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ABSTRACT '

The sustainment of plasma discharges (current-drive) using helicity-
injection and relaxation is discussed. It is shown that toroidal plasmas
may be sustained by applying only poloidal voltage and current. Some

of the configurations which can be maintained in this way are calculated.






1. Introduction

In the theory of relaxed states [1], a turbulent plasma relaxes to a
configuration of minimum-energy subject to the constraint of constant
magnetic helicity. In a toroidal system with B-.n = 0 on the boundary,

the (gauge-invariant) helicity is
K = J[A-B dr - ¢JA-d4 JA-ds )

where B =V x A and the line integrals ¢d¢ and ¢ds are along

paths the long and short way around the surface of the torus. In a

spherical system, such as a spheromak, the helicity is simply

K = [a-B dr (2)
The relaxed state satisfies the equation

VxB = uB , Vu = 0 , (3)

but its full determination depends on the boundary conditions and is

different for toroidal and spherical systems.

In a toroidal system with a perfectly conducting boundary, on which
E'E = 0 , the relaxed state is determined by two parameters. The first
is the already mentioned magnetic helicity. The second is the toroidal
flux ©, which is invariant on account of the boundary conditions. When
both K and ¢ are specified, the parameter u and the normalised field
profile are determined by the dimensionless ratio K/%2 . The value of u
varies continuously with K/¥2 but is always below the lowest eigenvalue
of Eq. (3). This eigenvalue corresponds to a solution of Eq. (3),
satisfying the boundary condition B-n =0, for which the toroidal flux
¥ wvanishes. It can also be described more succinctly as a solution of

the equation
VxVxa, = AVXa, (4)
~1 1

with a; = 0 on the boundary.



For a spherical system (with the same boundary conditions), the
relaxed state is determined in a different manner. One again has the
invariant magnetic helicity, but one cannot define an invariant toroidal
flux (since the system is simply-connected). However, in a
simply-connected region, the only solutions of Eq. (3) which satisfy the
boundary condition are the eigenfunctions themselves. Consequently for a
spherical system & must equal the lowest eigenvalue and is thus
determined solely by the size and shape of the boundary. The helicity

then determines only the magnitude of the field.

The distinction between toroidal and spherical systems is, of course,
related to the fact that in a spherical system there is no vacuum field
which satisfies the boundary condition. If we write the field as the sum
of a vacuum field Ev , which carries the toroidal flux, and a plasma

field Bpwhich carries no toroidal flux, then Eq. (1) becomes

VxB_ - uB = uB_ . (5)
~p ~P ~\

In a toroidal system this equation is inhomogeneous, with Bv acting as

the source, but in a simply connected system Bv = 0 and only the

eigenvalue solutions exist (note that B_  satisfies the eigenfunction

~

boundary conditions).

2. Helicity Injection

Although we may treat K as invariant during the fast relaxation, it
will subsequently decay, along with the magnetic field, on the resistive
timescale. Usually, the field departs from the relaxed profile as it
decays and this leads to secondary relaxations which restore the relaxed
profile but at a lower field strength. It seems, therefore, that if the
helicity lost through resistivity were continuously replaced, the plasma
might be indefinitely maintained close to its original state. Helicity
injection and relaxation together therefore provide a possible means for

"current drive" in resistive plasmas.



Two methods for injecting helicity have been proposed. The first is
by applying oscillating toroidal and poloidal voltages to a toroidal
discharge [2] and is not considered in this paper. The second form of
helicity injection [3] involves only static voltages, but requires the
boundary condition to be changed so that there is some magnetic flux
penetrating the boundary. Although our main interest is in toroidal
systems, it is convenient to discuss first the use of helicity injection
in the flux-core spheromak (FCS), shown in Fig 1. This is a modification
of the simple spheromak in which flux penetrates the boundary through the

polar caps and a static voltage is applied between them.

3. Flux Core Spheromak

Before we can discuss "static" helicity injection we must reconsider
the definition of helicity, since if Ben = 0 on the boundary the
expressions (1) and (2) are no longer gauge invariant. In the FCS the
simplest way to restore gauge invariance [1,4] is to imagine that the
field inside the sphere is extended outside it as a vacuum field, defined
by B-n at the boundary surface. Then the total integral of A-B inside
and outside the sphere is gauge invariant. If the boundary is perfectly
conducting, so that the normal component of field is "frozen in", changes
in the interior do not affect the hypothetical field outside. Thus one
can define the difference in helicity between two plasma configurations,
each with the same assumed extension outside, in gauge invariant form. An
alternative expression of gauge invariant helicity has been giﬁen by Finn
and Antonsen [5]. 1In this case, one introduces a vacuum field Ev inside
the system, again defined by the normal component of the field on the

boundary. Then a gauge invariant helicity can be defined as
K = J(A+A)-(B-B) (6)

where the integral is over only the internal volume. This form can also
be used in a toroidal system if the reference field BV also carries the

correct toroidal flux.

Once the helicity is suitably defined, it can readily be shown that
it is constant if the boundary is equipotential and the plasma perfectly

conducting. It can also be shown that if a voltage Ve is applied



between the electrodes, and the plasma has resistivity 7 (so that
E-B = n j*B,) then helicity changes at a rate [3]

dK .
£ - 2[Ve¥e - Jnj-B dr] (7

dt

where @e is the magnetic flux through each electrode. The first term
represents the 'injection' of helicity and the second its resistive
dissipation. Thus, by applying the appropriate voltage across the polar

caps, the helicity can be maintained.

When the Flux Core Spheromak is maintained by helicity-injection,
then, unlike the simple Spheromak, the parameter x does not have to be
an eigenvalue. It is controlled by the current Ie through the electrode,
since in the relaxed state u = Ie/@e. (Note that the configuration is
therefore completely determined by @e and Ie.) When u is varied the
behaviour of the system as u approaches the lowest eigenvalue is
interesting. As u 2 Ro the current on field lines linked to the polar
electrodes (the electrode-linked current) becomes confined to a thin
filament along the axis and almost all the plasma current is generated by

relaxation. (Just as reverse field is generated in a toroidal pinch.)

The generation of current by relaxation (the plasma dynamo) during
helicity injection leads to an increase in the impédance between the
electrodes. Qualitatively this can be illustrated by considering a plasma

of uniform resistivity. Then helicity balance requires

- 2
Vewe i /B2dr (8)

so that the impedance Z (n/a) Z and

(ua) = 2B2dT )
e

™~

a A

Note that Z depends only on ua and Z ~ a*/8%, where & is the
radius of the central filament of electrode-linked current. As

M Ku , &2 0 and the impedance Z becomes infinite. However,



it is important to realise that this increase is not simply a resistive
effect due to the constriction of the electrode-linked current; this
would produce only a much smaller impedance ~ a2/8§2 . In the relaxed
state, helicity and energy are extracted from the electrode-linked current
and distributed throughout the plasma by the relaxation (dynamo) process.
This is reflected as the excess impedance over that due to constriction of

the electrode-linked current channel.

It is convenient to discuss helicity-injected relaxed states in terms
of the eigenfunctions of the associated eigenvalue problem (Eq 4). If we

assume these form a complete set we can write [3]
B = B +B = VXA +2Z x.Vx a, (10)
~ ~V --p -~V 1 ~1

where Bv is the interior vacuum field defined by the normal flux on the

surface of the system (so that BP satisfies the same boundary conditions
as the eigenfunctions a; ). The eigenfunctions are orthogonal and can be

~

normalised so that

jgi- vV x Ej dr = Sijsgn (li) (11)

(note a, then has dimensions of inverse length). Then

kI,
i
% T w8 Y Iy = dag ~ By o . a2
and the impedance becomes
. a ,Ailli
Z = — [IB@ dr + p2 3 — — ] (13)
e (A= )2

The impedance increases with g and diverges like (ho - u)"2% as

A
H o



4, Toroidal Systems

We noted earlier that relaxed states in a torus are determined in a
different way to those in a simply-connected system, even though the
governing equation is the same in both cases. Similarly, helicity
injection in a torus has features which differ from those in a flux core

spheromak.

A toroidal configuration superficially similar to the flux core
spheromak is shown in Fig. 2. If Ve and @e again denote the voltage
and magnetic flux between the upper and lower electrodes, then the rate of
change of helicity is again given by Eq (7). Thus, in a torus, as in a
spheromak, helicity can be maintained by the application of static
voltages provided that the magnetic flux through the boundary is not
everywhere zero. Similarly, the value of wu is again controlled by the
ratio Ie/llie . However, in a toroidal system there is an additional
parameter which affects the relaxed state maintained by helicity
injection. This is the toroidal flux Qt - which is independent of
Qe . Consequently in a toroidal system the steady-state for a given

current and flux through the electrodes is not unique.

A toroidal system can be analysed in a similar way to the FCS. We
again separate the field inside the torus into vacuum and plasma parts,
but there are now two vacuum contributions to consider, one related to the
external flux ¢eand the other to the toroidal flux @t . Thus B = Ep +
Ee + Et where Ee is the vacuum field corresponding to the normal field
at the electrodes and Et is the vacuum field corresponding to the
toroidal flux. We then expand. EP in terms of the eigenfunctions defined
by Eq (4). [Note that the eigenvalue boundary condition a;= 0 ensures
both zero normal field on the boundary and zero toroidal flux, as required

for B _.]
~p

It is convenient to introduce the coefficients

a [ B2 dr af Bé dr
2 == : vz = — (14)
p2 g2
e t



J ii-ge I-a.i--B..t
& = T —— : hi - T
& E
e t
which are independent of g, Beand Bt' Then
B = Ee + Et + 2 o vV x a; (15)
where
M sgn(Ki)
o e Ee——— (gi Qe + hi @t) (16)
Ay - ®

If we again take uniform plasma resistivity then the impedance of the

system (normalised to n/a) is

> & oE u? T
= = 2 2 — e 2
Z (ua, llle) (u® + @ ¥ Yy o+ 2 X, - m? (g;+ hy T ) (17)

where it has been assumed that Be and Bt are orthogonal, as is the case in

an axisymmetric system.

The impedance becomes infinite as u approaches the lowest
eigenvalue Ro’ but it also depends on @t/@e. When u 1is small the
torodial flux always increases the impedance between the electrodes,
However, for u close to the eigenvalue Ro the effect of toroidal flux
depends on the parity (right-handed or left-handed) between the fluxes
?e and @t_

An added complication is that in an axisymmetric torus the lowest
eigenvalue is often not coupled to the vacuum fields [6]; ie the
coefficients g and hi vanish for i = 0. This is the case for example,
[7], when the lowest eigenmode is itself non-axisymmetric (~ exp (img)).
The i = 0 term in (17) would then be zero for u < ho and indeterminate for

M= ho. More realistically we should consider the coupling coefficients



Bo and ho to be small; then the rise in impedance as u -~ Ko is very
sudden, corresponding to a hard limit on the current. (There is a similar

hard limit on the toroidal current in a conventional axisymmetric pinch

(8l

5. Computation of Relaxed States with Helicity Injection

If we restrict our attention to axisymmetric systems and write

_ E¢ x VX E¢f (18)

=
W

2
9 + R

1 ax 2y — : -
=3 F R 5% + w2 =0 ; £ = ux + Const. (19)

[a5]

The boundary value of X is specified, up to an irrelevant constant, by the
normal field E - n and in a simply-connected domain X must be regular as
R »+ 0. This is sufficient to determine X completely. However in a
toroidal system there is no condition on % as R * 0 and the value of [xds
(the toroidal flux @t) must be specified in order to determine X
completely. For the toroidal system it is convenient to solve equation
(19) in two steps, corresponding to the separation of the vacuum field
into Ee and Et' Thus one first computes (19) with boundary condition X =
constant and [xdS = @t. Then one computes a second solution with ¥
having the specified value on the boundary and [xdS = 0. The most general
solution, for a given configuration and a given u, is then a linear

combination of X, and X,.

In practice the computations were done using a finite difference
system on a 36 x 36 square mesh, with a standard SOR method. For each
case ¥ is fixed on the boundary (= xb) and p is adjusted during iteration
until u [x*dS (where x' denotes that the integration is only over the
region in which x > 0) converges to a specified valueland all residuals
are reduced to a minimum. This method is more stable than the direct
one of fixing u during iteration. When a particular value of u is

required it can be obtained by adjusting the specified value of u Ix* d5.



In the toroidal system, the second solution, with [xdS = 0, was not
in fact computed directly because such solutions were difficult to obtain
with the method used. This is in part because the constant in the
boundary value of X could not be specified in advance for this case. The
solution with [xdS = 0 is therefore obtained by first finding a solution
with Xy, arbitrarily fixed, but giving the correct (B - n). For this
solution [xdS # 0 and an appropriate multiple of the first solution, with
X, = constant, is therefore subtracted to give Jxds = 0.

6 Flux Contours for Helicity Injected Relaxed States

A Spherical

Figs (3) and (4) show flux contours computed for the flux core
spheromak of fig (1). When u 1is less than the lowest eigenvalue KO =
4.49, the configuration has a central core of flux linked to the polar
electrodes and carrying the electrode current. This is surrounded by
nested toroidal surfaces similar to those of an ordinary spheromak.
[However, unlike the ordinary spheromak, the toroidal field is not zero on
the outermost flux surface; in this respect the surfaces resemble those of
a toroidal pinch.] As already mentioned, when u - ho the
electrode-linked current contracts to a narrow filament along the axis and
the impedance becomes infinite - as does the ratio of plasma current to
electrode current. For u > Ro the electrode current flows over the outer

surface and surrounds toroidal surfaces like those of an ordinary

spheromak.
B Toroidal

As an illustration of toroidal systems with helicity injection we
have taken the torus shown in fig (2) with inner radius Ri = 1, outer
radius Ro = 2 and height h = 1. The electrodes cover 20% of the upper and
lower surfaces. It is useful to note that in the normal relaxed state of
this torus the "field-reversed" point (ie B¢ = 0 on boundary) occurs at u

= Hp = 4.48; the flux contours for this situation are shown in fig (5).



(1) w < Mo Non-reversed Pinches

Figs (6-11) show flux-contours for typical helicity-injected states

when u 1is less than wu When there is no externally produced toroidal

flux and u is small, ai in fig (6) (= 2, ?t = 0), there are no nested
toroidal surfaces - although there is a toroidal field which reverses sign
on the surface indicated by a broken line. Nested toroidal surfaces are
created when sufficient toroidal flux is added. Thus in fig (7) (# = 2,
@t/@e = 0.22) there are nested toroidal surfaces with the electrode-linked
flux passing inside them (ie on the smaller toroidal radius side). When
the direction of the toroidal flux is changed, as in fig (8) (u = 2,
@t/¢e= -0.61), the electrode-linked current passes outside the nested

surfaces. The nested surfaces in figs (7 and 8) represent examples of

very weak toroidal pinches sustained by helicity injection.

Stronger toroidal pinches are obtained when u 1is increased. Fig
(9) (=4, ?t = 0) shows that a weak system of toroidal surfaces can be
created by helicity-injection even without any external toroidal flux.
When sufficient toroidal flux is added a more substantial toroidal
structure is formed. Thus in fig (10) (& = &, wt/@e = 0.11) the toroidél
surfaces correspond to a (non-reversed) pinch with field-ratio F ~ 0.33.
(Here F is taken as fhe ratio of the toroidal field on the outer closed
flux-surface to the field on the magnetic axis.) The electrode current
passes inside the toroidal surfaces. Similarly, when ?t/¢e is
sufficiently large and negative, as in fig (11) (u = 4, wt/¢e= -0.18)
there are nested toroidal surfaces with the electrode current passing
outside them. These surfaces correspond to a pinch with F ~ 0.43.
Stronger, but still non-reversed, pinches are obtained when |¥t/¥el is

increased.

(ii) u > M Reversed Field Pinches

Figs (12-14) show flux contours for typical helicity-injected states
with u > Hp - Fig (12) (u = 5, @t = 0) shows that when u > Hp quite
substantial nested toroidal surfaces can be created without any external
toroidal flux. Indeed there are two sets of nested toroidal surfaces, one
with 'positive' toroidal field lying outside the electrode-linked current

and one with 'negative' toroidal field lying inside it.

-10-



When sufficient toroidal flux is added, one of the sets of nested
toroidal surfaces in fig (12) disappears and the other expands to produce
a reversed field pinch with the electrode current passing inside or
outside the toroidal surfaces. Thus in fig (13) (u = 5, Qt /@e = 0.31),
the toroidal surfaces correspond to a reversed field pinch with F ~ -0.03
and have the electrode current passing outside them. Similarly in fig
(14) (=5, @t/me = -0.48) one has a reversed field pinch with F ~ -0.10
and electrode current passing inside it. [Note that for u < o the
current passes inside the pinch for wt/Qe > 0 and outside it for

¢t/¢e < 0 ; the converse is true for u# > u_.] Again more substantial

R

reversed-field pinches are obtained when |@t/¥e is increased.

(iii) Low-u, Tokamaks

The main interest in helicity-injection is for pinch-like systems in
which q, < 1, (here q, is the toroidal winding number of the field lines
near the magnetic axis). Nevertheless it is worth while noting that
tokamak-1like configurations with G = 1 can also be created when u is
small. [In toroidal relaxed states q, ~ 2/uR.] Thus figs (15) and (16)
show configurations with q, = 1.03 and q, = 1.12 respectively. As in all
tokamak-like relaxed states q(r) is very flat near the magnetic axis. It
increases to ~ 1.23 on the outer closed surface in fig (15) and to 1.4 in
fig (16), but this is a consequence of the square cross-sections rather

than the current profile.

7 Summary and Discussion

We have considered the sustainment of relaxed state plasmas using
helicity injection from poloidal electrodes. When the plasma is in a
simply-connected volume, such as a sphere with polar electrodes (fig 1),
the configuration is entirely controlled by the current Ie and the
magnetic flux Qe through the electrodes. The relaxed state parameter
§ = Ie/tIJe and the configuration depends mainly on whether u is greater
or less than the lowest eigenvalue AO. If u< KO the electrode current
passes along the axis and the flux surfaces are otherwise similar to an
ordinary spheromak - but the toroidal field does not wvanish on the outer

surface. As u 2 RO the electrode-current channel contracts and both

-11-



the impedance and the ratio of plasma-current to electrode current = .
When u > ko the electrode-current flows around the outer surface and
surrounds the spheromak-like flux surfaces. However, since the inherent
stability of relaxed states applies only when & < KO this configuration

is likely to be unstable.

When the plasma is in a toroidal volume the configuration depends on
the toroidal flux Wt as well as on the electrode current Ie and flux ?e.
Consequently there are several different configurations which can be
maintained by helicity-injection in a torus such as fig 2. They are

characterised by u = Ie/‘I‘e and o = @t/¢e . If u 1is less than i, (the

R
value for field reversal in a relaxed state without helicity-injection)
and o 1is sufficiently large and positive, the configuration represents a
toroidal pinch with electrode current passing on its smaller radius side.

When u < u. and o is sufficiently negative the configuration represents a

R
pinch with electrode current passing on the larger radius side.

Similarly, if wu > w, the configuration represents a reversed field pinch

R
(F < 0), but in this case electrode current passes on the inside if « is
negative and on the outside if o is positive. It is also possible to

create tokamak like configurations with g, ~ 1 and low shear.

It is noteworthy that, in a torus, whether the electrode current
passes inside or outside the toroidal surfaces is controlled by the sign
of ¢t/¢e, (rather than by u as in a sphere). This feature means that
either configuration can be reached without u having to exceed the
lowest eigenvalue Ko . [We have not calculated lo for the torus of fig
(2) because this corresponds to a non-axisymmetric mode which plays no
part in our computations. From reference [9] we estimate that Ko ~ 5.5];
In a toroidal system the impedance and the ratio of plasma
current/electrode current also depend on ?t/@e rather than on ux , and

both become large as @t/Qe F @,

An interesting, and perhaps unexpected, feature of the configurations

with & > u_ in a torus is that helicity injection can create toroidal

R
flux surfaces even without the provision of any external toroidal flux.
This is an extreme example of the fact that in all the configurations we
have discussed, a toroidal discharge is maintained by current and flux

through poloidal electrodes.

-12-



The general behaviour of pinches and spheromaks is known to follow
closely that predicted for relaxed states [1] so that helicity-injection
seems particularly attractive for them. Indeed Jarboe et al [10] have
already succeeded in maintaining a spheromak-like discharge by helicity
injection. [On the other hand, attempts at helicity injection in a
toroidal pinch have been unsuccessful [11]. This is believed to be due to
the short path which existed between the electrodes and permitted surface
current and allowed arcing to occur between them. The configuration

considered here should be less prome to this problem. ]

Of course, a crucial experimental factor is the amount of electrode
current required for helicity injection. In this connection we note that
in our computations we have selected parameters such that the
plasma-current is less than the electrode current in pinches and
comparable to it in Tokamaks. This was done for clarity in the figures;
in a torus the ratio of plasma to electrode current is controlled by wt/we
and can, in principle, be made large - though at the expense of greater
plasma dynamo action and any associated energy loss. Some preliminary
analysis of the practical problems of helicity injection, including the
use of electron emitting electrodes and the effect of sheath voltages, has

been given by Jarboe [12].

An interesting experiment on helicity injection in pinches is
suggested by the fact that if the electrodes are not energised then there
is a substantial 'dead-space' surrounding the toroidal pinch in which flux
lines intercept the torus wall. It is widely believed that such
'dead-space' leads to a loss of helicity in relaxed states and so to an
anomalous loop-voltage [13,14]. (This is caused by the same process of
helicity transport as produces the increase in impedance with helicity
injection.) Consequently by using one of the toroidal configurations shown
here it should be possible to observe the change from an anomalously large
loop voltage to an anomalously small one as the helicity injection
electrodes are energised. Another possibility is that of using more than
one pair of electrodes for helicity injection with different values of
Ie/‘I’e on each pair. Then the extent to which the plasma can relax could
be controlled so as to provide insight into helicity-transport, relaxation

and the associated energy losses.

-13-
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