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Abstract

Reversed field pinches are conventionally stabilised by surrounding the plasma
with a thick metallic shell. This suppresses flux penetration but only for times
shorter than the shell’s resistive diffusion time. To improve on this we propose
replacing the thick shell with an intelligent shell which provides active flux freezing

on much longer time scales.
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1 Introduction

Large scale stability in a reversed field pinch is generally achieved by surrounding the plasma
with a close-fitting highly conducting shell. Macroscopic instabilities must drive flux through
the shell and this sets up eddy currents which generate an opposing field distribution. On
short time scales the flux through the shell remains fixed and growth of the unstable mode
is inhibited. However, on longer time scales ohmic dissipation damps the eddy currents and
allows flux to diffuse through the shell. Theoretical models (HENDER et al., 1986; GIM-
BLETT, 1986 and references therein) have shown that instabilities are only suppressed on
time scales which are short compared to the long time constant of the shell (i.e., the char-
acteristic time constant for penetration of vertical field). Recent experiments on HBTX1C
(ALPER et al., 1988a) and OHTE (TAYLER et al., 1988) using thin shells with short time
constants have confirmed these results and suggest that the plasma cannot be sustained for
times much longer than some multiple of the shell time. Lowering the resistance of the shell
increases the shell time constant so that, with a thick shell, resistive diffusion times of a few
hundred milliseconds may be achieved. If the system is to be used as a reactor, however,
much longer time scales, of the order of many seconds, will be required. To achieve this
we propose a novel method of active flux freezing which creates, within certain limits, the

effects of a perfectly conducting shell.

2 The Single Loop

We begin by considering how to freeze the total normal flux through a single conducting

loop C. The flux is given by

z,b:fSB-dS (1)

where B is the total field, and S is any surface spanned by C. This flux may be split into

two parts

Y = ¢ + ¢; (2)

where ¢, is the flux due to external currents, while ¢, arises from the current I flowing in

the loop. From Ampere’s law, ¢, is proportional to I and hence we may write
¢, = LI (3)

whe L is the self inductance of the loop. Using Faraday’s law we have

dp 0B ~
E_SE_-j{E.dl_—s (4)



where € is the emf around the loop. Suppose we introduce a second ‘sensing’ loop geometri-
cally concident with the first loop as shown in Fig.1. The sensing loop detects a voltage Vs
given by the rate of change of total flux, so that Vs = —&. This is fed to a linear amplifier

whose output drives the main ‘power’ loop C. The circuit equation for the power loop is

dip

S =—€=Va-IR (5)

where R is the resistance of the loop. We take Vg to be a linear function of Vs
VR = —-(C: - l)VS (6)

where o is a constant describing the gain of the amplifier. Using eqs.(2) and (3) we have

dg, Q. dé ]
=+ (D)= ——; (7)

where Q) = R/L is the characteristic frequency of the power loop. Eq.(7) is easily solved for

a general external flux source ¢.(t) to give
Q
6 = ¢en{-(3)
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Consider a particular Fourier component of frequency w:

be(t) = do cos(wt) = R{goe™"} (9)

Then after the decay of any transients (the first term in eq.(8)) the response flux is given by

B iwége‘“’t
b = —m{m}

do (A sinwt — coswt)
14+ 22

where A = (2/aw). As the amp]jﬁcé,tion parameter a is increased, so A — 0 and ¢, — —¢..

(10)

Thus the total flux ¥ = ¢. + ¢, goes to zero. A simple resistive loop corresponds to a =1
and provides some degree of flux freezing, which improves as the resistance of the loop (and
hence Q) is decreased. However, there are practical limits to how small the resistance can be
made. By providing feedback with a > 1 substantially better suppression of flux penetration
is easily achieved. This will be effective for Fourier components whose frequencies exceed a

minimum value given by

Wmin = 2/ (11)



and again as a is increased so wy, can be made as small as desired. It is easily shown that
the flux through the sensing loop remains frozen, in the limit a > 1, even when the power
and sensing loops are separated. An extension of this concept, to freeze the flux through a
‘virtual’ loop displaced a short distance from the wall, is described in the appendix.

We illustrate these results by considering a specific external flux given by
1
Pe(t) = 5 {coswt + cos 3wt} (12)

which is plotted, for w = 1, in Fig.2. In Fig.3 we plot (for = 1) the total flux ¥ = ¢. + ¢,
for a resistive loop with no driving voltage (i.e., @ = 1). The total flux 1 is somewhat less
than ¢.. (The dashed curve shows a decaying transient arising from the initial condition

¥(t = 0) = 1). The total flux with o = 10 is plotted in Fig.4 and shows the substantially

smaller flux penetration.

3 Stability considerations

Since the single loop of the previous section corresponds to an amplification circuit with
feedback it is important to consider whether such a circuit will always be stable. For an
ideal amplifier described by eq.(6) the exact expression for the response flux is given by
eq.(8) and the stability of the system is clear. The imperfections of a practical amplifier
can, however, induce instability and a general method for analysing this is provided by the
Nyquist criterion. This requires a plot of the open circuit transfer function in the complex
plane as a function of the input frequency.

To define the transfer function consider the sensing and power loops of section 2 to be

well separated so that their mutual inductance is zero and there is no feedback. For an input

flux

binlt) = [ dwe'Gin(w) (13)
the output flux in Fourier space is given, from egs.(3), (5) and (6), by

$out(w) = G(w)din(w) (14)

where the transfer function G(w) is given by

(o — 1w(w +i0)

w? 402 (15)

Gw)=—

Now consider the situation where the sensing and power loops coincide. Then for an external
flux ¢, (t) the power loop generates a flux ¢, (t) while the sensing loop sees a flux ¢.(t)+ 4, (2).

Using eq. (14) we have, again in Fourier space,
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(o) = Tl (16)

Suppose the function G(w) is plotted in the complex plaﬁe for real values of w € [—o0, o).
The Nyquist criterion states that the circuit will be stable unless this plot encloses the point
(1,0), corresponding to the poles w = w; where G(w;) = 1 in eq.(16). For the idealised
amplifier described by eq.(15) the Nyquist plot is shown in Fig.5a and the circuit is clearly
stable. As an example of an imperfect amplifier, suppose that a time delay 7 is introduced
so that Vr(t) = —(a@ — 1)Vs(t — 7). Then
(o — Dw(w + iQ)e™"
02 + o2

which at large w becomes a circle of radius (a — 1) which, for & > 1, encloses the point

G(w) = - (17)

G = 1 many times corresponding to the unstable modes with w ~ (2n + 1)= /7 (solid curve
in Fig.5b). Stability may be restored by reducing the gain at large frequencies such that
a(w) — 0 as w — oo, as shown schematically by the dashed curve in Fig.5b. In practice high
frequencies can be dealt with by a thin shell, and 1t is straightforward to ensure stability

without significantly reducing the performance of the circuit.

4 The Intelligent Shell

Consider a toroidal pinch surrounded by a grid as shown in Fig.6. Each plaquette in the grid
is constructed like the single loop described in section 2 and independently freezes the total
flux through that plaquette. The overall effect is equivalent to a perfectly conducting mesh
for frequencies greater than wmp,. Modes with wavelengths shorter than the grid spacing will
be largely unaffected, and this will determine the choice of the plaquette dimensions, both
in the poloidal and toroidal directions, in terms of the spectrum of observed mode numbers.

Using the notation of section 2 the flux through the i**loop may be written

N
i = dei + ¢ri + D, Cijbrj (18)
J#
where N is the total number of plaquettes, and C;; describes the amount of flux penetrating

the i** plaquette due to a current flowing in the jh plaquette. Eq.(18) is conveniently cast

in vector notation:
Yv=0¢.+(1+C) ¢, (19)
where 1 denotes the unit matrix. The response of the amplifiers is given by

VR = —(a - 1)V5 (20)



and hence the circuit equation for the grid can be written

d 9] d
(1+C)- 6.+ (2) 6. = -T4. (21)

The solution of this equation is given by

Q

f.','b,.(t) = €&xp {_E(l + C)_lt} ) l,b.,.(O)
Q
— exp {_E(l + C)‘lt} .
[aten{Za+ore}-arort. o) (22)
0 a di' "¢

where the exponential of a matrix is defined by

exp(M) = i (I‘:!)“. (23)

Again consider a single Fourier component

¢, (t) = R{poe™'} (24)

Then neglecting transients we have
0 =1 )
¢.(t) =% {—iw [iw(l +C)+ (-a> 1] ) ¢Oemt} (25)

For o > 1, we again have ¢, >~ —(1 + C)~! - ¢, and hence the total flux 3 ~ 0.

If required a given external flux ¢ () can be allowed to pass freely through the mesh by
adding a voltage Vy(t) = a(d¢,/dt) to the RHS of eq.(20). This cancels the induced emf
allowing the flux to penetrate freely and without drawing power from the amplifier. With
the conventional thick shell an external control field which penetrates the shell cannot be

changed on a timescale faster than the shell time constant. This constraint is removed with

the intelligent shell.

5 Conclusions

Recent experimental results, as well as theoretical models, suggest that the pulse duration of
a reversed field pinch is limited to some small multiple of the resistive diffusion time of the
conducting shell. This is typically very much shorter than the long pulse times required for
a reactor. To solve this problem we introduce an active feedback system which reproduces,
to some extent, the effects of a perfectly conducting wall. A simple extension of this concept
generates a virtual shell situated a short distance inside the wall.

The technology for such a system already exists and will be used for feedback control
of tearing modes in tokamaks (MONTICELLO et al., 1979; LAZZARO and NAVE, 1987).
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This will be done by detecting the presence of a single tearing mode with specific poloidal
and toroidal mode numbers and applying a feedback field, with carefully controlled phase,
to suppress the mode. In many respects the intelligent shell for the reversed field pinch is
a simpler system yet effectively deals with a whole spectrum of toroidal and poloidal mode
numbers simultaneously as well as a wide range of frequencies.

In addition to providing active flux freezing on very long time scales the intelligent shell,
unlike the conventional conducting wall, has no continuous electrical path around the torus.
There is therefore no need to introduce the usual shell gap with consequent field errors and
loss of axisymmetry. Indeed, apart from ripple due to the finite mesh spacing, the mesh is

axisymmetric.
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Appendix

The Virtual Shell

In the fully relaxed state of a toroidal plasma (TAYLOR 1974) the quantity u = J - B/B?
(where J is the current density and B is the magnetic field) is constant over the whole plasma
volume. In practice this does not occur since p, though constant over most of the plasma,
falls to zero in the edge region. By making the conducting shell a closer fit to the plasma,
however, the plasma can more closely approach the Taylor state and this is manifested as
a reduction in the loop volts for a given toroidal current (ALPER et al., 1988b). This
procedure is limited, however, because the plasma edge must be in contact with a cold wall.
A simple extension of the intelligent shell concept overcomes this problem by introducing a
‘virtual shell’ displaced a short distance inside the wall.

Consider first a single plaquette as in section 2. Defining z = (r — r), where r is the
minor radius variable and r,, is the minor radius of the power loop, we consider two sensing
loops located at = z; and z = z; as shown in Fig.7. The aim is to freeze the flux through
the imaginary loop at r = z, by using the pair of sensing loops to detect the gradient of the
radial field. This requires that we represent the radial field due to the plasma currents as
a linear function of z, and this places a limit on how far the virtual shell can be displaced
inwards from the wall. Higher coeflicients in the Taylor expansion of B, (z) could be detected
using extra sense coils at the price of increased complexity. The flux through the virtual
loop, due to external sources, is therefore

Iy — T2 Ty — I
b= (E22) - (222)
where ¢; and ¢, are the fluxes through the sense loops. We write the flux ¥ through the

virtual loop due to the current I in the power loop as

x(zv) = f(zv)LI (27)

where the mutual inductance function f(z) satisfies f(0) = 1. The output voltages of the

sensing loops are given by

d
W = E;(m1LI + é1)
d
Vo = —(maLl+ ¢2) (28)
where m; = f(z:) and my = f(z,). The circuit equation for the power loop is
d
= (LT +(0)) = Va — IR (29)



where the amplifier output Vg is a linear function of V; and V;:
Ve = —(a—1) [V +pV)] (30)
and p is to be determined. Solving the equations as before we find, in the limit of large a,
(m1 + pma)x(zy) + (¢1 + n2) f(2v) = const. (31)

We now require x(z,) = —¢(zy), for any ¢(z,). Using eq.(26) and equating coefficients of
(}51 and 452 we find

. _(zv—xl) (32)

Iy — T2

(as expected, since this gives the correct mix of ¢, and ¢, in eq.(30) to generate ¢(z.)),

together with

f(zv) = P(ay) (33)
where
o= (22 m- (222

A graphical solution of eq.(33) is shown schematically in Fig.8. The solution (A) is z, = 3
which, from eq.(32), gives ¢ = 0. This corresponds to flux frozen through the loop at zi,
with the loop at z, playing no role. Similarly solution (B) is z, = z which gives g = oo
and corresponds to freezing the flux through the loop at z». There is a third, non-trivial,
solution for z, at (C), which, with the appropriate value of u from eq.(32), gives frozen flux
through the virtual loop. A mesh of such loops will create a virtual shell located a short
distance inside the wall. This will freeze normal flux in so far as external fields (including
those from other loops as well as from the plasma) can be represented as linear functions

of z.
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Fig.1 Power loop together with associated sensing loop.
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Fig.2 Example of an external flux function ¢,.

Fig.3 The corresponding total flux  due to a simple resistive
loop. The dashed curve shows the decay of the transient arising
from the initial flux J(0)=1.
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Fig.4 Total flux with feedback amplification parameter
a=10.
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Fig.5a Nyquist diagram for the open circuit response function
G(w) of the idealised amplifier of eq. (15) (= % <w< o),

Fig.5b The solid curve shows the Nyquist plot for an imperfect
amplifier with time delay (0 <w < o). For w— the curve
approaches the outer circle and encloses the point (1,0) many
times. Stability is restored by reducing the gain of the amplifier at
large frequencies (dashed curve).



Fig.6 A toroidal pinch surrounded by an Intelligent Shell.

Fig.7 This shows two sensing loops and a power loop displaced so
as to create a virtual loop at x=ux,; (the spacing of the loops has
been exaggerated for clarity).



Fig.8 Graphical solution of eq. (33).









