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Abstract

The extension of gyrokinetic theory to arbitrary frequencies by
L. Chen and S.-T. Tsai (Phys. Fluids 26, 141(1983), Plasma Phys. 25,
349(1983)) is used to study cyclotron absorption in a straight magnetic
field with a perpendicular, linear gradient in strength. The analysis
includes the effects of magnetic field variation across the Larmor orbit,
and is restricted to propagation perpendicular to the field. It yields
the following results for propagation into the field gradient. The
standard optical depths for the fundamental O-mode and second harmonic
X-mode resonances are obtained from our absorption profiles without
invoking relativistic mass variation (see also T.M. Antonsen and
W.M. Manheimer, Phys. Fluids 21, 2295 (1978)). The compressional Alfven
wave is shown to undergo perpendicular cyclotron damping at the
fundamental minority resonance in a two ion species plasma and at second
harmonic resonance in a single ion species plasma. Ion Bernstein waves
propagating into the second harmonic resonance are no longer unattenuated,
but are increasingly damped as they approach the resonance. It is shown
how the kinetic power flow affects absorption profiles, yielding
information previously obtainable only from full-wave theory. In all
cases, the perpendicular cyclotron damping arises from the inclusion of

magnetic field variation across the Larmor orbit.

(Submitted for publication in Physics of Fluids)

October 1988






I. INTRODUCTION

Gyrokinetic theoryl’2 provides a method for the self-consistent
treatment of the cyclotron resonance of high frequency electromagnetic
waves in plasmas with non-uniform magnetic fields. It enables the
variation of the magnetic field across each Larmor orbit to be included in
the dielectric response of the plasma. As a result, the gyroangle and the
Larmor radius enter explicitly into the resonant denominators in the
kinetic integrals. Since the poles of these integrals govern cyclotron
resonance, this approach is qualitatively different from the standard,
locally uniform approach. In the latter, integration over gyroangle takes
place before cyclotron resonance is considered, and inhomogeneity enters
only at the end of the calculation. While locally uniform theory has been
successful in the calculation of global quantities such as optical depth,
its range of validity is not entirely clear and its use for the
calculation of detailed quantities, such as power deposition profiles, may
be less reliable.

Gyrokinetic theory was originally applied to low frequency
instabilities with long parallel wavelength and short perpendicular
wavelength, and dealt with arbitrary values of the ratio of the Larmor
radius p to the perpendicular wavelength. The formalism enabled low
frequency waves to be studied in realistic magnetic fields. In order to
employ gyrokinetic theory for the description of radio frequency heating,
the theory must be extended to arbitrary frequency to include the
phenomenon of cyclotron resonance. Such an extension has recently been
carried out by a number of authors,3-6 although the theory has not been
applied to radio frequency heating. In other respects the theory can be

simplified, because cyclotron resonance in a strong but inhomogeneous



magnetic field is a highly localized phenomenon. This is in contrast to
applications of gyrokinetic theory to low frequency instabilities, where
the wave may sample the entire equilibrium magnetic field configuration.
Another simplification, which applies to most cases of electron and ion
cyclotron resonance heating in thermal plasmas, is that the perpendicular

wavelength is considerably larger than the Larmor radius.

II. THE GYROKINETIC FORMALISM FOR ARBITRARY FREQUENCIES.

Let us now outline the extension of gyrokinetic theory to arbitrary
frequency. We follow the approach of Chen and Tsa:i..?’_5 and note first
that the ordering for the arbitrary frequency case is w ~ LD ~ k"vT ~
leT’ which is different from the low frequency case. This enables the
theory to treat the case of short wavelengths > o, although we shall
only consider the case klp << 1 with k" = 0. The only restriction that
applies in arbitrary frequency gyrokinetic theory is the requirement of
weak inhomogeneity, that is p/LO << 1 where L0 is the equilibrium scale
length. For most tokamak applicatiomns, this is indeed a very small
parameter.

The starting point for the gyrokinetic analysis is the linearized
Vlasov equation expressed in the usual particle phase space (x,Vv):

S sf+v.v sf+3 (v xB).VSE
- —X £ e A 3

ot mc
(L)

Here &f 1is the perturbed distribution function and F the equilibrium;

8E, 6B and B are the perturbed electric and magnetic fields and the



equilibrium magnetic field respectively. We introduce the electromagnetic

x 8A and OE = — V 6¢ — = 2_ sa
A E=--V A

c ot

potentials &6¢ and 6A, where &B = Ex
and assume the Coulomb gauge YX.Bé = 0. Equation (1) will be
transformed from the particle phase space to the guiding centre phase
space (§,E), where

X = x + yvxe/0 (2)
and V = (e,u,x). Here e =v2/2, u= vi/ZB, i - B/B, § = qB/mc, «

is the gyrophase angle defined by
¥, = vl(glcosa + e, sinx) , (3)

and e, &, and e, are the local orthogonal unit vectors. The

unperturbed Vlasov operator

0
L, = —#% X.EX + (v xg).Vv (4)

at

now becomes the guiding centre operator

) 0
L = —+ve Vo+v.(Ap, +A,) -8 — . (5)
g 3t n=n =X Bl B2 3o
Here4
= :
Mg = ¥ XY ()Y, (6



0 0
552 = (Exu) — + (Exa) e (7)
ou
zx“ - _(“ExB ¥ vuyxgu'zl)/B (8)
Yxa - (ngz)' & ¥ (v"/vi) Exgu'(z.!. * Eu) ) 33

For low frequency gyrokinetic theory, all variables are expanded

formally in the expansion parameter A = p/Lo . Thus F = F0 + Fl F o
where F  is 0(X) . For the high frequencies considered here, we require
only Fo' In the guiding centre coordinates, the linearized Vlasov

equation becomes

LSF = -2 (8a .Vv)OIF , (10)
g g (82,.Y)F,

where Fg and 8Fg are the equilibrium and perturbed guiding centre

distribution functions and
ba, = OE i wH—B (11)

Compared with Chen and Tsai,4 we have neglected a term O(A) on the right
hand side of Eq.(1ll) which is proportional to YXFg . This term is
important for the low frequency case, where it is of the same order as the
other terms on the right hand side. Since we shall only need to solve the
high frequency gyrokinetic equation to zero order in A, we may safely
neglect this term. To facilitate the solution of Eq.(11l), we define the

function SGg by writing



oF o v" 1 oF o
6F =3 [6¢ —BC 4+ (6p - L sa )1 _8
& m & de g c B ou

1% 1+ SGg : (12)

The Vlasov equation now becomes,4 after considerable algebra,

q
L 86, = - - (R, + R, + R, +R,). (13)

Here

R =2 sy £ , (14)

= &6¢p — v.8A
5$g ¢g ¥ _g/c (15)
1 aFgo 3
R == — 5 + .V & ; 16
ermall el AL LR A (16)

and R3 and R6 are both O0(A) and are given in Ref. 4. Again, these
terms are not required for the present high frequency application. As

already indicated, we consider the following formal ordering:
9
IEEI - legu’zXI - vTlEu X zXI - |Q| = LY o (17)

where Vip is the characteristic thermal velocity. Thus, wavelengths

parallel and perpendicular to B can be of the order of the Larmor
radius.

In order to describe the high frequency cyclotron oscillations, we

do not integrate over the gyroangle o at an early stage, as was the case



for low frequencies. Instead, we expand all perturbed variables as a

Fourier series in «. Thus, for example,

@

6¢g = £E-m<8¢g>£ exp(-ida) (18)
where
<8p > = [*T aubd (X,u,e,0) exp(ide) (19)
g 4 ) gt ’

27

We note that 6¢g and Ség are functions of e, # and o by virtue of
the guiding centre transformation. Substituting the expansions for 5¢g,
858 and BGg in terms of the gyroangle o into the guiding centre

kinetic equation (13), we obtain4

<Lg5Gg>£ = <Lg>1<8Gg>.€ + .e'i,e Lg£,£'<6Gg>£' = — <Rg>.€ . (20)

Here <Lg>£ is the part of Lg which is independent of o, Lgf,f' is
the part of Lg which couples neighbouring harmonics,
- 9
Rg = ; (By +R, 3 (21)

and we have assumed that the perturbed quantities vary as exp(-iwt).

In calculating <Lg>£ we retain terms O(A) but neglect terms O0O(A2),

giving

a

<L > = (v e

P e, Y.V — (0 - 4+ 40), (22)

where



»

i + (Vj/ZR)EH.YX 5 = (23)

Yy = g X [(v}/2)Y 4nB + vie .V e 1/0 (24)
O = v, [ey -1, . Fe,} — e (T xe)/2] . (25)

Chen and Tsais’4 have shown that the coupling operator th L is O(RX).
Since we have retained only the 0(l) terms in Rg’ the zeroth order

gyrokinetic equation is

<Lg>£<66g>£ = — <Rg>£ . (26)

In order to remove the terms in <Rg>£ involving VHEH'EX’ we introduce

the function <5Hg>£ as follows:

oF
- 1 go
<6Gg> = <5wg>£ 5 + <5Hg>4' (27)

# ou

Substituting Eq.(27) into Eq.(26), and using Egs.(1l4), (16), and (21), we

obtain

3F aF
Ba 48 g°)<awg>l. (28)

de B ou

<Lg>£<6Hg>£ - (w

This is the final form of the high frequency gyrokinetic equation,
which can be used to analyze cyclotron absorption in inhomogeneous plasmas
and magnetic fields. The equation is general. It describes

electromagnetic perturbations in arbitrary magnetic field geometry,



subject only to the constraint that klp << Lo/p where L0 is the scale
length of the equilibrium magnetic field. To carry the analysis further
and to illustrate the power of the gyrokinetic technique, it is

instructive to consider a specific equilibrium magnetic field.

III. EQUILIBRIUM MAGNETIC FIELD WITH A PERPENDICULAR GRADIENT
The simplest inhomogeneous equilibrium magnetic field which is
relevant to radio frequency heating in a tokamak is a straight magnetic

field with a perpendicular gradient in field strength. We write

B =g B(1+x/Lp), (29)

where in this simple slab model we interpret the z-direction as toroidal,
the x-direction as radial and the y-direction as poloidal. The scale
length LB corresponds to the major radius. In order to solve the

gyrokinetic equation (28) we must obtain the quantity

v.8A

g>£ . This requires consideration of the spatial

<dY > =<6 —
Ve T <0y T

H

dependence of the perturbed fields. We may either3 Fourier transform
all field variables, or make some further simplifying assumption. The
advantage of the former method is that the analysis remains completely
general. However, the disadvantage is that we must finally solve an
integral equation which will inevitably require numerical treatment. The
alternative approachB-6 is to make an eikonal approximation and to treat
the perturbations as having a single mode character. This is a common
approximation, which was used by Lee, Myra and Catto6 to illustrate the

application of general frequency gyrokinetics to an equilibrium field of

the form Eq.(29). Since we are seeking qualitative insights from



gyrokinetic theory, we also choose all perturbed quantities to have

eikonal forms. For example,
§E(x) = 8f, e XX (30)

where the wave vector k is chosen to be perpendicular to B and is

written
k = k) (e _cosi + gyslnE) . (31)

We now calculate the quantity
Il =
<bY > =<6 — — A — = 8A > : 32
V>, = <89, A (32)

Let us first calculate <6¢g>£ using Egs.(2),(3),(19),(30) and (31).

Since <6¢g>£ is to be evaluated with X held constant, we write it in

the form

e-i(klvi/ﬂ)sin(a'-E)eilm" (33)

where we have written e and e as e and e for the present slab
=1 2 - =y
model. The quantity <v“5Ag"/c>£ is calculated in a formally identical

manner. Performing the integration over gyroangle, we obtain

v v
I I ik.X _ifE kv

<6¢g - 6A" g>‘e = (6¢1_C - ;_ BA"}S)e e J’e( -L J-) . (34)
Q



Next, we consider the quantity Bl'aég' Using Egs.(2),(3), and (31), with

the eikonal approximation, we have

EJ_ 6&8 = ((SAXkVJ_COSOS‘ + aAyEv_]_Sin'I' )elk_}g-l(klvl/g)S]-n(m' 'E) . (35)

In order to calculate <gl.5ég> we carry out the same procedure that

’e’

was used to obtain <&¢ > with the result

g £’

ik.x ier VL .. K1VL

<yl.6}_\g>£ =e —"=e — J:f(—)sBllk (36)
k Q =
18
Here we have introduced SB"E = l(kaAyE - kyank)' Substituting
Egs.(34) and (36) into Eq.(32), we obtain
on g kv v v , kv
<oy >, = BB I [y Ay, _ gyt 502 es
g £ £ k ik £ nk
Q = e = ke Q =
L
(37)

We now return to the solution of the gyrokinetic equation (28). This
equation was transformed to the guiding centre phase space because the
linearized Vlasov operator is much simpler in this space. For the
magnetic field Eq.(29), the guiding centre operator <Lg>£ given by

Eq.(22) becomes

2l 5 mi gy m m Ar — OCEYT (38)
g £ d 3y

- 10 -



where it follows from Eq.(24) that

e . (39)

Since we assumed at Eq.(30) that &f wvaries as exp(ik.x), BFg will be

proportional to exp(ik.X) . The guiding centre operator now becomes

<Lg>£ - ikyvd —ile - 2] . (40)

Substituting Eq.(40) into Eq.(28), we obtain the solution of the high

frequency gyrokinetic equation:

oF oF
9 (0 —8° 4 £ 8% 5y

g>i
wER = _ m de B ou . (41)

g £
[kyvd - w + LX) ]

t
We must now relate the solution <5Hg>£ for the « h harmonic to the

total perturbed distribution function SFg . First, using Eq.(27) and

summing the Fourier series as at Eq.(28), we have

L OF iy
B =~ L4 =B g " gy >, (42)
& m &B 3u £ &
Using Eq.(15) this becomes
v v oF ;
56 = — dgg — =L 8A ~ _iqag y L8 5 ol gy Feg 5 (43)
& m & ¢ & ¢ "8 Ou £ &

- 11 -



Substituting Eq.(43) into Eq.(1l2) we have

aF s ¥ 1 arF
5Fg - 959 —B 4+ =8sa =B 4+5e

m & 3¢ c & g ou £

-ido
<6Hg>1 (44)

Finally, we substitute for <8H >, from Eq.(4l) to obtain

g £
aF v aF
sF - d(sp —B° 4+ L sa 1 _ 89
E n B 3 c &8 au
. oF 3F
e M B B _BOehy
de B ou E

(45)

[kyvd - w+ £(X)]

We may now use SFg to calculate the perturbed current density for
use in Maxwell's equations. Since Maxwell's equations are expressed in
the particle coordinates (x,v), we must transform the guiding centre
distribution function 6Fg back to particle coordinates. This is
straightforward for the first two terms on the right hand side of
Eq.(45), because we do not need to distinguish the two sets of coordinates
in the slowly varying equilibrium distribution. Since 6¢g and Sgg are
the total potentials and were obtained by assuming &¢ and 6A to vary as
exp(ik.x), we simply return to the eikonal variation in the particle
coordinates. In order to transform <5Hg>£ back into particle
coordinates we proceed as follows. In the resonant denominator in
Eq.(41), we transform from X to x wusing Eqs.(2),(3) and (29):

vlsinm
kv, —w+ LX) = kyvd —w+ (x) + £ — . (46)

y d
LB

- 12 -



Comparing the first and last terms in Eq.(46), we find that the drift term
is smaller than the finite Larmor radius term by the factor kva/Q ,

which we assume to be small. We therefore approximate the resonant

denominator by

!VT VJ_
kyvd - w + X)) = Ig—(;; sino — 31) (47)
where
LB
SI = z;T(U — (%)) (48)

The quantity <6¢g>£ obtained in Eq.(37) depends on exp(ik.X) . Using

Egs.(2) and (3), it is now convenient to write Eq.(37) in the form

ik.x
<6¢>£ = <8¢>£E e = ; (49)
where
kv v
_ ik, v /Q)sin(e-E) iLE ALl [
<8¢>£k = e 171 e [Ji(____)(5¢k - 6A"k)
— Q e c ey
(50)
v kv
= _i_ Jk(_é_i)ﬁB“k]
k. c (9] =

4

Using Eqs.(47) and (49), and as usual employing the eikonal approach of
Eq.(30), we write the perturbed distribution function Eq.(45) in particle

coordinates:

- 13 -



q BFO Vl . 1 apo
6f, == {(5¢k - <8y> ) — + —(8A_, cosar + SAyk51na)— .
- m = =  de c = = B du
oF oF
(m—°+ﬁ—3)<6¢r>
Lg  iex 8e B B HE
+ 2 = e } (51)
£#0 fvT v
(—= sin o« — 51)

Vi

Since we have chosen an inhomogeneous slab model, it is convenient to
transform Eqs.(50) and (51) to Cartesian velocity coordinates. We define
a dimensionless velocity vV = X/VT = (Vlcosa, Vlsina, Vz), where

vV, = Vl/vT and Vz = V"/VT. In the remainder of this paper we restrict our

Ll

analysis to the case where the equilibrium velocity distribution is

Maxwellian,
%o %o
F = ———— exp(-v2/vZ) = exp(—2e/v2) (52)
. - T 1372 3 T
T T
and the temperature is isotropic, so that aFO/Be = —2F0/v% and BFO/au = 0.

The perturbed distribution Eq.(51) now becomes

2n g 1 —V; -Vi -Vvz
Bfk = — 2 p e e e 7
bl 37243
mv% T VT
wLB <5w>lk
x [5¢k - <bi> , + >  —= exp(-idx) -7 . (53)
= = £#0 lvT (Vy - 51)

Similarly, Eq.(50) is now written

- 14 -



ikxpv -ik pVx
<SW>£k = g Y e y exp(iLfE)

(54)
Vi kivl ji_ , klvi

x [(5¢E - :— BA"E)Ji( SBugjz(‘5"‘)] ,

X

Q klc

where the Larmor radius p = vT/Q ‘

IV. THE PERTURBED CURRENT DENSITY

In order to calculate the absorption of the various wave modes in the
hot, inhomogeneously magnetized plasma, we must use Eqs.(53) and (54) to
obtain the perturbed current density for substitution into Maxwell's

equations:

= 3
Gik qvp / SfE \' dedVdez g (55)

Let us first calculate the parallel current. In the expression for Bfk,

we must express the factor exp{-ii(a-t)} in Cartesian velocity

coordinates:
-il(a-t) _ , . |4
e - {(kx + 1ky)(vx ¥ 1Vy)/kivi} (56)
Here the + sign refers to £ > 0 and the — sign to £ < 0 . Since we
2

shall later be interested in the fundamental electron cyclotron resonance
for the O-mode, we first retain only the terms associated with 4 =0 and
+ 1 . Substituting Egs.(53),(54) and (56) into Eq.(55), expanding the
Bessel functions for small argument, and carrying out the velocity

integrations, we obtain

- 15 -



b1, =~ -E - G L P
= 4t ¢ VT
wL k p ik p
+i =2 [(kp + ik p) (5 + )25 — —)
2v y 2 2
T
kyp ikxp
—(k_p — 1kyp)($_1 - T)Z(s.1 - T)}e»cp(-kipz/a) (57)

where Z 1is the plasma dispersion function. Now Maxwell's source

equation for the magnetic field yields

(ki - —i)6A = — &J ; (58)

where as usual k" = 0. We note that in this case GA"k is independent of
the other components of the electromagnetic potentials. Equation (58),
with SJ"k given by Eq.(57), is thus the basic equation that determines
the properties of the O-mode, to which we shall return in Section V.
Let us now carry out a similar calculation to determine Bil . Im
the calculation of Bin, we neglected the term in the gyrokinetic
equation that arises from the drift motion resulting from the magnetic
field gradient. The neglect of this term was shown to be valid for
kip2 << 1, which is well satisfied for the electrons. It is also well
satisfied for thermal ions in present tokamaks and we shall, therefore,
continue to neglect this term in calculating 511 . The perpendicular

current density Bil will act as a source term for the extraordinary mode

« 16 =



for electrons and the fast wave for the ions. For these cases, we shall
consider both fundamental and second harmonic cyclotron resonance. We
therefore retain 4 =0, + 1 and =+ 2 terms, and again assume kip2 << 1,
First, consider the fundamental resonance which, for perpendicular

propagation, is relevant to the case of minority absorption in a two ion

species plasma. For £ =1, the resonant perpendicular current is given
by

-vz  -ik pV_ -VZ ik pV
X y ox _ y T x y

e e e e

(Ve +Ve)

X=X vy : <
x Ky (k_+ 1ky)(vx - 1Vy)[5¢EJl(klpVi) (59)
v 5B
T nk -,
-—=v —ki_ Jl(klpvl)]dvxdvy ,

where the Vz integration has been carried out. We now expand the Bessel
functions assuming small argument, and perform the remaining velocity

integrations This yields the £ = 1 resonant current densities:

2 : 2
n_q wLB (kx+1ky) kJ_<SthI_c _ SB"k

()R = m v k2 (g o) H (n)exp(-kip2/4), (60)

= T 1

n q? oL, (k_+ik ) k28¢ 5B
_ o B *x Ty 17"k Ik o
Blydp = TR T~ e Ol (e et/a) (61)
where
k_p ,  ikop
Ho(n) = =L+ 0,201, = {3 - ——%-(kx—iky)p}z(nl) ; (62)

« TP w



k p ik <P

Ho(ny) = 1ln, + ik p + —)(l +0,2(n,)) - — (K ke2(n,) . (63)
ik p
%

Next, we calculate (EQL)R for the case £ = 2. After integrating

over Vz, we obtain

(6J ) _ noqu EE I e e e e y
=1k’R mvZ T (Vy - 35)
(ngx+v e )
x 22T (k +Hk ) (V,~1V) [5¢ 1PY)) (65)
Ld
v, 5B
T nk -,
- o Ve Jp(kppv ) ]av av

Again expanding the Bessel functions assuming small argument, we have

9 (k +ik > k86, ssuk
noqz (kx+iky)2 k2 5¢k SB -
= - = 2
(SJYE)R e g ey K (=2 o) )G (n,)exp(-kip2/4) ,  (67)
where
ik p k p?

- y g
G (n) =[—n, -1-

. (e =ik ) I[L + m,2(n,)]

k p .
=i ko) 2(n;) (68)

- 18 -



~ o3 1 p2,. . .
Gy (n,) = [-n3 - 1G5 k—iko)n, + 5 + Z_(kx_lky)(3kx_lky)] [1+2,2(n,)]

lkxp 1

+—Zn) -5 (69)

We also require the non-resonant perpendicular perturbed current
density. For this it is sufficient to use the local expression, where the

natural velocity coordinates are cylindrical. The expressions for

(GJXB)NR and (6JYE)NR' where the subscript NR denotes non-resonant,
are
L w;w W Q @
(E_ Sng)NR = Ty [kx6¢k — o2 BAXE + la(ky5¢k . BAYE)] (70)
41 w;m w Q w
(— BJyg)NR = S@rTn) [ky5¢g = = SAYE - 1a(kx6¢g —~ & BAXE)]. (71)

These expressions are valid for any non-resonant species for which
k2p2<< 1.
J_p

In order to close the system of equations and obtain the dispersion
relation, the total perturbed current density must be substituted into

Maxwell's equations. We have already obtained one of these equations, for

6A"k in Eq.(58). A second equation is Poisson's equation, which can be
written
K266, = 2T 1 53 (72)
ko <%k |

- 19 -



where we have used the equation of continuity. The remaining equation is
given by the parallel component of the curl of Maxwell's source equation

for the magnetic field:

_ b7

- = (73)

w?
(k2 — 57)5BHE (kxﬁJyE - k &J

Yy xk)

Using the expressions for the current demsities, we can express E.Bik and

(k.63 , — k _&J
X

vk % XE) in terms of 5¢k and BB“E. Thus, 8¢E'GB"E and

BA"k are the three field amplitudes that describe the wave modes we wish

to study. In general, all three are coupled together for a given mode.
However, in the case we are now considering, namely k.B = O, SA"k

decouples from 6¢k and 6B"k. We shall now analyze a number of cases

which are of particular interest for radio frequency heating in tokamak

plasmas.

V. THE O-MODE AT THE FUNDAMENTAL RESONANCE

As the first example, we consider the linearly polarized O-mode
propagating across the fundamental electron cyclotron resonance. In order
to obtain the dispersion relation for this case, we substitute the
parallel perturbed current density given by Eq.(57) into Eq.(58),

yielding

- 20 -



w? wL

w? pe B
2 W - —
klaAuk c? Auk c? BAuk{l v kype
= Te
iwLB
+ 2VTe [(kxpe+lkype)(Sl+kype/2)2(51—lkxpe/2) (74)

- (kxpe—ikype)(S_1—kype/2)z($_1~ikxpe/2)]}eXP(-kipg/2).

We adopt the convention that Qe > 0, so that Sl - ikxpe/Z is the
resonant argument. Assuming Sl >> kxpe/2 and klpe << 1, and Taylor

expanding, the dispersion relation resulting from Eq.(74) can be written

czki w2 w? wL
pe pe B
=~ 1l e - v kype
Te
imLB
g LOp rikop ) (§1+k 0 /2) (Z(8))—(ik p /2)2" (§,))

Te

— (kep =ik p ) (5 1=k 0, /2)(Z(3_))=(ikyp /D)2 (5 NI} (75)

This equation is valid throughout the resonant zone, except for a small
region around the origin where 512 k p/2. 1In the limit Ly» «, we have
Sl’ 5_1 >> 1, and the asymptotic expansion of Eq.(75) yields the uniform
plasma result, valid to O(kipé),
c?k?

2
L 1 wpe - Pe 1 1

w? . ]kipz
w? T w? w (w—Qe) (w+Qe) 2

e

(76)

= Bl =



Let us now analyze the inhomogeneous magnetic field dispersion
relation given by Eq.(75). We concentrate on the case ky =0,
corresponding to propagation directly into the gradient in magnetic field

strength. The dispersion relation then becomes

w2 ;e m;e imLB
B e o e i Bl
c c c 2VTE
fided o}
-kp 8 42(5 q) - §12' () + — $.42'¢5 1Y an
Utilising the relation 2'(x) = — 2[1+xZ(x)], Eq.(77) may be written
w2 mze imLB
k2 = - P2 {1 =k p [8,208)-5_12(5 )
c? el 2v
Te
wLB
b k2p2[ 8, (1+8,2¢8,0)=8 (18 12¢5 N1} . (78)
Te

It is instructive to obtain a perturbation solution of Eq.(78), writing

k =%k + 8k, (79)
x )
where ko = (w2 — w;e)%/c. First, however, we calculate the quantity
1 . . ; ;
§Re(5JuE5EEE)' Using Eqs. (57) and (79), expanding Z(Sil - 1kxpe/2) as

above, and setting ky = 0, we obtain
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1 N T R
) Re(BJukSEn;) S e = ISAukl v, kope{— §12,(5) + $.12, )
= 167 c? = Te
+ kP 332, (5 = kp 32,25 D (80)

Here Zr(x), Zi(x) are the real and imaginary parts of the plasma
dispersion function, and we have substituted kx = ko consistent with the
perturbation approximation. We note that the third and fourth terms in
the parentheses in Eq.(80) give the power dissipated by the resonant
particles, whilst the first and second terms describe the kinetic power
flow due to the thermal motion of the non-resonant particles. It follows
from Eq.(80) that the kinetic power flow is zero asymptotically and that
it changes sign in the resonant region. This illustrates the fact that
the kinetic power flow is reversible. Its effect on the power deposition
profile will be considered below. Returning to Eq.(79), we obtain the

perturbation solution to Eq.(78):

wze c"’LB pe
Bk = — P2 = 2 [5,2¢5)) - §_,2(5 )]
(e ZVTe 2

wze wLB kop;
+ B [$,(1+85,2¢5,)) — §_(1+5_12¢5 ] . (81)

2
c sze 2

The optical depth arising from wave damping is defined in general by

T o= 2 [0 Imk(x)dx . ' (82)
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Now from Eq.(81), we have

1 m;e wLB
Im 8k = %k Bt _\?e‘ Pe [S-lzr(s-l> = Slzl‘(sl)]
2 L k 2
1 wp g “oPe
e CEXCEEXRONIE &)

At first sight, this result may appear surprising since the first term
depends on the non-resonant electron response. However, it has already
been noted that this term is zero asymptotically and changes sign in the
resonant region. It follows from the definition of optical depth in
Eq.(82) that the first term in Eg.(83) does not contribute. The optical
depth is therefore given by integration of the second term in Eq.(83).

Now by Eqgs.(48) and (29),

f - won ) --X (84)
1 YTe € Pe ,

L 2L

B B
5_1 = —{;';; (w +Qe(x)) ="EE'— , (85)

with the result that Z.(§ ;) << 1 and z;(§)) = rl’Zexp(-xZ/pé). Then

by Egs.(82) and (83), the optical depth is

w2 vz
. T PC g L, e (86)
8 Qz c? )
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where vT is defined by Eq.(52). Equation (86) is identical to the
expression that is obtained from a weakly relativistic plasma model. We
emphasise that our result has been obtained by means of a nmon-relativistic
treatment. Antonsen and Manheimer,8 who also noted the importance of
including the variation of the magnetic field across the electron Larmor
radius, obtained the same optical depth non-relativistically. The present
calculation gives an absorption profile which extends over a few Larmor
radii and is symmetric about the cold plasma resonance, in contrast to the
relativistic profile. Clearly, the effects of relativistic broadening and
the self-consistent magnetic field variation will both contribute to a
more accurate determination of the absorption profile.

There is a further effect contained in Eq.(83) which will contribute
to the absorption profile. This is the kinetic power flow. Although we
have argued that this flow will not contribute to the optical depth, it
can alter the local damping rate by changing the local value of the
electromagnetic field. As shown by Egs.(80) and (83), in the regions where
the kinetic power flow is positive the electromagnetic field is reduced,
and where it is negative the field is increased. Since the damping by the
resonant electrons is proportional to the intensity of the local
electromagnetic field, the absorption profile will be sensitive to the
kinetic power flow. We also note that the kinetic power flow is similar
in character to the mode converted cyclotron harmonic wave.9 Thus,
regions of positive (negative) kinetic power flow correspond to the
positive (negative) group velocity of the cyclotron harmonic wave. The
kinetic power flow is closely related to the spatial dependence of the
group velocity, particularly where the latter changes sign. This results
from the reversible nature of the flow, so that the region where the group
velocity passes through zero corresponds to the reversal of the kinetic
power flow from the particles back to the electromagnetic field.
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The analysis of the dispersion relation Eq.(78) is based on the
perturbation approach of Eq.(79). In situations where the perturbation
approximation is not wvalid, Eq.(78) must be solved directly. The optical
depth can then be obtained by numerical integration of Im k(x). This
result will automatically include the effect of the amplitude variation
produced by the kinetic power flow. Such a calculation will therefore
contain features which were previously only obtainable from a full wave
theory.

We conclude this section by considering the origin of the
damping, which arises from the more accurate treatment of the finite
Larmor radius effects. As an electron passes through the region where
W = Qe(x), it will oscillate in and out of exact resonance. This effect
is included in our calculation, which retains the variation of the
magnetic field across the Larmor orbit. Where the earlier local theories
produce a singularity proportional to 1/x, the present theory replaces
this by the term l/(x+pesina). The resonance therefore has finite width

and a smooth absorption profile for this mechanism can be calculated.

VI. ABSORPTION OF THE FAST WAVE IN A TWO ION SPECIES PLASMA

Let us now analyze the propagation of the fast or compressional
Alfven wave in a plasma with two ion species whose cyclotron frequencies
are incommensurate. We denote the minority (or resonant) species by a
subscript 'b' and the majority ion species by a subscript 'a'. The
non-resonant perpendicular currents due to the majority ioms, the
electrons, and the non-resonant contribution of the minority ions are
calculated using Egs.(70) and (71). Combining the effects of the majority

ions and the electrons, we obtain



Here

w? r

4 + 1 ;
- (BJxk);Re =i (kx8¢k - g ank)
= e (rz2-1) = =
a 1
(87)
m?. 1 wz
+ i[-B2 + B2 )k 86, - L8 )
e (r2-1) e ¥y E g YE
a 1 a
w?2 r
4 ate pa 1 w
—(8J_) = = (k. 8¢, — — 8A )
& yk’NR e (rz-1) y 'k c vk
a 1
w? 1
. pa ©
-i 20 + 1 + rz}(kx5¢k = = SAXk) X (88)
cﬂa ri—l = —

Iy = Qb/Q g T, - nobzb/noaza’ and we have used the fact that charge

a

neutrality gives

w?e w2
_Pe _ B (1 + rz) i (89)
Qe Qa

The contributions to the non-resonant currents from the minority species

are

< w 2
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w?
4 b . pb 1 () .
TUBI g = A [k ik ) 80,

2(w+9b) ﬂb

[ :
+ 2kx6¢5 + E(BAXE - isa )] . (91)

vk

We now substitute Egs.(87), (88), (90), and (91) for the non-resonant
currents, and Egs.(60) and (61) for the resonant currents, into Poisson's

equation (72). This yields

w? T w? L (k +ik )
p-P2_t , Bbyg 1 B X Y g (n,)}Kise,
r I 2 =
W (x3-1) 20 (@) . ki
w?2 w? L. (k +ik ) &B
TR B SR QU WL i I R - o (92)
o (rz-1) : 2 () v k2 LR =
a 1 b T 1
where Gl(nlb) = Q[kax(nlb) + kyHy(nlb)], so that
Gl(nlb) = kXZ(nlb) + ky[2iﬂ1b — (kx—iky)pb][l + ﬂle(nlb)]- (93)

Similarly, substituting the same equations into Eq.(73), we obtain
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w2 w r ww? L (kx+ik ) &B

[c?ki- w2 + P2 S Ay - T Y- i6,(n) )11 —5
Qa (ri - 1) 2 (w + Qb) Vb ki c
w2 w? f wL, (k +ik )
g PR R P T L R S i i 16, (n;,) } k3 8¢
Qa (ri—l) 29b (0 + Qb) va ki =
(94)
where G2(nlb) = 2[kay(nlb) - kny(nlb)], so that
Gylnyy) = [k {2in,, - (kx_iky)pb} — ko, 11 + 7y, 2(ny, )]
22
f e - 22 ik )] Ztm) (95)
y 2 Xy b -

Equations (92) and (94) describe the fast wave in a two ion species plasma
in the vicinity of the fundamental resonance of species 'b', for the
case of a straight magnetic field with a perpendicular linear gradient in
field strength. Although we have referred to species 'b' as the
minority, no approximation has been made concerning the ratio nob/noa.
Thus Egs.(92) and (94) are valid for all values of this quantity.

We now simplify the analysis by assuming that Nop << 0. -
In this case, we need only retain the minority effects in the resonant

terms. Assuming w;a/ﬁg >> 1 so that w? << czki, Egs.(92) and (94)

combine to give
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r £ L. k +ik

[1+ 2(x, - D22 (X _Tye, + 16,)]
2 v, k2
czki ~ w2 b < . (96)
r, ) QaLB kx+1ky
(1 + ——(rl - 1) ( )Gl]
2
2 Vb kl

Here we have put o = Qb except in the arguments of G, and G, . Before
analyzing the properties of Eq.(96) in the vicinity of the minority
resonance, let us consider the case when the wave is far from resonance so
that Slb = LB(m - Qb)/va >> 1 . Since we assume kpr << 1, we may
thus neglect kpr in comparison with Slb' Using Eqs.(93) and (95), the
asymptotic forms of G, and G, give, for the case ky = 0,

By == Byl (97)
G, +1iC, = 2k /Y, - (98)

The denominator in Eq.(96) becomes

r QL G r (r2 — 1) fQ
1+ 2 (2 -1 2 L ¥ (99)
2 Vi, k 2r (w — Qb)

Similarly, the numerator becomes

r, Q LB Qa
w2l + —(xr, - 1)= (6, + i6,)] = w2[l + r (r, - 1) 1. (100)

2 "z © - %)

1
k
X
Equation (96) can now be written

w2 fw -8 + 1, (8 — Q)]
c2k? = b * 2%~ % . (101)
A
(w — &..)
11
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Here

r
2
= e 2 —
Qii Rb[l (r1 1], (102)
2r :
1
which is the ion-ion hybrid resonance frequency when n_, << n . Thus,

ob oa

in the asymptotic region far from the minority resonance, we recover the

expected two-ion hybrid resonance. Eq.(10l) may be written
r, 2
2 _ p2)2 _ = 2 A —
(w CAkl)(w Qii) [5) Qb e (r, 1) . (103)
1

This is the form required for application of the general mode conversion
analysis of Cairns and Lashmore-Davies.lO In conjunction with Eq.(5) of
Ref.10, Eq.(103) yields the well-known expression for the transmission

coefficient T of the fast wave through the hybrid resonance:

L& r
LN I (104)

2 cA r

T = exp [-

Let us now return to the general inhomogeneous case described by
Eq.(96). For small minority densities r, << 1 , we may expand the

denominator to give

r 2 L
2 B
2k = w2[1 + — (r, ~ 1) 2

2 kvab

(ie, - rlcl)] ; (105)

where we have to set ky = 0. Substituting for G, and G, from

Egs.(93) and (95) and expanding Z(nlb) assuming Slb >> kpr, we obtain

w BT



r Q L

erk2 o~ 02[1 + —(r, - D22 {(r, + ik p §;,)Z(5,)
v,
Tb
= [28, + ko (282 + 1 = £ )1 + §,2(5, )] (106)

Seeking a perturbation solution kx - w/cA + 6k of Eq.(106), we obtain

for the imaginary part

Im 8k = (w/c,)lr, (r; — 1) Ly/4vy H(r, — 252,72, (5,,)

+ (0o /e )80, 2 (30— (283, + 1 = x )L + 8,2 (5,,0)])

(107)

We note that this gives damping for propagation perpendicular to the
equilibrium magnetic field, where the locally uniform model predicts no
damping. We also remark that Im 6k again depends on the kinetic power
in addition to the power dissipated by the resonant ions. However, just
as for the O-mode example, the kinetic power terms do not contribute to
the optical depth of the minority resonance. It therefore follows from
Eq.(82) and the imaginary terms in Eq.(107), using the fact that
Slb = - x/pb, that dissipation extends over a few ion Larmor radii, and
the optical depth of the fundamental minority resonance is

T LB‘Qb r, 2

— (r, — 1) (108)

2 N r,

7T = =

1
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This is identical to the mode conversion result, Eq.(104).

The significance of this calculation is as follows. By including the
effect of the magnetic field gradient in a self-consistent manner we have
obtained minority cyclotron damping for perpendicular propagation.
Previously, perpendicular propagation was believed to result in mode
conversion at the hybrid resonance, which is not a true dissipative
mechanism although it does cause energy to be lost from the incident
wave. Returning to Eq.(96), we note that the situation is very similar to
the case for oblique propagation (finite k“). Thus, mode conversion will
not occur if the strong minority damping zone overlaps the mode conversion
region that lies in the vicinity of the hybrid resonance. By analogy with
the finite k” case,ll this is determined by the separation of the roots

of

LI %a's 1 Re G -0 (109)
+ — (ri - ) - e 1(Slb) - .

2 va kx

If the two roots of Eqg.(109) have the values (Slb)1 and (Slb)Z’ where
I(Slb)ll < 1l and l(slb)zl >> 1, the minority damping and mode conversion
regions are well separated. The regions merge as the two roots approach

coincidence. The critical condition is given approximately by

2v
R N (110)
oLy |3 -1

where we have taken the maximum_value of Izr(slb)l to be unity. For
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smaller values of r, there will be no hybrid resonance and only minority
damping will occur, whereas for larger values of r, the minority
damping region will be distinct from the mode conversion region. For
values of r  larger than the critical, the wave may be damped by
minority dissipation before it reaches the hybrid resonance region. This
depends on the side of the minority resonance from which the wave is
launched, and on the type of minority ion. The optical depths of the fast
wave in crossing the minority resonance or hybrid resonance regions (when
they are well separated) are equal, by Egs.(108) and (104). However, in
the first case the energy is dissipated by the ions in the minority
resonance region, whereas in the hybrid resonance case an identical

fraction of energy undergoes mode conversion.

VII. THE FAST WAVE AT THE SECOND HARMONIC RESONANCE

We next consider the propagation of the fast or compressional Alfven
wave across the magnetic field in the vicinity of the second harmonic
resonance of a plasma with a single ion species. The non-resonant
perpendicular currents are again given by Eqs.(87) and (88) and the resonant
currents by Eqs.(66) and (67). Substituting these equations into Poisson's

equation (72), we obtain

1l c? c? (kx+iky)2
_—— -k2p2 2
f1-==+ Lylk, Gy (m,)+k G (n,) Jexp(-k}p3/4) Joe,
3 e& Bet k2
A A L
(111)
4 ¢ gi 3 (kx+iky)2
B i s e —_— e -k2p2
LT {1 P i— Ly [k, 6, (n,)+k G () Jexp(-kipi/4) 6B, ) .
A A 1
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Similarly, substituting the perpendicular currents into Maxwell's equation

(73), we find

R R TR S
2 _ — . E _ - 2
{k3 - ¥ o . LB[kay(nz) kny(nz)]exp( kjpi/A)}asB"E
A 1
he 31 (k +ik )2
e R e e —_— - -lk2p2 2

s {1 — Lplk,Op(n,) = k.G, (n,)Jexp(~kZp2/) Jit69, .

A A 1

(112)

Equations (111) and (112) describe the hybrid compressional Alfven wave
propagating perpendicular to the equilibrium magnetic field in the vicinity
of the second harmonic resonance. This pair of equations also includes the
electrostatic ion Bernstein wave. Together, these equations yield the
general dispersion relation for perpendicular propagation. We now consider
propagation into the gradient in magnetic field strength, ky =0, for

which Egs.(111) and (112) yield the dispersion relation.

i 3 1.3 5Py 1
2 e -me-iZ - 2n2 -1 sy -k2p2
0?[1-=k Lo{(-ng-1k p;n,-—+=k2p?)[1+n,Z(n,) ]-i-=—2(n,)-~Jexp(-k2p2/4)]
" 8 2 2 4 2
= 3 xPi
czll + 1=k L {1 + n2(n,) + i Z(n,)}]
8 2

(113)

Far from the second harmonic resonance, nz>>1 and Eq.(113) reduces to the
uniform plasma dispersion relation. In the vicinity of the second harmonic

resonance, we seek a perturbation solution of Eq.(113), assuming
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kx = — + &k (114)

where &k is a thermal perturbation to the cold plasma solution. The

imaginary part is

w? L w?p? w2p?

Im ok = — 2 [(83 - 3 - — D)1+ 35,2 5] + —8,2.(5,) + =
2z 2
c2 16 2 4e2 he2 2
Wy 5
+ — S;(— - 55)21(32)] : (115)
CA 2

where we have expanded Z(S2 — 1kxpi/2) assuming Sz >> kxpi/Z. The
optical depth for the second harmonic resonance follows from Eq. (115),
again noting that the kinetic power terms do not contribute to the

integral. Integrating the dissipative term in Eq.(115), we obtain

o Lo g B (116)
4 ¢ B c?
A A

This is the well-known result for the second harmonic resonance.

However, we again emphasize that the wave is absorbed due to perpendicular
cyclotron damping by the ions, rather than transformed to the ion
Bernstein branch. The existence of an ion dissipation mechanism for
perpendicular propagation across the second harmonic resonance will reduce
the reflected power and hence the difference between the power absorbed
using high and low field side antennae in a tokamak. Such a result may,

indeed, already have been noted on the JFT-2 tokamak.13
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VIITI. THE X-MODE AT THE ELECTRON CYCLOTRON SECOND HARMONIC RESONANCE
Let us consider the electron cyclotron X-mode in the vicinity of the

second harmonic resonance. Setting ky = 0, the resonant currents follow

from Egs.(66) to (69):

n_q?2 kzég 6B
(B30 = - —— e (XK _ e (q ) (117)
= 4m 29; ch
n g2 kzgg 5B
(53, ) = ——— L (=X K. Ko oy (118)
k B 2
JE 4m 202 e 7
e e
where
Gx(nz) = —i[l + 522(7?2)] ) ¢119)
G (n,) = (—nz-iékpn +l+§kzpz)[1+n2(n)]
b A 2 xe''2 x"e 2 2
2 2 4
k_p
+i’“"2(2)—1 ) (120)
4 2

The non-resonant currents are given by Eqs.(70) and (71). Substituting

Egs.(117), (119) and (70) into Poisson's equation (72), we obtain

= &7 =



w? w? k L

B
1-—F—+ B Z2c (n,)}kz80,
(@2 — 02) 92 .
wze mze kaB Qe
- - —r_-2 G, (n,)}-=8B,, - (121)
w2 - @) @ 4 7 c '

Substituting Eqs.(118), (120) and (71) into Maxwell's equation (73), we

have

w2 w? wze w wze kaB Qe
7 R R . S YU . G (n,)}—8B ,
¥ oez c? (w2 - 02) £ c* &4 y c '
e e
B ; w kaB
- P2 —i = Gy(nz)}k;wk . (122)
2 2 _ 2 —
c (w 92) o, 8

Combining Egs.(121)and (122), we obtain the dispersion relation for the

X-mode in the vicinity of the second harmonic resonance:
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c2k2 — [ e ]
X 2 _ 2
(w wUH)
w;e kaB
= {[20202 - w202 — (c2kZ — w?)(w? — 92)]C (n.)
Q2 (w? — w2.) 8 e pe pe X ) e’ x 2
UH
2 _ R 2 2 7
+ wge[z(m 02 wpe) + wpe]le(nz)} , #123)
2 = 2 2 imi
where wUH wpe + Qe. In the limit n, & 1, Eq.(123) reduces to the

uniform plasma dispersion relation. In the region of the second harmonic

resonance, we seek a perturbation solution

k = k. + 8k (124)

where

(w2 — w2 )2 — w2Q2
k2 = [ PE oy (125)
c?(w? — wéH)

and &k 1is a thermal perturbation to the cold plasma solution ko.
Substituting k = ko and w = 293 on the right-hand side of Eq.(123)

(except in the argument n, of Gx>’ we obtain

© o @ Ly (602 — w2 ) w2
sk - _Pe P BE ¢ P G_(n,)+21iG_(n,)] (126)

lé6c c (39; - w;e) (392 - w;e)
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Assuming Sz >> kxpe/2 and expanding the functions Gx(nz) and Gy(nz),

this gives

2 o (2
©w @ eLB (BQE w2 )

In Bie = 22 Pe oz {(53 - D1+ 3,2.(5,)] + =
lec c (302 - o;e)z P 2 2

vip 523 - sz 50} + (692 — w2 ) [ - 81+ 5,2 (5] - *

x e 2 9 efTi e e pe 9 @ 2%tz 2

+ K p 82083 - §>zi<sz>}l . (127)

From the previous discussions, the interpretation of Eq.(127) is clear.
The terms in Eq.(127) proportional to Zi(sz) determine the total
absorption, whereas the remaining terms (the kinetic power flux) affect
the absorption profile but do not contribute to the optical depth.

Calculating Eg.(82) for the dissipative terms in Eq.(127), we obtain

3 2y 2 sy an 2 1 172 2
P ree @y B2 gsQ o) -2y e (128)
c (3 — boc?) 3 — dboc? c?

where o? = wzpe/&ﬂé. The result given in Eq.(128), obtained from a
non-relativistic treatment, is again in agreement with the relativistic
result.7 The same result has been obtained by Antonsen and Manheimer,8

who also used a non-relativistic treatment to analyze a similar model.
IX. ELECTROSTATIC BERNSTEIN WAVES

We now turn to electrostatic waves propagating across the equilibrium

magnetic field in the vicinity of the second harmonic resonance. These

= B0



are the well-known Bernstein waves which, in a uniform magnetic field,
propagate without damping. For finite values of the parallel wavenumber,
Bernstein waves are damped. This can give rise to absorption of incident
electromagnetic radiation through couplingl1 between electromagnetic and
Bernstein waves in an inhomogeneous plasma. The properties of Bernstein
waves are therefore of interest for electron and ion cyclotron resonance
heating, as well as for ion Bernstein wave heating.

We shall now analyze the effect of the inhomogeneous magnetic field,
Eq.(29), on ion Bernstein waves. Neglecting the electromagnetic vector
potential &A, and hence ©&B, and using the expressions for (EQ)R and
(GQ)NR in Egs.(66), (67), (70) and (71), Poisson's equation (72) gives

the dispersion relation

“pi, “pi(Kytiky)?
1 - + exp(-k?p2/4)L [k G +k G - 0. 129)
3Qz Skiﬂ? P ipl/ ) B[ b x(”z) y y(nz)] (
1 i

Here we have substituted w = 291 in the non-resonant terms. Before
analyzing the inhomogeneous case, we consider the following limiting
cases. First, assuming ky = 0, we may use Eq.(68) so that the

dispersion relation Eq.(129) now simplifies to

w;i iw;i
1 - PL_ K L [1 + §.2(n.)Jexp(-k2p2/4) = O . (130)
39z gnz X B 2 TSR
1 1

In the limit LB »* o, we have 52 >> 1, so that expanding Z(nz)

asymptotically we obtain
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2, 1 w? Q.
b1 1 Plya, L
1 e 5 o kxpi =10 0 2 (131)
i

This is the dispersion relation for ion Bernstein waves in a uniform
plasma. It gives the well-known result: undamped propagation for
w < ZQi, cut-off at w = 2Qi and evanescence for w > 291. Similarly,
using Egs.(69) and (129) we may show that for the case kX = 0 and
LB + @, the dispersion relation also reduces to the uniform plasma
result.

Let us now study the inhomogeneous case for ky = 0, wusing

Eqs.(129) and (69). Since we assume kxpi << 1, we may use Eq.(64) to

write

L+ §.2(n) = (1+ ik 0. 5)(1 + §,2(5,)). (132)

This is valid everywhere except for a narrow region where |§2| < kxpi/Z.

The dispersion relation Eq.(129) is therefore approximated by

. .8 % 1
kxpi(l + 1kxpi$2) = 7 3 EE [1+Szz(52) ‘ (133)

Eqs.(129) and (133) both show that ion Bernstein waves undergo a
fundamental change when propagating perpendicular to a straight magnetic
field into the gradient of magnetic field strength. Lee, Myra and Catto6
analyzed a similar model and obtained damping. However, they considered
propagation perpendicular to the magnetic field gradient for the £ =1

resonance. We consider propagation both across the field gradient and
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parallel to it, for the 4 = 2 resonance. For application to radio
frequency heating, the direction into the gradient is of most interest
since it is the direction in which energy must be transmitted prior to
absorption.

Before obtaining a solution of the dispersion relation Eq.(133), it
is again helpful to calculate the quantity %Re(SJkaEgk). Using

Eqs.(66), (68) and (132), and again putting ky = 0, we obtain

s wary Bly
FRE(8Y 4 8EX) = - i k;|s¢1_(|z{1 +85,2.(5,) =k p832.(35,0}. (134)
i

Here, as for the O-mode, the non-resonant term describes the kinetic power
flow and the term kxpisizi(sz) the dissipation. Equation (134) has been
obtained under the assumption ki << kr, which is satisfied in the region
far from resonance where §, >> 1. Kinetic power flow is significant only
in the region of wave damping, and both kinetic power and dissipation
vanish far from resonance where Sz >> 1.,

The solution of Eq.(133) is

P
1 32 7i 1 ]%}

i 1
&+ 5 g pmgzy (133)

This shows that there is asymmetry in the propagation of ion Bernstein
waves in directions parallel or anti-parallel to the gradient in magnetic
field strength. 'As we noted for the O-mode, the imaginary part of kx
depends not only on the dissipative effects of the resonant particles, but
also on the kinetic power flow of the non-resonant particles. This is

illustrated in Eq.(135). The damping of ion Bernstein waves propagating
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into the gradient in magnetic field strength is in sharp contrast to the
result obtained using a locally uniform model. The range of validity of
Eq.(135) is limited by the constraints kxpi << 1 and kxpi << Sz. These
conditions are violated in the region where the damping is expected to be
strong, §, < 1. An extension of the present analysis to kxpi >1 1is
required for a full investigation of ion Bernstein waves in the

inhomogeneous magnetic field under discussion in this paper.

X. CONCLUSIONS

Gyrokinetic theory provides a natural description for wave-particle
interactions in inhomogeneous plasmas. It has been widely used in low
frequency applications but, with a few notable exceptions,3-6 little use
has been made of this powerful method at high frequencies. In this paper,
we have applied the gyrokinetic meth0d3-6 to the problem of cyclotron
resonance in a straight magnetic field with a perpendicular gradient in
magnetic field strength. By including the magnetic field variation across
the Larmor orbit self-consistently from the start of the calculation,
damping is obtained for purely perpendicular propagation. This aspect of
cyclotron resonance was first pointed out by Lee, Myra and Catto,6 who
restricted their analysis to the case of propagation perpendicular to the
magnetic field gradient. Such damping does not arise in the locally
uniform treatment of cyclotron resonance.

We have concentrated on the case of propagation into the gradient of
magnetic field strength. This is the situation of greatest interest for
radio frequency heating, as it corresponds to the flow of energy in the
radial direction. We have obtained the following results. First, the
standard optical depths for the fundamental 0-mode and second harmonic

X-mode resonances follow from our absorption profiles, which are
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calculated without invoking relativistic mass variation (see also Ref.8).
This suggests that a complete description of electron cyclotron absorption
when k" = 0 will require the inclusion of two effects: (i) wvariation of
the magnetic field across the Larmor orbit and (ii) relativistic mass
variation. Our absorption profiles, which include only the first effect,
are symmetric about o = Qe. This is in contrast to standard profiles,
which include only the second effect, and show no absorption for o > Qe.
Second, the fast wave is shown to undergo perpendicular cyclotron damping
at the fundamental minority resonance in a two ion species plasma, and at
second harmonic resonance in a single ion species plasma. In crossing the
minority cyclotron resonance, the fraction of energy lost by the fast wave
to the resonant ions is exactly the same as the fraction lost through
mode conversion when the fast wave crosses the hybrid resonance.
Similarly, in crossing the second harmonic resonance, the fraction of
energy lost by the fast wave to the resonant ions is identical to the
fraction mode converted to the ion Bernstein wave in the locally uniform
model.12 Third, ion Bernstein waves are found to be damped for
propagation perpendicular to the magnetic field, in contrast to the result
obtained in the locally uniform approximation. As the waves propagate
into the second harmonic resonance, the strength of ion cyclotron damping
increases.

Another feature to emerge naturally from the self-consistent
gyrokinetic treatment is the role of the kinetic power flow in determining
absorption profiles. This reversible flux of energy between waves and
particles is associated with thermal resonance, and is only significant in
the damping region. Although the kinetic power flow is reversible, and
therefore does not contribute to the optical depth, it does affect the

power deposition profile. Within the WKB approach adopted here, this is



shown by the dependence of the local field amplitudes on the kinetic
power. The resulting variation of the electromagnetic field amplitude
across the resonance region was previously only calculable using full wave
theory. The gyrokinetic formalism makes it possible to obtain such
variation within the WKB approximation.

The gyrokinetic description of cyclotron resonance differs
qualitatively from the locally uniform approach, because it includes the
variation of magnetic field strength across each Larmor orbit. It takes
account of the fact that the position at which a particle enters cyclotron
resonance depends on its gyroangle and perpendicular velocity. As a
result, in contrast to locally uniform theory, cyclotron damping occurs
for waves propagating perpendicular to the magnetic field. Because the
cyclotron resonance is spread, both in velocity space and in configuration
space, smooth absorption profiles arise naturally.

The existence of this perpendicular damping mechanism is of greatest
significance for ion cyclotron heating, as relativistic broadening already
gives significant perpendicular cyclotron damping for electronms. For
ions, however, relativistic broadening is negligible and it was thought
that ion dissipation only occurred for finite k“. The results of Section
VI show that this is not the case. The existence of this perpendicular
ion cyclotron damping mechanism implies that magnetic shear is no longer
necessary for dissipation to occur. This perpendicular ion cyclotron
absorption mechanism may also have implications for antenna design in ion

cyclotron resonance heating.
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