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Abstract

It is shown that ambipolarity of turbulent particle fluxes (when
properly defined) holds under very general conditions relevant to toroidal
confinement devices. The results are classical analogues of quantum
mechanical conservation principles and are consequences of the
conservation properties of collision terms which occur in classical
kinetic equations. It is also shown that under conditions prevailing in
toroidal devices, both compressibility and nonlinearity of the turbulent
fluctuations play an important role in determining particle fluxes. The
significance of the results demonstrated here for any future nonlinear

theory of turbulent plasma transport is briefly discussed.
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INTRODUCTION

The purpose of this paper is to discuss certain general properties of
turbulent plasma in toroidal (as opposed to open-ended) configurations.
It is experimentally well-established (see Liewer (1985) and Schoch et al
(1987) for a selection of recent references) that even under conditions
when external sources and fields are maintained stationary, toroidal
magnetic confinement devices like pinches and tokamaks exhibit turbulent
fluctuations in density, potential and magnetic field. It is also
established that particles, energy and momentum are generally lost from
such plasma at rates far higher than expected on grounds of classical
coulomb collisions, trapped particles, etc., under time-independent

conditions.

Although the details of origins and scalings appropriate to such
"anomalous transport" remain mysterious, it is our aim to show that
certain very general statements regarding turbulent particle fluxes can be
deduced from classical electrodynamics of charged particles. Previously,
several authors (Krommes and Kim (1988), Terry et al (1986), and Waltz
(1982), for example) considered particul=zr nl=cema models such as clump
theory, to demonstrate flux constrain: = present paper we show
that turbulent particle fluxes are automatically ambipolar under much more
general conditions. These results are classical analogues of unitarity
and gauge invariance principles of quantum theory. In particular, they
do not depend on the nature or (the as yet un-understood) origin of plasma
turbulence. Any nonlinear theory of plasma turbulence must take proper
account of these theorems. Thus they play a role analogous to sum rules
based on unitarity in quantum theory and optics. They can also be seen to
generalize the well-known ambipolarity results of neo-classical plasma
theory (Hirshman and Sigmar (1981)), in the sense that the kinetic
equations we discuss include those used in neoclassical theory as a
special case. We also demonstrate the importance of compressibility and

the role played by nonlinearities in turbulent particle transport.



PARTICLE TRANSPORT THEOREMS IN PLASMA PHYSICS

We consider a pure, 2-species (electrons; charge -e, ions; charge

e Zi) fully ionized plasma in a region R . The complete dynamical
description of such a plasma is given by the electromagnetic fields

E(r, t), B(x, t) and the distribution functions Fe(g, v, t) and

Fi(E, v, t). As is well-known, the time evolution of E and B is
governed by the Maxwell equations of which the charge and current
densities p(r, t) and j(r, t) are the sources, the latter being the
appropriate velocity moments of Fe and Fi' The distribution functions
themselves are governed by some set of kinetic equations. The form of
Maxwell's equations require that p(r, t) and j(r, t) must satisfy the
charge conservation equation
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This means that the time evolution equations governing Fe and Fi
cannot be completely arbitrary but must in fact be compatible with
equation (l). Assuming this to be the case we demonstrate that
ambipolarity of particle fluxes follows directly from Eq.(l) and one of
two alternative conditions. Firstly if we assume that the turbulence is
such that p(x, t) 1is a bounded function of time (this is the case for

example in stationary tokamak turbulence), defining the operation

. T
& > %iz L J dt and applying it to Eq.(l), we get
T o
V<i> = 0 (2)

In the second case we consider the turbulence to be such that the
quasi-neutrality condition p(r, t) = 0 applies (this is the case if
wavelengths are long compared to the Debye wavelengths and the frequencies
are small compared to the plasma frequency) we get from Eq.(1l)

. V.i = 0 (3)

Bearing in mind that
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Eqs.(2) and (3) imply respectively
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In obtaining Egs.(5) and (6) we have assumed that the region R is a
toroidal one filled with a closed nested set of toroidal surfaces §
(labelled by the function @0(5)). Clearly Eq.(5) is a statement of the
ambipolarity of time-averaged particle fluxes evaluated through any closed
surface. Eq.(6), on the other hand, asserts that at every instant the
turbulent particle fluxes under quasi-neutral conditions are ambipolar.

It must be remembered that Maxwell's equations alone, via Eq.(l), do not
necessarily imply ambipolarity; an additional condition such as
stationarity or alternatively quasi-neutrality is required. We now turn
to the issue of the compatibility of kinetic descriptions with the Maxwell
equations. From the Liouville theorem, the following general single
particle evolution equations can be derived for Fe(g, v, t) ,

Fi(z, ¥, B):
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where E, B are arbitrary electromagnetic fields. J, J% are

particle-conserving "currents" (in v space) which involve two-particle
distribution functions in general. Se and Si are explicit particle

source terms. We have the following general result:

If E, B are arbitrary functions of x, t and Se(g, v, t), S.(x, v,

t) satisfy the neutrality condition (for all r and ¢t )
3 = 3
Zi | eSid v e | Se d3v , (12)

Fe and Fi (the solutions of the kinetic equations) define a conserved

four-current density.

This result is proved simply by multiplying the ion equation by eZi and

the electron equation by e, subtracting and integrating over d3v

& p+vVi = 0 (13)
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where,
— 3 = 3
p = ez, [F dv -e [F % (14)
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and j 1is given by Eq.(4). This shows that Egs.(10), (11) and (12) are
compatible with Maxwell's equations.

Note that the result obviously applies in the special case when ie’i are
given by the Landau-Fokker-Planck forms. Eq.(l3) applies whether or not
E, B are solutions of Maxwell's equations and irrespective of their
space and time dependence, and hence even for ergodic fields. C(learly it
is a consequence of the particle-conserving nature of the collision
operators (and the boundary conditions) and the charge neutrality of the
sources. In other words, it is a sum rule constraint on F.'e. Since

these equations automatically govern all particles (trapped and passing)

the result is general.

It should be apparent that the results derived above using the most
general forms of the kinetic equations and conservative (charge
conserving) collision operators apply mutatis mutandis to reduced
distribution functions such as those satisfying gyrokinetic equations
(Cheung & Horton (1973)) or parallel kinetic equations (Thyagaraja and
Haas (1988)). Indeed, any set of kinetic equations which is consistent
with the electron and ion continuity equations in position space lead to
ambipolarity results of the same type. Turbulent electromagnetic fields
in magnetic confinement physics are experimentally known to have
quasi-neutral characteristics. Thus,the results demonstrated so far show
that plasma responds instantaneously to such fields with ambipolar

particle fluxes irrespective of the causal origin of the turbulence.

It is useful at this point to briefly discuss the relation of the above
results to the well-known "automatic ambipolarity" theorems of
neoclassical theory (Hirshman and Sigmar (1981)). It is obviously the
case that neoclassical theory employs Maxwell's equations and the kinetic
equations Eqs.(10) and (1ll), within certain orderings for quasi-steady E
and B . Hirshman and Sigmar show that under these conditions the flux
surface averaged electron and ion particle fluxes are not only equal as a

whole on each flux surface, irrespective of the radial electric field, but

also that the individual components of these fluxes (for example E x B ,
trapped particle etc) are separately equal. They also show that the
radial electric field is determined by the momentum balance

self-consistently. In the turbulent case discussed by us, under



quasi-neutral conditions, the mean radial electric field is stilll
determined by the mean momentum balance equations derived from Egs. (10)
and (11) from velocity space averaging followed from turbulence
averaging. While Eq.(6) guarantees the instantaneous ambipolarity of the

total fluxes across the surfaces S@ , only the E X B component of

o
these fluxes is separately ambipolar in general, unlike the neoclassical

case.

THE ROLE OF COMPRESSIBILITY AND NONLINEARITY IN TURBULENT TRANSPORT

We consider the continuity equations for ions and electrons, assuming
specifically that there exists a nested family of mean magnetic surfaces
labelled by a function @O(E) such that QO.V@0 = 0, where EO(E) is
the mean (in the sense of the previously defined time average <>) field.
We assume further that all plasma properties can be written as the sum of
a time-independent mean part and a fluctuation. Thus, the electron

continuity equation is,

ane
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Where S is the imposed particle source, assumed independent of t. The

"mean" electron particle transport equation is
V.<n v > =395 (r 16
e—e e(—) (16)
It is sometimes convenient to write Eq.(l6) in its integrated form

J <nv > . dog = [ S (x)d®r (17)
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It is usual to assume that
n, =n (¥) + 7 _(r,t) (18)
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where the suffix zero denotes the time averaged quantities. The mean flow

Y, 1s assumed to lie in a flux surface, that is Eoe'v¢o = 0.

We now consider the consequences of assuming the electron velocity to

be incompressible, that is V'He = 0.
The assumption V.ge = 0 clearly implies
V.v =0 and V.v. =0 (20)
—oe —e

The equation satisfied by Ee is (to all orders in amplitude!)

%4+ v V8 +% .Vn 45 .Va =0 (21)
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We then get the identity,
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Averaging Eq.(22) over timescales long compared with the characteristic

frequencies occurring in Ee(w*e ~ 100kHz) we get,
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We volume average this equation over the volume &8V enclosed by the

surfaces @o + d¥ and @o. We obtain the relation
| = Ee§e>.Vn0 av + | v.<§e‘ﬁ=’-> dv = 0
Y av 2

where the second term containing ¥ e vanishes by virtue of zoe.V@O = 0.

Remembering that dV = o8 for infinitesimal volumes where dS is the
7%,

surface area,
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Since ng is a surface function, this may be written as the sum rule

| <8¥>.do+ ] V.<THz> ds=0 (24)
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Substitution in Eq.(17) yields the result
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Eq.(24) or (25) demonstrate that the turbulent particle flux implied by an
incompressible electron velocity fluctuation is not quadratic in the
fluctuation amplitude, but cubic, This result is wvalid irrespective of
the nature of the turbulence (that is, the mechanisms that cause it), and
depends only on the assumption Eq.(20) and the stationarity (needed for
the existence of time averages) of turbulence. Eq.(2l) also shows that if
Eq.(20) is assumed, nonlinear terms alone must be responsible for the
observed values of the particle flux. In particular, the amplitude of ﬁe
T
must be such that |Vﬁe|=|VnOI to get a significant flux. This is one
form of the "mixing length" relation. It should be obvious that the same
argument applies mutatis mutandis to other scalar equations having the

form of Eg.(15), such as the ion continuity and the energy equations.

The point of the above discussion is illustrated by considering two
examples where incompressibe flows are assumed (Mannheimer (1977), Holmes

et al (1982)). 1In these cases it turns out (for the appropriate flow)

cV@ x Eo
voom - — (26)
B 2
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with ¢ the fluctuating electrostatic potential. It is customary to take
Eo uniform so that Eq.(20) holds. It is plain from our discussion
above that the particle flux must satisfy Eq.(23) and (24) and is
therefore cubic in the fluctutation amplitudes. Furthermore, if the

non-linear terms in Eq.(21l) were to be neglected, Ee and ¢ would be in



phase according to Eq.(2l) and in contradiction to experiment. The
resolution of this apparent paradox for the electrons consists in the

following argument.

We may write in general,

Vé x B, B
Ny & 58— F it = (27)
Bz B
-0 -0

;ne(E’t) must be calculated by either solving the kinetic equation and

taking suitable moments or from appropriate fluid equations.
In any event, V.v_ =V v ( even if B is taken uniform).

Thus, in place of Eq.(21) we must have

+v Vo +vV .¥Vn +vV .Vo +n V.Y +nV.Y =0 (28)
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Plainly, <n v >.Vn_= - n <n V.V > + higher order terms.
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This exact result shows that (electron and ion) compressibility is
essential to obtain a quadratic contribution to the particle flux. Thus
even if the electrons alone are assumed compressible, from the ion
equations the fluxes are small, and therefore, by ambipolarity the
correlation <ﬁeV.§E> must vanish to leading order. The same arguments
apply to the energy equations for PP where parallel and perpendicular
thermal conduction terms are omitted. In the case of the ions where
parallel motions are small the compressibility effects arise from the
polarisation drift (Waltz, 1988). Thus it is important to bear in mind
that both parallel electron drifts and ion polarization drifts are

essential for convective transport.

DISCUSSION AND CONCLUSIONS

It should be apparent that the particle fluxes in plasmas are restricted

by charge conservation properties of kinetic equations and their sources.



These ambipolarity constraints are classical analogues of quantum
mechanical sum rules like the unitarity conditions. It is well-known in
optics and scattering theory that these sum rules can be derived quite
generally and are valid irrespective of the precise details of the
force-laws. For example, let &(r,t) be a Boson or Fermion field
satisfying the Heisenberg equation (here h 1is Planck's constant divided
by 27)

3 2
ih Lo P o V2® + V(r,c)d (29)

ot 2m

where the potential operator V can be an arbitrary hermitian field

operator. It follows from (29) and its hermitian conjugate that

P wtey + v.E etve - (vehye} -0 (30)
ot 2im

Equation (30) is the exact analogue of the classical equation, Eq.(13),
and like it implies the law of conservation of the total charge

Q=c¢e | ate d3r. Just as E,B appearing in Egs.(10) and (11) can be
arbitrary without affecting the validity of Eq.(13), V(x,t) in Eq.(29)
can be an arbitrary hermitian field (it can even be functionally dependent

+ . . . . -
on ¢,% ,V® etc., provided the combination is Hermitian!).

The results demonstrated can provide an important check on numerical
approaches to plasma turbulent transport in the same sense that the
optical theorem or the Kramers-Kronig relations provide useful sum-rule
checks in scattering theory. Furthermore, it is apparent that the
trapping or otherwise of the particles does not affect the validity of the
conclusions. When material boundaries intersect field lines (e.g. near
divertors, limiters etc) the results must be reconsidered in the light of
non-ambipolar fluxes along field-lines. The present results can be
expected to apply without change in the confinement and saw-teeth regions
of tokamaks. It is worth noting that only particle transport is
constrained by charge conservation. No general results of this type apply
to momentum and energy fluxes. This is in contrast to specialised clump
models where charge conservation is claimed to constrain momentum and

energy fluxes (Terry et al (1986)).



In summary, we have shown that any theoretical model of plasma
turbulence in a toroidal confinement device automatically leads to
ambipolar particle fluxes (suitably defined) provided it is compatible
with quasi-neutrality and/or stationarity. This general result supersedes
all previous results of this type proved for particular cases involving

specific mechanisms,
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