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ABSTRACT

The simplest closed line of force plasma containment system
whose average magnetic curvature is stabilising against pressure-
driven instabilities for zero [ is the circular torus with small
rotational transform. In this paper the energy principle is applied
to the simplest case where the rotational transform is produced by a
plasma current and where r/R, Bg/B and (B)é are taken as small quanti-
ties of the same order so that an expansion procedure can be adopted.
Final minimisation of the energy integral leads to three simultaneous
order differential equations which are the toroidal equivalent to the
well known Euler equation for the linear pinch discharge. In addition
to the necessary stability criterion which follows from these Euler
equations, a sufficient condition shows that a p at least as high as

r?/4RZ will be stable against both pressure-driven and j, - driven

instabilities.
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1. INTRODUCTLON

Considerable interest has been shown recently in containment systems with
closed lines of force and an average magnetic curvature which is stabilising
against pressure-driven magnetohydrodynamic instabilities at low f. (B = 2p/B*®).
Of the various configurations which have been discovered to have this property,
the simplest system, from the point of view of geometry, is the circular torus

with a large toroidal magnetic field and small rotational transform.

In the case where the rotational transform is produced by a plasma current,

(1)

the stabilising property was first discovered by Mercier and Cotsaftis . Using
Mercier's general stability criterion(z) for plasma perturbations localised near
a single ‘magnetic surface (i.e. Suydam type perturbations), tney found the stabi-

lity condition near the magnetic axis in a circular torus to be

B2 2
do ({;g_igg>;o e (1)
e]

Negative pressure gradients are, therefore, stable against such modes below the
Kruskal limit. (& is the angular coordinate going the short way round and ¢
the angular coordinate going the long way round; see Section 2 below. The sub-

script o denotes a value averaged with respect to 6.)

One of us has shown that in the energy principle, if the destabilising effects
of j, and j, are separated, simple sufficient conditions for stability can be
obtained(S) (jy and j; are the components of the equilibrium current parallel to
and perpendicular to g). In particular the sufficient condition for stability

against j, - driven modes (i.e. pressure driven modes) is

where n is the outward unit normal of the magnetic surface, &, the component
of the plasma displacement in the direction of n, I/p” the normal curvature of

the magnetic surface parallel to B and dt the element of volume.



In the case of a circular torus with small B, this condition reduces to

2

B B>
(91)-) (—@%—(HA)E%E)?O e (2)
0] 0

dr r

where A 1is of order unity and is defined such that A'Beo cos 6 1s the coeffi-

cient of the first order term in the expansion of B, in a power series in r/RO.

3]
To first order in r/RO the magnetic surfaces have circular cross sections in
the r, © planes and r for a particular surface is measured from the centre of

its own circular cross section.

The stabilising term in (2) arises from the fact that the ¢-contribution to
the normal curvature is positive on the outside of the torus and negative on the
inside. If Eri is assumed proportional to the spacing between adjacent magnetic
surfaces, which is a necessary requirement for very low B, formila (2) results.
The variations with 6 of Vp, the element of volume dt, and the ¢ component
of the normal curvature, cancel with each other and the stabilising term arises
solely from the 6 wvariation of g?l. Thus the stabilising effect at low 8
can be attributed to the spacing between adjacent magnetic surfaces being larger

on the inside of the torus.

3)

It was shown in the same paper( that in the case of the geodesic torsion of
the magnetic surface parallel to E} which is the appropriate field curvature for
Jy-modes, the g-curvature makes no such stabilising contribution. Hence, even if
condition (2) is satisfied, there is still the possibility of a j,-driven insta-
bility. 1In a straight cylindrical plasma the resultant destabilising effect due
to j, 1s proportional to k.B, where k 1is the wave vector of the instability.
For modes which have k.B =~ 0O, such as the Suydam type, the effect is absent.

(1)

Hence the work of Mercier and Cotsaftis also leaves undecided the question of

a Jj, dinstability.

The object of the work reported here was to determine (a) how high p can be
raised without leading to a pressure-driven instability and (b) discover whether

there will be a jj,-driven instability in the circular toroidal plasmas considered.

D



The two questions are not independent since, in a torus, part of j, 1is directly

A single stability condition will be obtained which includes

related to |¥p

both effects.

A preliminary investigation of the magnetic field produced by helical windings
in a circular torus has shown that if such windings are used to produce the rota-
tional transform, a similar eccentricity of the magnetic surfaces occurs with
larger spacing between adjacent surfaces on the inside of the torus. The eccen-
tricity can be enhanced by means of a transverse magnetic field(4). Such systems
should therefore, be stable against pressure-driven modes at low provided the
rotational transform is not too large. These systems appear more attractive than
the plasma current systems because they remove the need of an applied j,. However,

once a finite [ plasma is introduced, j, is no longer zero. For equilibrium

there must be a j, whose magnitude is approximately

N .1 —r dp
Ju = ( " > R B ( ar )0 cos O
o0 0

In many cases even with a p of 1%, this will be of the same order of magnitude
as the plasma current required to produce the rotational transform. Once again,
therefore, the question of a possible j, driven instability arises. The present
work does not answer this question, but the success of the prdcedure suggests that

an extension to the helical winding transform case may be possible.

2. COORDINATE SYSTEM

The toroidal plasma, its containing vessel and magnetic field are assumed to
have rotational symmetry about an axis Oz (see Fig.1(a)). The symbol ¢ is used
to denote the angular coordinate representing rotation about Oz. For the remain-
ing two coordinates, use is made of Shafranov's result that to first order in r/R

(5)

the magnetic surfaces have circular cross section . These approximate magnetic

surfaces are used as the coordinate surfaces.

Starting from the magnetic axis, a set of nested circular cross section

= B e



toroidal surfaces is taken with the centres of their circular cross sections dis-
placed a variable distance A inwards from the magnetic axis. The radius of the
circular cross section of a particular toroidal surface is denoted by r. A is
at present an unspecified function of r, but will be defined in Section 3 to

coincide with Shafranov's A.

On each toroidal surface an angular coordinate 6 is now defined to denote
rotation around the centre C of the circular cross section, of the particular
surface, as illustrated in Fig.1(b). The zero of @ corresponds to the position
on the surface of maximum major radius. The three coordinates of a point P are
therefore r, 0, ¢, with r specifying the particular toroidal surface and 6
and ¢ the angular coordinates on this surface. At the point P, £r is defined
as the outward unit normal for the coordinate surface passing through P, ie and

im are unit vectors lying in the surface and parallel to the directions of in-

creasing 6 and ¢, respectively. 0 s £¢ form a right handed orthogonal set

ir g
and all vectors will be resolved in these directions.

The major radius of the cross section centre of the particular toroidal sur-
face (OC) is denoted by R, and hence

dR0 dA
—=-2 wuns (5

The major radius of the point P is denoted by R and

R=R, + T cos @ e (4)

The component of the gradient operator v in the direction of ip is

denoted by a/éxr and is given by

Zet.g-E . e (5)
The other components are
iwe'g=%5%
... (8)
%-Eﬂ%fg



The gradients of the unit vectors follow directly from the geometry of the

coordinate system and the components are

o1 i i
= ’*'6 aA ~T ~r
— = - — —— sin 6 el T =41 cos®
X . r ox, ! 36 ~9’ 3¢
ol i ol
ol LB in g, —2 o - i min 0 eer (7)
X r oax oY ~p ?
r r
ol oi
X, 9 . 08 =g
i J
In addition
ar A 30 1 3A
_ax =14+ axr cos 0 and TR s sin 0O
whence
AL . da -1 06 _ _sin ©da . dA -1
X = (1 - 35 ¢os a) and ox =  ar (1 ar €os a) ... (8)

Using (7), the components of the gradient of a vector can be determined and

if A is any vector

A
AL Aggp . My ALay B
3. T T dx L axX_ T ax sind, 3%
r e r r T "
A A A A
VA = a_rm_e E—-@+A—r , & ee. (9)
~ rge r ’ rg6 r rab '
dA A cosb JA A sin® oA A cos6 A sinf
el el - S T QT __6
Rag R ’ Rag R ’ Rog R R

In the usual way, V. A 1is the sum of the diagonal terms and the components

of V. A are obtained from the appropriate pairs of non-diagonal terms.

3. EQUILIBRIUM RELATIONSHIPS

A plasma equilibrium is assumed which has rotational symmetry about the Oz
axis. Hence, all the equilibrium quantities (except -jir and ie) have zero gra-
dients in the ¢ direction. The plasma is assumed to extend out to a conducting

wall which, as well as having rotational symmetry, has a circular cross section.



The expansion procedure and nomenclature of the Princeton group will be used(G),

and for this purpose we assume

~ x« 1 ... (10)

w1~
¢
UJI =]
S @
2
oo

where 7 1is the expansion parameter. (It should be noted that as far as r/R

and BS/B@ are concerned A 1is the square of the parameter normally used by the
i

Princeton group. Secondly pé/B(p has been taken an order smaller relative to

r/R than in their case.) The pressure and B are expanded in the form

B=g+ B v B o -
B = phh " pkhk o w s s
From (10 ) Bg is zero and, following Shafranov(S), the next two terms in Be
are taken in the form
BQ:BGO , Bé‘?‘zéABeo cos 6 cee (11)
where Beo is the value of B6 at o = ¢+ % on the coordinate toroidal surface

passing through the particular point in question. A is a quantity of order unity

which has to be determined.

Taking the divergence of B

oB B B cos6B %
NS QY . N S Ar1 1dA sin 6 + 0(An)
axr r R 0o R0 r dr

A is now defined such that

dA r
dP_R (A+1) LRUN (12)
o
which is Shafranov's formula(s) and hence the lowest non-zero term in Br is
B?kh and to order 12 the coordinate surfaces are the magnetic.surfaces.
, afr B;‘)
The lowest term in j@, which is equal to r o is assumed to be of
order ) and from the pressure balance
, . _ dp
_]eBLP J@Be = dxr com (13)



it follows that the lowest non-zero term in j6 is jgl. Since %% is zero
Br
J. = -]e
r Be
. . : AN . .
and the lowest non-zero term in Jp is 3, . Using this result

|74 B| = 0(x})

or
1a_139 B sing 4
_— _LR = 0(2\") ... (14)

so that to order h;

2

7 3 2 3
3
B gt M 4 (l—icose+(—r> cosB—(—r-) cos 6) ees (15)
¢ 9 @ ¢ ¢ R, R, R

o

where B¢0 is the value at 6 = * /2.

The 6 component of VaB gives

and since either from the geometry or from (4), (5) and (8)

%% = cos 0
R
1a(RB)
Je=—§-——“’-axr s (18)

From (14), to order }s, RB is independent of & and hence to this order
P

I i d(RoBcpo) dr
Jog = TR dr dx
i
. r
= J60< 1+ cos 8 ) vy LIT)
where
B e 1 d(ROB ) . dBqJO . Bwor(A+ 1) (i
o~ R dr - dr R* Tt
o 0
9 dB
Since jeo is of the order ), —agg must also be of this order.
Finally
B B
jole, o
o 3X . r



and using (11)

e} Beo

B
AN WA g0 - r dA. r
= — — (1 —=] =
J@ + 3@ = (1+[2a+1] R cos 6) + .- (1+[2a+1r dr] R, cos 6) ee. (19)
) : . AN ARA
The pressure balance in the 6 direction shows that p and p are

independent of 6. The pressure balance in the Lr direction gives, in the 7

order
M
j. B -3 B -9 _g
o ¢o @0  Ho dr
or . . ” ... (20)
’ 1
4 hh+52_>+592_w .
dr # 2 r RJ

and in the A§ order, equating cos & terms and those independent of @ separa-

tely
dB? , A
60 20+ 1 da 2 dp™ _
(a+1) ~ar +<_r +dr‘>Beo+2dr =0 ees (21)
and
AN
e _ 5
dr
Since phlk is independent of position we take it to be zero. Also since
only the term phh will appear in subsequent work the superscripts will be omitted.
Equation (21) has a simple integral giving
r r
(A+1)r®*B? = /1 r B2 dr + /1 4p)lrdr - 2rzphh .o (22)
6o eo
o o]
which shows that Shafranov's formula(s) for A 1is still valid when Be is small
compared with B¢.
) L. da L
Equation (21) can be used to eliminate Fy from (19) giving
N SN S : 2 dp \ r
e =j =3 +== =- cos 6 ... (23)
¢ J@ @O < @0 B60 dr /R,
where
P (24)
90 ~ r dr e

The results obtained in this section are summarised in Table 1.



TABLE 1

Order
Quantity
0 A 22 »
B 0 0 0 g
r r
AAN
B6 0 B60 ARUB8 cos 6 Be
B B - LB cose + (JL)2B cos? ¢ = (JLJSB cos®p
P o) R_¢o R o) R )
() o) ()
Jn 0 0 0 0
J 0 0 J A J%j cosf
] o R_0 6
: . . 2 dp, r BYY
i 0 J -(j +=—=F) —cos® Jj
¢ ¢0 @O Beo dr RO i ¢
p 0 0 p 0
jeo’ j¢0 and A are given by equations (18), (24) and (22).
[ | | [

4, THE ENERGY PRINCIPLE

(7)

One of the standard forms of the energy principle is
5w=/925“-[ |6B|2 ~ j . Bak + YP(V.E)? + (V.E) (g.gp)] ... (25)

where dt is the element of volume, £ is the plasma displacement and

8B = V. (£4B) ... (26)

~

E is Fourier analysed with respect to the ¢ coordinate and is taken in the

form

g = ;{:év (r,0) exp (-ive) vl (27)

v

where vy is an integer which is assumed to be of order unity. Since oW separates
into a sum of terms, each depending on a particular gv, a single Fourier compo-

nent will be considered and the subscript v dropped.

e



8W is minimised without constraint for the two components of g lying in the

(8)

magnetic surfaces, and from Bineau the minimising conditions are
B.V (YpV.E) =0 ... (282)
n .3.\(63 + gn da Q) =0 ... (28b)

where n is the outward unit normal to the magnetic surface and is given by

(Beir " Brie)
1

Z 242
(Br + Be)

and En is the component of E 1in the direction of n. Omitting the triply
special case where the magnetic field has no shear, where the rotation transform
is a multiple or submultiple of 2x and where the plasma displacement is a pure

(8)

interchange, the solution to (28a) with condition (27) is
E.ézo sea (29)

This condition can be substituted directly into (25), reducing &W to the first

two terms.

Following the Princeton group's procedure, g 1s expandzd with respect to ?,

namely,

g:§0+57\+§m+“““ ... (30)

and from (26) &B can be calculated in the required order.

(i) Zero Order
To this order (29), (26) and (25) give

a(rgi) agg

(7.8)° = —=+

T -a-e—=0 ... (31)

8” =0 and & =0

(ii) First Order

since 88° =0, N =0

(iii) Second Qrder
M Ao . A_O A0
260N = /// R,r ded(pdr[ |6B"|2 - i (8B gy — 8BgE ) J e (32)

w 0



o . 0
i o Boo 9Er _ lvBQOEF 1
r r 2e R
o
o o . 0
2B B
ssh o - h 0, oot a0 %% 1Mo -
3] ® E"r r r an R, )
o . 0
2B B, 8£  iwB &
A ©0 o o . 0o © @0 "
B = _ Lo _
& 0 R (gr cos 6 Eg Sin o) + = — = J
) 0
and from (28b)
3 e
36 (6B(P) =0 ; cee (34)

The zero order displacement go is now Fourier analysed with respect to 0 so

that
5? = ; g = ; 50 (r) exp (ime - ivg) e.. (35)
feadd ] m

m m

Simple arguments, similar to those in the stability theory for the straight
cylindrical plasma, show that the amplitude of the m = O component must be zero

to avoid GWKK being positive definite. In which case 68$‘ is zero from (34)

and BWM\ reduces to
0

g (k,B)* 2 o0&
25WM\= 'KERS_/ r dr Z —--IIT-II-Q-— [(m2 - 1) g:’m £ p® (__a_l:l"lﬂ)gi| veo (36)

m

where

o I X
kyB =T B R B o wns (3T)

It should be noted that it is the minimising condition (SBZ; = 0 which has removed

the possibility of mode coupling from 6WM\.

All the terms in (36) are positive. Hence BWKK will be positive unless all
the terms vanish, which requires either ggm = 0, or over the radial range for

. o .
which g~ is non-zero

(kyB)= ~ e
d s ... (38
. ACLENE S o
m? ( or g v A

Conditions (38), which will be examined later, are assumed to be satisfied.

- 11 -



(iv) Third Order

A

Using the conditions (38), part of SWKK reduces to the same expression as

was obtained for BWKR, and a second part reduces to terms of order 14. From the

AAA 0

first part, G&W will be positive definite unless for each m, o = 0O or
4
(kuB) 2~ A
0 3 eee (39)

I'a(l(“B)2 65 S
/‘ e ( aim ) dr ~ 14

The first part of (39) gives

m

v 2
= By, = R, BUO + 0(n) ... (40)

and since this can be satisfied by only one value of m at the most, it follows
that in any instability each v-mode will have only one m-component with non-zero

amplitude in the zero order of gr. From (31) ag also has only one m-component,

. ) o - ; ; o}
but in order to satisfy the minimising condition (34), which gives 6B$’= o, g@
must have (m+ 1) and (m- 1) Fourier components. Thus

2B iB
_ 90 (.0 _ .0 . o O _ 0
=R, (En cos 6 Eq sin 8) + 5 (€¢n+ 1 E¢m-—1) ee. (41)

0= s
¢

where use has been made of (40). On substituting exponential forms for sin 6

and cos 8, the components for gz follow by equating like Fourier components,

The assumption is made that r/RO is less than |B60/B@0| by an amount of
order ), so that m = 1 never satisfies condition (40). This is done to remove
the complexity involved in 53 (and ék) having Fourier components independent
of 6. The properties of the m = 1 mode, which can be expected when Bgo >r B¢0/Ro’
are of no great interest since the stabilising property of a negative pressure

gradient disappears at this point anyway. (See equations (1) and (2)).

If there is magnetic shear, so that k,B varies with radius, the plasma per-
turbation must be localised in the radial range where k,B satisfies (40) (r, to
rg, say). The minimum value of the integral in (39) is then(z)

rs 2
2 kB
7 a0 ﬂ.(.i.)
4/ rEn |:dr m e

ry

w {8 =



and for this to be of order »* requires

d k,,B> 2
dr‘< m A

that is ... (42)
d Bgo 2
& (%)~

If the magnetic shear has a larger order of magnitude than that given by (42),

the plasma will be stable since BWMJ\ will be positive. It will be assumed

that (42) is satisfied.

(v) Fourth Order
From (40), (41) and (42) it follows that 6B?\ = 0 and hence

AN AN de® 5 M
W S Il (gras -geaB )

de &
0 AN . 0.y AN 0. _AA
+ f—z |: ISE | + Jdgo ( 5¢5Br - Er-sBﬂpm )

+ 3l (g s8N — £26BM 4 B - glop )

0
(o )
+ Iy <gP6Be - geéBr :| co. (43)
where
AL d"o i 0 7\7\ m )
drco = Ror‘ded(,pdf‘
and
S I
dt" = (Ry + r cos6) r déde (dr‘ dxr ) - dfro = - A R cos6 dt,

The subscript m denotes the m'th component in a Fourier expansion with respect

to 6 of the quantity involved. The other Fourier terms vanish on integration in

these cases.

The Fourier components of 57‘ and 61%70\ whose mode numbers are outside the
range (m-1) to (m+1) contribute only to the square term in (43) and hence

6W7\7\”\ is minimised by taking these components zero. From (26), using (40), the

remaining components of _QB}‘}‘ are given by

- A3 =



(0] s
grBeo(L+ 1)sing mB

A i o, 6o o
. = - ey + ik,BED + i(n+2) —22 g cose
iB
- A A
5 el (Er - & > e (44)
r m+ 1 m-1

2AB cosf mB
M _ L0 80°%%° o0 g0 o
6B —€r< R J >+1Mm%-+1M+2) o &g COsO

9 o ¢
MB, Eosin_  iB
. Deo%e®tle B0 (EQ e > . (4E)
Rb r m+1 Om -1
A o QBSE‘»?‘ r o 3 r o ]
: = i - 2= 0s79 - i 2= infcos®
bB@ JGOEF + Ro _;rcose 2R0 Er cos 6 ge sing + Ro 5651n cos
A 0,0 .
B, &g . mB g B sind
6o o i N o . 6o _O @ O
+ — -== +ikBg +i(4+2) cosf + «.. (48)
r 56 R, E¢ &, r S Ry
where the terms containing (A+ 2) arise from terms of the form
yrcosgB
1(’35;‘-%—3?‘4, = >sf.’
¥ o ¥ o} J
using equation (40).
Fron the 2* part of the minimising condition (29)
19 AN im o . iy o0 . ¢
e B —— P :O DR 47
r ¢o (8 P ) r B Jdgo R, 2 J¢o (47)
so that the only non-zero Fourier component of 6Bkl is the m-component given by’
£°
M0 . _wro. ) _ _~°rdp
B~ Er(“"eo mR, 90 / = B g dr s (48)

Also substituting the m'th Fourier component of SBQK from (46) into (47)

gives o
2yB_ E B ‘—
; o} 60°r _go r o r . 0
ik,B. = - —+ (A+3) =— + (A+2) — im
uB e B mR,, %o L R, &t ) R, %6
A N oo
- |2g, cos 6 - 2&7 sin e|m] ee. (49)

Further relationships which are needed are the m'th Fourier components of

I AAA

lv. 'gl?L = 0 and 'V. 5B = 0 and the three components of |vV. QBIKA = 0.

I



These are
A . _O
a(rgm) im _A LyE

i A im g _
r ar T T %m R =0 ... (50)
1 a(rﬁsz;;‘?‘) . aasfj" 1) aasy‘
= o + |(A+I)§cose or |m- I—E—sme—ae— mn
«e. (51)
AN . A
6§r cosB im A SB Aslne 1nE>BQEE )
* I_ R m * r 6Bem * | R |m - R =0
0 0 0
a(rEyB?\l) e
_af‘_' + .I.m(SBem =0 «eo (52)

with similar expressions to (52), m being replaced by (m+ 1) and (m-1).

Relations (44), (45), (48) - (52), (31) and (41) are now used to eliminate
A N A KA o ) 2 5.5 8

AN ;
Erm+1, Eqn—I, ES’ 6B8 s 686m ’ 56 and g¢ from &W in terms of
6Bl7}7\ 1’ GB;}%\ 1 and gi. After much tedious but straightforward algebra, some
m —
integration by parts, and a great deal of cancelling SWKKKK reduces to

dt (k,B) 02 ago R
a9 : ) 2( r )
o~ [ So [ S e e (2
o® dp Bgo r Q] |: Epl dg:l
+2 — — J.BB
& ar PB$0 RS ”B* Tm+i R B, dr

gl?r _E a(rsBAM 1) B r
m+1 or "R

0 6o

a(raB”‘ )
( - érr 92:] } osa (53)

To avoid the need of including complex conjugate terms, 1 is used here and

- / a(ib)dr.

below as a non-commuting operator such that

/(ia) bdt = % /]: (ia)b™ + (ia) *b]d'r

[
I

- 15 =



5. FINAL MINIMISATION

Minimising 6‘;\!?\'?&7\7\ with respect to the two components of 63?‘ present and

g? yields the three Euler equations

M o
. a(réB ) E.r
b . | 3 m+1 r _a__( g_g> dp _
lﬁBl‘mn m+1)* ar (r ar >+ (m+1) ar ”3 dr ROBeO ar = ©
... (54)
A 0
- oBp Er
DM ( >> ( > r dp _
16]:','1"111—1 (m-1)* ar‘ ( R, B (m-1) ar PE' B60 dr ~ 0
www (55)
(o]
d(‘i&) gg+2_da<_r- 2 ga)g
- - 2p 2
dr dr r dr R0 RoBeo dr T
a<r5Br7§7‘ ) a(ﬁa}\?\
r_dp . 9 b § 1 m+ 1 N m-1/ | _ 4
' RoBgo dr ' [6Brm+1 6BI‘m-] T e or -1 or
o)

where f = r(k;B)?/Mm? and
r(k,B)* 2B2
_ [mz - 1] _@2 __E

g = me

and the first two terms in (56) are identical with the Euler equation for the

(9)

4 . . .
straight pinch discharge in the A  approximation .  The simultaneous equations

(54) - (56) are the toroidal equivalent.

It is seen from (54) and (55) that the magnitudes of aBl?f::“ and 63?2‘_1

scale directly as the magnitude of g—%

6. SUFFICIENT STABILITY CONDITION AND ESTIMATE OF MAXINMUM (8

The terms containing (“)B;QL in (53) have been arranged in square terms so as

to make obvious the sufficient stability condition, namely

d Bgo r r2 d :I

ap Lo _r _r__dp >0 (57)
2 2 2n 2 = s

dr | PBCPO RO RoBeo dr
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Provided |B 0/B¢0I < r/Rb, it is seen that small negative pressure gradients
are stable but that large pressure gradients (of either sign) are destabilising.
Taking the equality in (57) gives a lower limit for the maximum negative pressure

gradient to be
B?

Qﬁ%

[:1 - —Q——r .. (58)

and this has its largest negative value given by

BQ
dp _ _ _8o
dr 2r
when
B* 5
5= ohm van [56)
¢0o 0

Hence a lower limit for the maximum B which can be contained with stability is

2 _R r
B '/ ar = o5
0

2

) ... (60)
(o]

This value of B is as close to the maximum as can be obtained without solving

the Euler equations (54) - (56).

7. SPECIAL CASE OF LOCALISED PERTURBATIONS

In order to compare the present theory with the stability condition of Mercier
and Cotsaftis (equation (1)), the special case of a localised plasma perturbation
is now considered. It is assumed that g and 65 are non-zero only within the

range r=r_%* g/2 where ¢ is a small quantity of order M or smaller and

0
where kB =0 at r = L
0
o0 oo
For such perturbations the terms containing the gradients T and 3T
will be dominant. In order for 6WXAKK not to have large positive contributions
d&BAM 2 3
due to the BT terms, it follows that Erpeq and Erp-1 must be such that
8By, and 6B$£;1 (given by equation (44)) are of order 13, In which case the

= 7 =



ANNA

terms which remain in &w (equation (53)) are

dt (k,B)2 ago =
AN 0 I 2 r ) ® dp .L L
o = / 2 { = + 28] rBi, R

m or r dr =

(61)

+

AR 0 -
B "~ o
3(rs rm+.|) ] F a(raar. _1) i EL 4 }
m+ 1 or Rsto dr

This is minimised by taking the two components of 6B?k such that the last two

terms in (61) are zero. (The boundary conditions can be satisfied provided g?

is asymmetric about r = ro.) Finally taking the minimum value of the first term

in (61) (see Section 4(iv)), the stability condition becomes

B2
r? (k B} gfo_
P r + dr (r‘Béo _ch,);O el

In the case where the magnetic shear is small, as near the magnetic axis, the
first term is negligible and this condition reduces to the stability condition of

Mercier and Cotsaftis given in equation (1).

8. CONCLUDING REMARKS

The results obtained in Sections (4) - (7) show that the net effect of the
Jjy and (65)2 terms in toroidal geometry is stabilising, since the sufficient
condition for low but finite @ has been improved from equation (2) to equation
(1). [(a+1) is generally less than unity.] This statement assumes that the
quadratic term in %% in (57) can be neglected without the whole expression
becoming of order %>, It should also be remembered that the comparatively simple

formulae obtained in Sections (4) - (6) arise because of the particular coordinate

system which has been taken and defined in Section 2.

Negative pressure gradients at least as large as B;0/2P will be stable if

|Beo/B¢0| = r/ZRo giving a stable @ of at least r?/ﬁRg. However, for very low

p and low magnetic shear the stability is unknown., This is because aaﬁk is
then small and (k;B)can be chosen sufficiently small to make Swlkkh of order 15.
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In the A order, in addition to many unknown effects due to toroidal curvature,

there will be the destabilising effect of j; which makes a straight cylindrical
(10)

. < A 5
plasma with zero pressure gradient unstable in the A order P

Most experiments with circular toroidal plasmas have used currents well above
the Kruskal limit, for which the theory presented here does not apply. Among the

(11). The present theory

few exceptions are the Tokomak series of experiments
does not apply to the stellarator experiments even when the rotational transform
is produced only by a plasma current, since the stellarator tubes have not had
circular major circumferences., The varying toroidal curvature brings in other
effects not included here(12). In the Tokomak experiments kink instabilities
were observed, not only above the Kruskal limit, but also in the range

P/4RO < |B60/B¢0| < P/RO. The latter result would appear at first sight to be at
variance with the above theory. However, even leaving aside the possible effects
of finite conductivity and the fact that in many cases the experimental [ is too

low for the theory to be valid, there is still a major difference between the

assumptions of the present theory and the Tokomak experiments.

This is connected with the use of the limiter diaphragm. The theory has
assumed that conducting plasma extends out to the tube wall whereas the limiter
causes a sharp edge to the plasma at a smaller radius., Not only may this lead to
a pressure gradient exceeding the stability limit, but it may generate an external
low density region which has poor electrical conductivity. Such a region wili
behave like a vacuum region and greatly enhances instability. It follows from

(13)

the work of Tayler , that when the vacuum spacing external to a plasma (with

uniform jz and BZ and parabolic pressure) is decreased from half the tube

radius to zero, the growth rate is reduced by an order of magnitude.

These considerations and the above theory suggest that a study of the Tokomak
plasmas with the limiter removed and somewhat higher £ would be an important

experiment.
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The stability of a circular torus under average magnetic
well conditions and finite plasma pressure












