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ABSTRACT

Electron and ion cyclotron resonance in a straight magnetic field with a
perpendicular gradient in field strength are analyzed using gyrokinetic
theory. Propagation perpendicular to the equilibrium field and into the
gradient is examined. The inclusion of the variation of the equilibrium
magnetic field over a Larmor radius results in perpendicular cyclotron
damping where previous models predict none. The effect of this damping

on ion and electron cyclotron heating of plasmas is discussed.
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The cyclotron resonance of charged particles in non-uniform magnetic
fields is a fundamental phenomenon in plasma physics. Because the finite
size of the Larmor radius p plays a crucial role, a self-consistent
treatment should include the response of the plasma particles to the
variation of the magnetic field across their Larmor orbits. It is known
that such a treatment can be obtained using the generalisation of
gyrokinetic theory to arbitrary frequencies. ) Hence, we extend the work
of previous at.u:ho::sl-6 by giving an analytical description of five
cyclotron resonant heating schemes that are employed in fusion plasmas.

In each case, new results of practical interest are obtained, while there
is agreement with standard theory in the uniform plasma limit. We employ
the arbitrary frequency gyrokinetic equation of Chen and Tsail’2 to
analyze ion and electron cyclotron absorption in a straight magnetic field
with a perpendicular gradient in field strength, of the form

B = 2, B(1 + x/LB). This field is a simple approximation to the magnetic
field in a tokamak, its use being justified by the localized nature of
cyclotron absorption in these devices. It will be shown that the effect

of the variation of the magnetic field over a Larmor orbit results in

cyclotron damping for perpendicular propagation.

Following Refs.l and 2 we start with the linearized Vlasov equation

in particle phase space (X, V):

[a/8t + v.¥ + (q/me) (¥ X B).V 18f = — (q/me)(cOE + v X B) .V F . (1)

Here &f and F are the perturbed and equilibrium distribution
functions; &E, 8B and B are the perturbed electric and magnetic fields

and the equilibrium magnetic field respectively. The arbitrary frequency



gyrokinetic equationl’2 is obtained by transforming Eq.(l) to guiding
centre phase space (X, V), where X =x + v X g"/ﬂ and V = (e,u,x). Here

€ =v2/2, u = vi/2B, e =B/B, = eB/mc, o« is the gyrophase angle

it

e and e are local

defined by ¥y = l(chosa + e, sinx), and e & o

orthonormal vectors. We refer to Refs. 1 and 2 for the derivation of the

high frequency gyrokinetic equation,

<Lg>£ <5Hg>l = i(q/m)[wBFgo/ae + (lQ/B)BFgO/Bu]<8wg>£ (2)

Here <Lg>£ = (v"g

to guiding centre coordinates, Y4 is the equilibrium drift due to

a

magnetic field inhomogeneity, and v

o !d)'zx - i(w — 22 + iwa), the subscript g refers

; and w ~are defined in Refs. 1 and
2 but are not required here. In obtaining Eq.(2), the perturbed
quantities have been expanded as Fourier series in o, which enters
through the guiding centre transformation. Thus

<8Hg>£ = (2W)‘ljiﬂdx5Hg(§,u,e,a)exp(ila), where EHg is proportional to

the perturbed distribution function.l’2 The quantity

<6wg>£ = <8¢g - g.Bég/ci, where &B = Yx x 8A, 8E = — Ex6¢ — (9/9t)b6A/c

and YX.BA = 0.

Since we are concerned with high frequencies (w ~ £2), we only
require the zero order solution of Eq.(2). This justifies the neglect of
coupling to neighbouring harmonics,l’2 and of terms on the right hand side
of Eq.(2) proportional to equilibrium gradients. The operator <Lg>£
retains O(p/LB) terms which are responsible for the broadening of the
resonance, but O(pz/LE) are neglected. We emphasize that Eq.(2), within
the limitations stated, is very general and can be used to analyze

cyclotron resonance in arbitrary magnetic fields.



We now approximate all perturbed quantities by eikonals of the form
Sf(x) = Bfk exp(ikx), where we have specialized to the case of most
interest to radio frequency heating, namely propagation into the
equilibrium field gradient. Thus, noting that <6¢g - x.&ég /ci is

evaluated with X constant, Eq.(2) yields
<sﬂg>£ - (q/m)<6lbg>‘e{w6Fgo/ae + (-CQ/B)BFgO/au}/{.GSZ(X) =@} , (3) |

where <6¢g>£ = exp(ikX){Jl(kvl/ﬂ)[8¢k - VHBA"k/c] — (VL/Ck)Jk(kvl/g)SBnk}'
Thus far, guiding centre coordinates have been used for simplicity.
However, to calculate the perturbed currents for use in Maxwell's
equations, Eq.(3) must be transformed to particle coordinates. Although
the two sets of coordinates need not be distinguished for the slowly
varying equilibrium quantities, in the eikonal variation and the resonant
denominator in Eq.(3), we require the relation X = x + (VL/Q)sina. This
yields 4Q(X) — w = £(x) — w + (vl/LB)simx and

exp (ikX) = exp(ikx)exp[i(kvl/ﬂ)sina]. In our slab model, it is convenient
to use Cartesian velocity coordinates (Vx'vy’vz) where Vx = Vlcosa,

Vy = VLsina, Vz = v"/vT and V~L = VL/VT' For a Maxwellian equilibrium
velocity distribution function F0 - (nO/w3’2v%)exp(—V3), with

BFo/ae = - 2Fo/v% and BFO/BM = 0, the perturbed distribution function

in particle coordinates is

2noq exp(-V2) wLB<6w>lkexp(-i£a)
8g, = - ————— [88, — <byz, + 2 1, @&
m T fzv% £#0 .evT (Vy - S‘f)




<8y, - exp(ikpvy)[(5¢k = (v, /e)8A ) (koY )—(v, /ck) BB | T\ (koV )], (5)

where 51 = LB[w - iﬂ(x)]/lvT. Equations (4) and (5) are the key results
of the gyrokinetic analysis, since they enable the currents producing the
self-consistent electromagnetic fields to be calculated.

We now use Egs.(4) and (5) to analyze a number of examples of
cyclotron resonance. First, consider the ordinary electron cyclotron wave
propagating across the plasma in the vicinity of the £ = 1 fundamental
electron cyclotron resonance. We require GJ"k = qv%]ﬁfkvzdvxdvydvz.

Assuming kpe << 1, Eq.(4) leads to

4w83 | /e = — w;eﬁAnk{l + (imLB/ZvTe)[kpesleZ(sle — ikp_/2)

- kp 8 1 2(5 . — ikp_/2)])exp(-k2p2/4) (6)

Here terms of order higher than kzpz have been neglected and Z 1is the
plasma dispersion function. The dispersion relation is obtained by
substituting Eq.(6) into the parallel component of Maxwell's equations,

(k2 — mz/cz)GA"k = (hw/c)SJ"k. This gives

c2k? = w2 — w;e - {w;ewLB/ZvTe){ikpe[SleZ(Sle) =8 1,205 4,)]

- k2p2[8, (1 + & 2(8,)) = 3, (1 + 8, 25, ]} (7

where we assume Sle >> kpe/2 and take Qe > 0 so that sle is the

resonant argument. Equation (7) is valid everywhere except for a small



region around Sle = 0. Noting that kpe << 1, we seek a perturbation

solution k = ko + &k, where ké = (w? — w;e)/cz. This yields
Im 8k = (w;emLB/thecz)pe{S_lle(S_le) = By 2 Ahe )

where z_ and Zi denote the real and imaginary part of Z. Im &k
depends both on the resonant term and on the non-resonant response given
by the first two terms. By considering Re(SJnkGETk)’ we identify the
non-resonant terms with the kinetic power flux which is reversible,
asymptotically zero, and changes sign through the resonant region. Thus,

the kinetic power flux terms do not contribute to the optical depth

[==]

7 = 2] Im 8k(x)dx. Using the fact that Sle = - x/pe and

-

|5.1] ~ 21g/p, >> 1, we obtain 7 = (7/8) (2 /92)(vi /eP)k Ly by
integrating only the resonant term in Eq.(8). This result, obtained from
a non-relativistic analysis, is identical to the result from a
relativistic treatment.7 Antonsen and Manheimer,6 who also noted the
importance of including the variation of the magnetic field across the
electron Larmor radius, obtained the same optical depth from a
non-relativistic treatment. From Eq.(8), the absorption profile (due to
this absorption mechanism) is symmetric about « = Qe. Since the
relativistic theory yields absorption only when o < Qe, it is clear that
both relativistic broadening and the variation of the magnetic field over

a Larmor radius will influence the absorption profile.



Although the kinetic power flux does not contribute to the optical
depth, it follows from Eq.(8) that it affects the absorption profile,
because the kinetic power carried by the plasma particles changes the
local damping rate by altering the amplitude of the local electromagnetic
field. In situations where a perturbation solution of Eq.(7) is invalid,
the equation may be solved directly for k(x), and the optical depth
obtained numerically. Because it includes the kinetic power flow, such a
calculation will contain features which were previously only obtainable
from full wave theory.

The dissipation responsible for absorption arises from the variation
of the magnetic field across a Larmor radius, so that a given electron
oscillates in and out of exact resonance while moving along its
gyro-orbit. The resonance is therefore spread both in velocity space and
in configuration space. Whereas the locally uniform model yields a
singularity proportional to x"!, gyrokinetic theory gives a term
proportional to (x + psin o)~! which occurs inside a velocity integral
and gives a smooth absorption profile. Myra, Lee and Catto,3 who
considered electrostatic ion waves propagating perpendicular to both the
magnetic field and its gradient, noted that gyrokinetic theory yields a
perpendicular ion dissipation mechanism.

We now consider a compressional Alfven wave propagating across a
plasma containing two ion species whose cyclotron frequencies are
incommensurate. We denote the majority as species 'a' and the minority
as species 'b'. To obtain the dispersion relation in the vicinity of the
minority fundamental resonance, we use Eq.(4) to calculate the resonant
(£ = 1) contribution to the perpendicular current

8J

= qvi is gi
A quJkayldedVdez. This gives



b

(83 g = — (nobqngB/ZmkaTb)[k25¢k/9b - SB"k/C]Z(nlb)eXP(-kzpé/é) (9)

5 .
Blodr = i(n ) qily/m kv, )[k28¢) /@ — 8B, /c] x

[(nlb + ikpb)(l + nlbz(nlb)) - (kZpg/A)z(nlb)]exp(-k2p§/4) (10)

where ikpb/Z and we assume kpb << 1. The non-resonant

My = S1p
currents due to the majority ions and the electrons (for small minority
concentrations we may neglect the non-resonant minority contribution) may be
calculated using the locally uniform model. Substituting Egqs.(8) and (10)
and the non-resonant currents into Poisson's equation, k26¢k = (Aw/w)kSJxk
and Maxwell's equation, (k2 — wz/cz)SB"k - (4wi/c)k5Jyk{ we obtain the
dispersion relation for the compressional Alfven wave in the vicinity of the
minority fundamental resonance when nob/n e 1:

oa

c2k? ~ w2[1 + T 0K, — l)RaLB(G1 + iGz)/kaTb]/[l + rz(ri - 1)QaLBGl/2kVTb]

(11)
Here r = Qb/Q ¢ X, =T be/nana G, = - kZ(nlb),
G, = k{2(1n1b - kp)[1 + ”1bz(”1b)] — ik?p? Z(nlb)/Z} and we set © = &
except in Mp - When the compressional Alfven wave is far from the minority

resonance, >> 1 and Eq.(1l) reduces to the locally uniform dispersion

S1b
relation. We now consider the solution of Eq.(1l) when the wave passes

through the minority resonance. Since we assume T, 6 << 1, we expand

Eq.(11l) in r, and obtain a perturbation solution k = m/cA + &k, where



Im 8§k = (w/cA)[rz(rl = 1)%1“3/4"11;)]{“1 - 283,32, (§;3)
*(op /e 08,2, (8gp) — (232, + 1 - r )L+ 8,2 (3, NI} (12)

Equation (12) is obtained assuming Slb >> kph/2 and, like the previous
example, is valid everywhere except for a small region around Slb = 0. We
again note the dependence of Im 8k on the non-dissipative minority terms
which are associated with the reversible kinetic power flux and do not
contribute to the total power absorbed. Using the result slb = — x/pb, we
obtain the optical depth 7 = (W/Z)(LBSZb/cA)rz(r1 - 1)2/r1 by integrating
the dissipative term in Eq.(l12). This result is identical to that obtained
for the two-ion hybrid re'sonance.8 However Eq.(l2) contains a new feature:

a dissipative mechanism, due to the minority ions, for perpendicular

propagation. The underlying mechanism is due to the variation of the
magnetic field across the minority ion Larmor radius.

Next, consider the compressional Alfven wave crossing the second
harmonic resonance in a single ion species plasma. We use Eq.(4) to
calculate the £ = 2 resonant perpendicular currents. Proceeding as

above, we obtain the dispersion relation
cZk? = w2{l — (ikLy/8)[(k2p2/4 — 1/2 — ikp§, — §2 — ikp§3) (1 + §,2(3,))
+ (Lkp/8)8, (28, + ikp)Z(§,)— 1/2] exp(-k2p2/4) H1 +

(31kLy/8) (L + ikpy,)[1 + §,2(3,) Jexp(-k2p2/4)} - (13)



assuming §  >> kp/2. We again seek a perturbation solution

k = m/cA + &k, and obtain
Im 8k = (0?Lg/32¢2){1 + 25, - )1 + 5,2 (5,) - (wp/cA>s§zi<sz)J} . (14)

The interpretation of Eqs.(l4) and (12) is similar, and the optical depth
for the compressional Alfven wave crossing the second harmonic resonance
arises only from that part of Im 8k proportional to Zi(sz), the other
terms corresponding to the reversible kinetic power flux. Noting that
52 = — x/p, we obtain 7T = (W/4)(wLB/cA)(V%/cK). This is the standard
expression.8 Note again that the gyrokinetic calculation gives a
dissipative mechanism in which the energy is absorbed by a well-defined
population of resonant ions. By contrast, in the mode conversion result
of Ref.8 the energy is not truly dissipated, but lost from the
compressional wave to an ion Bernstein wave. When a perturbation solution
of Eq.(13) is invalid, the equation can be solved directly for k and the
optical depth obtained numerically. We have also calculated the optical
depth for the X-mode crossing the second harmonic of the electron
cyclotron resonance, again obtaining the standard result7 from a
non-relativistic treatment.

Finally, consider the first ion Bernstein wave which propagates in
the vicinity of the second harmonic resonance. Again assuming

52 >> kp/2, we obtain the dispersion relation

kp(1l + ikp},) = i(8p/3L )[1 + s:,'Z(sz)]-1 (15)

- 10 -



In the limit 52 >> 1, Eq.(1l5) reduces to the uniform plasma result.
However, as the wave approaches the second harmonic resonance, it is
damped, and propagation is asymmetric in the z+x—directions. Both
features differ qualitatively from the uniform plasma result. Equation
(15) is invalid when |52| < 1, where the strongest damping is expected,
since it gives solutions kp > 1 wviolating the initial assumption. For a
full description of ion Bernstein waves, the present analysis must be
extended to the case kp > 1.

In summary, we have applied the arbitrary frequency gyrokinetic
theory of Chen and Tsail'2 to a number of examples of cyclotron resonance
heating. For a straight magnetic field with a perpendicular gradient in
strength, we have shown that the effect of the variation of the magnetic
field across a Larmor orbit leads to an ion and electron dissipation
mechanism for perpendicular propagation. Myra, Lee and Catto3 have
previously noted this effect for an ion electrostatic wave propagating
perpendicular to both the magnetic field and its gradient. We have
concentrated on electromagnetic waves propagating into the gradient, the
case of greatest interest to radio frequency heating. In all cases, the
cyclotron resonance of a charged particle is broadened by its gyromotion
into and out of exact resonance. The variation of the magnetic field over
a Larmor orbit spreads the resonance both in real space and in velocity
space.

This absorption mechanism produces direct dissipation by minority
ions in a two ion species plasma in the vicinity of the minority
fundamental resonance, and direct dissipation in a single ion species

plasma in the vicinity of the second harmonic resonance. Such dissipation



would reduce the fraction of incident energy reflected from the second
harmonic resonance. This suggests that, in tokamaks, second harmonic
cyclotron absorption should not differ greatly for launch positions on the
low- or high-field side, as may be indicated by JFT-2.9 For both second
harmonic and minority heating, the effect of magnetic shear in introducing
a finite k" now appears less crucial, since dissipation can occur with
k"- 0. For the electron cyclotron O-mode at the fundamental and the
X-mode at the second harmonic, we have shown that the perpendicular
absorption mechanism leads to the same optical depth as the relativistic
theory. The profiles are different, however, and both relativity and the
variation of the magnetic fields across the Larmor orbit therefore
contribute to the absorption profile.

We have also shown how the kinetic power flux alters the absorption
profile. Its inclusion produces a variation of the electromagnetic
fields, within the WKB model, previously only calculable by means of full
wave theory. Finally, we have noted that Bernstein waves propagating
perpendicular to the magnetic field are damped. However, to treat this

problem fully, the theory must be generalized to include short wavelengths

with kp > 1.
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