conditions and coarse mixture.

4.4 The effect of the Heat Transfer Rate

In this section we present the results from simulations carried out in order to examine
the effect of varying the heat transfer rate. We use these results to explain the oscil-
lations in the pressure profiles for the & = 0.5 simulation shown in figure 3. Figure 8
shows the results of a simulation performed with identical parameters to that shown in
figure 4, except that the heat transfer rate was reduced by a factor of 10. A number of



features are evident from the figure. Firstly, the detonation takes longer to develop to
a steady-state condition, as expected. The detonation velocity, effective peak pressure
(marked by the dotted line) and wall pressure are very similar in both cases. The
pressure peak is wider in figure 8, because the heat transfer zone is longer.

The second point to note is that there are short-lived oscillations superimposed on
the pressure peak. These are very similar to those seen in figure 3. These are due to
the reduced heat transfer rate behind the front, causing rapid pressure variations to
occur. Because the heat transfer is reduced the temperature of the water increases less
rapidly and remains close to its saturation value in a small region behind the shock
front. Equations (21) and (22) can be combined to give

P = Psat + 'Tv(T - Tsat) (23)

where v, = pTycy, is the thermal pressure coefficient. From the data given in section
2.3 we see that a typical value of 7, 1s 106 (MPa/K). Thus if the temperature remains
close to its saturation value it is possible for a small change in T — Tsot to cause a
large change in the pressure relative to pss¢. -This Is a consequence of 7U(Tcrff/pcrit)
being large (~ 30). If the heat transfer rate is high the water is soon heated above its
critical temperature. In this case both psat and Tiat are negligible and this phenomenon
disappears. A simulation with the heat transfer rate lowered by a further factor of 10
produced a very slowly developing detonation with many oscillations at the shock front.
These oscillations do not appear to have any dynamical significance. The detonation
tends to develop a steady-state structure with the small oscillations superimposed on
it. In the void fraction study, reducing the void fraction decreases the internal energy
of the water and consequently more energy must be added to the water before its
temperature is raised to a supercritical value. Similar oscillations to those observed
here were observed by Fishlock [22] in a study of detonation in melt/sodium systems,
using the same form of EOS as used here. He was unable to explain the origin of these
oscillations and assumed that they were due to numerical instability. We have checked
~ that they do not disappear when the grid is refined and the time-step is reduced.
(Although they can be removed by increasing Az so that the ‘hot’ and ‘cold’ regions
are averaged out.) Note that the finite difference grid and the time-step were the same
for the calculations presented in figures 4 and 5 and that a reduction in the energy
source term causes greater ‘spikeness’. Hence it cannot be a numerical effect. (We do
not encounter any numerical instability if the proper Courant restrictions are observed
for At and Az). It is not clear whether this behaviour is a consequence of the chosen
form of the EOS or a genuine property of detonations in near saturated water. However,
since its effect is limited to adding short-lived transients to the solution it appears to
be of little practical importance.

5 Conclusions

In this paper we have described a new model of melt/water detonations. The model
uses the usual multiphase flow equations to simulate the passage of a detonation wave
through a mixture of melt and water. The model assumes that differential acceleration
of the melt and water, by the passage of a shock front, causes relative velocity induced
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fragmentation of the melt. This fragmentation, together with the collapse of the vapour
blanket, leads to the development of a detonation wave. In this work we do not fit a
shock wave at the detonation front or assume steady-state propagation but calculate
the response of the system given an initial disturbance. Thus we can examine the
development of detonations from a simulated trigger.

We have presented example calculations which illustrate the structure of the det-
onation front, as well as the effect of the initial void fraction and geometry on the
detonation process. It is evident from the description of the model that there are many
parameters, both in the initial conditions and in the constitutive relations, which are
either uncertain or depend on the prescribed coarse mixture. In future work we plan
to determine which are the most important parameters and to map out the region in
@m, @, Dy, space which can be considered as good mixtures. We also plan to compare
model predictions with experimental data, if any suitably detailed data can be found.
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Fig.1 Schematic representation of a detonation front in a melt/water mixture
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Fig.3 Development of the pressure profile for =0.5case
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Fig.7 Development of the pressure profile for a spherical geometry
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Fig.8 Development of the pressure profile for the reduced heat transfer rate case










