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Abstract

Two independent approaches, based on the inclusion of model loss
terms in analytical Fisch-Boozer and numerical Fokker-Planck models, give
good quantitative agreement on the reduction of electron cyclotron current
drive (ECCD) efficiency by non-Coulomb energy loss. By fitting recent
tokamak measurements of ECCD efficiency to these results, the
characteristic timescale of non-Coulomb energy loss in velocity space is

calculated.
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The creation of electric current in plasmas by the application of
electromagnetic radiation whose frequency lies in the electron cyclotron
range of frequencies (ECRF) was first suggested by Fisch and Boozer.l Lt
is attractive, both for maintaining a bulk current in tokamaks, and for
localised current drive for the control of specific instabilities.zh&
Electron cyclotron current drive (ECCD) was first observed on the Culham
Superconducting Levitron,5 and preliminary observations of tokamak ECCD
were obtained on TOSCA.6 Detailed results on tokamak ECCD have only
recently become available, from CLEO7 at Culham, and WT-28 and WT-39 at
Kyoto. In TQSCA and CLEO,G’7 where the power density of the ECRF waves
exceeded the Ohmic power density-by an order of magnitude, the waves
interacted mainly with thermal electrons. Both tokamaks displayed ECCD
‘when the frequency  of the waves matched the second harmonic of the
electron cyclotron frequency w,, at the centre of the plasma. However,
the measured ECCD efficiency on CLEO for w/27 = 60 GHz was three times
smaller than that predicted by a Fokker-Planck code,10 which nevertheless
correctly predicted the absorption efficiency, and the scaling with
toroidal field strength of the absorption and of the ECCD. No ECCD was
observed on CLEO for the case /2T = 28 GHz. These apparent differences
between the measured and predicted ECCD efficiencies, which may7 have been
due to non-Coulomb energy loss mechanisms, motivate the present study.

The Kyoto results, which involve the maintenance of an existing electron
beam, rather than its creation by ECRF waves, are not considered further
here. The ECCD mechanisml rests on the fact that the collisionality of an
electron is reduced if its energy is increased by electron cyclotron
heating. Such an electfon loses parallel momentum at a slower rate than

that which applied before its energy was increased. This enhanced



persistence of parallel momentum for a selected, heated group of
electrons, is responsible for the electric current. Clearly, any physical
process which reduces the time for which a heated electron éan contribute
to the current reduces the efficiency of the current drive mechanism. Our
aim is to quantify the extent to which ECCD- efficiency is reduced as the
magnitude of additional energy and momentum loss is increased. First, we
consider a simple analytical model for the ECCD mechanism that extends the
approach of Ref.l by including loss terms. Next, we consider numerical
solutions of a Fokker-Planck equation that include; a non-Coulomb energy
loss term. Ihe results from the numerical calculations lie close to a
curve whose form was derived from our analytical model. This
correspondence enables us to relate electron energy loss, through our

model, to recent experimental measurements of ECCD.

Let us recall the model for the collisional dynamics of
current-carrying electrons that was given in Ref.l. The slowing-down rate
due to Coulomb collisions of the current—carrying electrons is

v_ = vo/u3. Here u is the dimensionless speed v/vT, v

3 o .
v 2Te/me, Te is

T

the electron temperature in energy units, m, is the electron mass,

y =n edfnh / 4me?mivi, n is the electron number density, and 4nA is
o e oeT e

the Coulomb logarithm. The rate of loss of parallel momentum due to
Coulomb collisions is vM = (2+Zi)vE, where ‘Zi is the ion charge. If

Coulomb collisions are the only mechanism by which energy and momentum are

lost by the current-carrying electrons, we have

W pu, — =-pu. (1)



Lt followsl that the parallel current remaining at time t is
je)y = jo[u(t)/uo]2+zi, where ug 1s the initial velocity of the

current-carrying electrons. Then the contribution to the current of these

electrons, integrated over all times, is the Fisch-Boozer current JFB:

: 3
[o2] o .] u
. . du 1 oo
T=dy®de = o gegs - 22 20 g (2)
o] u E i o

We shall construct our simple, amended model within this framework, and
use JFB to normalise the‘current that we derive.

It is well-known that the loss of energy in tokamak plasmas occurs at
rates that exceed those calculated using Coulomb collision theory.
However, the nature of the physical processes that lead to enhanced loss
1s not sufficiently well-understood for their functional dependence on
particle velocity to be known. Thus, although it appears that Eq. (1) may
require additional terms, the appropriate mathematical form of these terms
is not clear. We therefore adopt a heuristic approach, and construct a
simple variant of Eq.(l) that includes an enhanced loss rate. This model
is intended to be analytically tractable, and to enable us to relate é
dimensionless ECCD efficiency J/JFB to a single dimensionless parameter
that measures the enhanced loss of energy and momentum. Let us augment

the Coulomb energy loss rate e by an amount o which is independent of



velocity. Then Eq.(l) is modified to

du

I |
R < yu o, —— = -(24Z ) (vpropiu, (3)
dt E ) it 1 E i

From Eq.(3), following the approach of Eq.(2), we obtain

< 5 du
g =] jlgydes= =] L) —— (4)
o U (VEhaE)u

We now denote the initial Coulomb energy loss rate of the

current-carrying electrons by Veo = vo/ug and define a dimensionless

parameter A, which is the ratio of the additional energy loss rate to

Voo’ A= aE/on' Setting Z, = 1, Eq.(4) yields
2
J=J_. 2 [a - 4n(1+0)] . (3)
FB RZ

This dependence of J/JFB on K-l gives the solid curve in Figs.l and 2.
The discrete points in Figs.l and 2 represent the results of the

following independent numerical approach to the problem.

Energy and momentum loss can be represented by writing the

steady-state Fokker-Planck equation in the form

of of of of

waves collisions loss

Here £(v,, v") is the electron velocity distribution function, with vy



and ¥ the components of velocity perpendicular and parallel to the
magnetic field. The electron cyclotron current JEC ~ Jv”f(vl, v")dBY
can be computed once Eq.(6) has been solved. We have used the following
non-relativistic operators in the BANDIT code.10 First, to represent the
effect of electron cyclotron heating at the 4£th harmonic resonance, the

wave diffusion operator is

of 1 ad {V2£+1
L

(25) o3 a1

2,62, 8f
3, Poexpl-Cv, ) /) o 7)

v
waves 1

where D0 =0.01 vovz The mean parallel velocity of cyclotron resonant

T
electrons corresponds to Vo ¥ =.0.3 Vi gives a spread corresponding to
a finite-width wavenumber spectrum. Non-linear effects are insignificant
at this small value of Do' Electron trapping is not included in our
treatment, which corresponds to ECCD close to the tokamak magnetic axis,
as on CLEO.7 The collision operator in Eq.(6) 1s an extension of that
given in Ref.10, and includes two physical processes: pitch-angle
scattering of electrons on massive ions (Zeff= 1), and‘electron-electron
collisions which are calculated from a Legendre decomposition of the
distribution function, truncated to four terms. The zeroth term is taken
to be Maxwellian so that, as usual in Fokker-Planck approaches to
ECCD,ll’12 energy is not conserved by our collision operator. This
appears to be the lesser of two unavoidable problemsi Alternatively, we
could use a full collision operator that conserves energy. In this case,
for fixed wave power, the energy content of the steady-state distribution
would depend on the magnitude of the loss term. This would complicate

interpretation of the results more than the alternative that we have

chosen, since we would be considering ECCD efficiency for plasmas with



different temperatures. Furthermore, we aim at consistency with existing
theory in the limit (8f/8t)1055+ 0. To achieve a steady-state solution

of Eq.(6) in this case, the energy input from the waves must be balanced

by energy loss, which is introduced through the collision operator.ll’12

This approach appears reasonable provided the non-Coulomb energy loss
timescale greatly exceeds the characteristic collisional timescale.

Finally, the energy loss operator in Eq.(6) is taken to be

3
L8 - L2 5 (8)

loss v© ov ZTL

This causes the energy content of the distribution to decay with

characteristic loss time which we assume to be independent of the

T
velocity. The same operator was employed in Ref. 13. We shall see that
the parameter 7, plays a role analogous to that of aél in the |
analytical approach.

We have solved Eq.(6) using the code dedcribed in Ref.10 with a mesh
of 150 speed points (0<v<6vT) and 100 pitch angle points (0<e<T). In
Fig.l, points representing the electron cyclotron current JEC obtained

for fundamental resonance (£=1) are plotted against with v as an

Ty
additional parameter. Results for second harmonic resonance («£=2) are

" shown in Fig.2. JEG is normalised with respect to J_, the electron

cyclotron current obtained from Eq.(6) when TL* @, so that by Eq.(8)

(af/at)losS is zero. We note that the present code,10 like previous

’

studies, gives good agreement between J, and JFB defined by

Eq.(2). A dimensionless variable is obtained from 7 by normalising to

7. the Coulomb collision timescale of the electrons which carry most of

R,



the current. These electrons are identified using a hybrid of the

Fisch-Boozer and Fokker-Planck approaches. The Fisch—Boozer1 ECCD
- . 2

efficiency JFB/P ~ V,V, and the power P absorbed is v (af/at)waves.

Then, using Eq.(7), we find the value of ¥ which maximises the

integrand in

2 2,3/2 ,of
J ~ Iv"(vl ) (EE) vldvldv" (9)
waves
when ¥ =N For example, when Vo = Vp, as in the CLEO ECCD

experiments,7 the resulting values of vy for £4=1 and 4=2 are 1.35vT
and 1.69vT respectively. Thus, both components of velocity play an

important role in determining 7 Figs.1l and 2 contain results from both

R

analytical (solid curve) and numerical (discrete points) calculations.
’ . -1 -

These have been plotted with the pairs (J/JFB, JEC/Jm) and (A 7, TL/TR)

sharing the same units on the same axes.

The close coincidence between the results of the independent
analytical and numerical models leads to the following conclusions. First,
we may use Eq.(3), with the identification of variables introduced in-
Figs. 1 and 2, to fit the results of the Fokker-Planck calculations.

Since J ~ Jm, the results of Eq.(6) are described by

FB —

Jec =~ Irp Z(TL/TR)Z [rp/my, - 401 + 7p/7)] (10)

We note that TR is a function of ¥ and that the choice of

normalisation TL/TR is central to the coincidence of numerical results



for different values of v Second, the analytical description is based
on the dynamics of a single group of current-carrying electrons, whereas
the Fokker-Planck description is global in velocity space. "The
coincidence of the results indicates the power of the Fisch-Boozerl
approach which, extended here to include energy loss, remains in agreement
with the collective Fokker-Planck treatment. Third, the analytical and
numerical results agree most closely for the highest value of v,
considered. This is the case for which the resonant electrons are least
collisional, so that their coupling to the bulk piasma is weakest and
their treatment as a separate entity, as in the analytical approach, is
most appropriate. Fourth, we may use Eq.(10) to obtain information about
the value of TL/TR from experimental measurements of ECCD efficiency.

Recall that, in Eq.(8), 7 is a measure of non-Coulomb energy loss and

L

R is the Coulomb collision time of the current-carrying electrons. In

the CLEO tokamak second harmonic ECCD experiments,7 the parallel velocity
v at which peak current drive occurs is close to Vi Then for source

frequencies of 60 GHz (Te: 1.25 keV, n = 6X1018m‘3) and 28 GHz(Te 1.25

1t

0.85

I

keV, n, = 3X1018m_3), the procedure indicated at Eq.(9) gives TR

ms and 1.7 ms respectively. At 60 GHz, it was found that the ECCD
efficiency was three times smaller than that predicted from J_ by the
Fokker-Planck code. From Fig. 2, this suggests TL/TR ~ 0.3, and hence
“r. ~ 0.25 ms. The global energy confinement.time TE for this discharge,

L

obtained from energy balance, is lms. Now 7. is determined by the

E
transport properties of the entire plasma, whereas in our model T
relates primarily to the part of the plasma in which ECCD is concentrated.

Thus, it is reasonable that L is found to be less than Th but of similar

magnitude. The absence of detectable ECCD at 28 GHz suggests, by Fig.2,



that in this case TL/TR< 0.1. Then 7. < 0.17 ms, which is significantly

~

smaller than the value for 60 GHz. The decline in L is matched by a

decline in Tg which is 0.5ms for the 28 GHz case.

The Fisch-Boozer analytical approach to collisionality, and its
extension in this paper, are not restricted to any particular wave damping
scheme. The model of Ref.l has been used successfully, without a loss
term, to explain the efficiencies observed in lower hybrid current drive
(LHCD) experiments which involve electrons with ¥, ¥ vT.l4 In these
experiments, the global confinement time g is substantially less than
14,15

TR The fact that a model without a loss term successfully predicts

the LHCD efficiently suggests that TL/TR > 1. It follows that L >> T
so that the electrons that carry the current lose energy much more slowly
than the bulk plasma, in agreement with previous experimental and

theoretical results.lG“l8

Further information on the characteristic timescales of ECCD can be
obtained from time-dependent Fokker-Planck calculations. In Fig.3, the
electric current is shown as a function of time t, again normalised to

for two cases with - 1.5 Vip- The upper curve has L infinite,

TR
corresponding to the absence of an explicit loss term, and is calculated
for a distribution that is Maxwellian at t=0. The lower curve has

TL/TR = 0.75, and is calculated for a distribution Wﬁich at t=0 is a
solution of Eq.(6) with (Bf/at)waves set to zero. We note that the curves
are initially very close, but diverge for t > 0.2TR, and that the

steady-state current in the lower curve is established by t =~ TR = T

Physically, the first point reflects the fact that for initial times



t<<rL, the loss term has no effect on ECCD, which is determined by the
balance of wave diffusion with collisions alone. The second point shows

that once t = equilibrium between wave diffusion and loss terms has

‘FL,

been reached, and the system evolves no further.

In conclusion, we have studied the effect of energy loss on ECCD
using two independent approaches. The analytical model of Eq.(3), which
is a heuristic extension of Fisch-Boozerl theory, leads to Eq.(5). This
is shown as the solid curve in Figs.l and 2. Numérical solution of the
Fokker-Planck equation, Eq.(6), with a simplistic loss term defined by
Eq.(8), produces the discrete points in Figs. 1 and 2. The good agreement
between the two approaches suggests that the results are not strongly
model-dependent, and shows that the results of the Fokker-Planck
calculations follow the simple formula of Eq.(10). Thus, Eq.(3) appears
to be a good simple representation of the physics contained in the global
Fokker-Planck approach. Our results enable us to use experimental
measurements of ECCD efficiency to obtain characteristic timescales of
non-Coulomb energy loss which appear consistent with experiment. The
results quantify the importance, for efficient ECCD, of selecting resonant
electrons that possess optimal energy retention characteristics. They
indicate that where ECCD efficiencies below the Fisch-Boozer value have
" been measured, this may be a consequence of relatively poor confinement.
Conversely, the projected ECCD efficiency in large tokamaks with better

confinement remains good.
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Fig.1 Current drive efficiency at the fundamental electron cyclotron
resonance. Solid curve: analytical model. Discrete points: Fokker-Planck
calculations, with resonant parallel velocity v, = v(x), 1.52{4), 20,(0),
2.5v40).
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Fig.2 Current drive efficiency at the second harmonic electron cyclotron
resonance. Solid curve: analytical model. Discrete points: Fokker-Planck
calculations, with resonant parallel velocity v, =v4(x), 1.50,(4), 20(0),
2.5v40). -
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Fig.3 Current rise, using a time-dependent Fokker-Planck code. Upper
curve: 7; infinite. Lower curve, 7, =0.757. In both cases, vo=1.52r.









