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Abstract

Linear and non-linear MHD calculations are presented to examine the
effect of a finite conductivity (resistive) wall on plasma stability.
Near q,=2 in the tokamak and generally in the RFP, ideal modes are
found, with a growth rate which varies inversely with the wall time
constant. Resistive tearing modes can also be destabilised by a finite
conductivity wall, but sufficiently fast plasma rotation can in turn
stabilise these instabilities. Non-linearly it is shown that the eddy
currents driven in the resistive wall, by rotating MHD activity,
produce a torque which opposes and slows the plasma rotation. This
effect can be particularly strong in the RFP and leads to mode lock
times which are shorter than in the tokamak.



1. Introduction

In the majority of magneto-hydrodynamic (MHD) simulations it is assumed
that the plasma is surrounded by a perfectly conducting wall. In
reality in the tokamak and reverse field pinch (RFP) the wall has a
finite conductivity, and a time constant for magnetic field penetration
which is less than or comparable with the plasma pulse duration and
field diffusion time. In this paper we will examine the effects of a
finite conductivity resistive wall on MHD stability in the tokamak and
RFP.

In the tokamak the major disruption is generally preceeded by a period
of magnetic oscillations with a poloidal number, m = 2 and a toroidal
mode number, n = 1 [1]. These (2,1) magnetic oscillations are
generally interpreted as arising from resistive tearing modes [2,3] and
probe measurements have shown this to be so experimentally [4]. Major
disruptions generally either occur as the result of a density limit [5]
or a current limit (usually at a limiter safety factor g ,2) [6]. A
feature of the large amplitude m=2 activity, for current limit
disruptions in JET, is the general absence of rotation [7] of the (2,1)
magnetic activity. This absence of rotation and the hard disruptive
limit for ¢,“2 has been shown to be consistent with the effects of a
resistive wall on m=2 MHD instabilities in Ref [8]. In Section 3.1 we
examine from a linear viewpoint the stabilising effect of mode rotation
on resistive wall instabilities. In particular we show that both
analytically and computationally that a locked ideal (2,1) mode occurs
for q,<2; this result is in agreement with the calculations in

Ref [8].

In larger tokamaks the (2,1) predisruptive activity is generally
observed to lock in a particular phase after a period of initial
rotation. This mode locking which can occur for any value of (not
just q,“2) has been observed for example in JET [7] and DIIID [9].
Rutheg¥ord [10], and Nave and Wesson [11], have proposed analytic and
semi-analytic models to explain this mode locking phenomenon. They
postulate that the mode locking arises because of a net torque on the
plasma which is due to the eddy currents driven in the resistive wall
by the rotating mode. In Section 4.1 we shall show that full numerical
solutions of the tokamak reduced MHD equations are in good agreement
with the analytic theory of Rutherford [10]. These results are also in
accord with numerical mode locking simulations by Persson and Bondeson

[8,12].

In the RFP consideration of the effects of a resistive wall can
markedly change the stability boungaries, relative to those obtained



with a perfectly conducting wall., In the limit of an ideal wall
several authors have produced RFP profiles, with realistic zero current
conditions at the wall, which are stable to all resistive and ideal MHD
instabilities at zero B [13,14]. However, when the effects of a
resistive wall are considered these profiles are always unstable to
ideal non-resonant instabilities. In addition a broad range of m=0 and
m=+1 resonant tearing modes are destabilised by considering the effects
of a resistive wall. These tearing modes can be stabilised by rotating
the plasma sufficiently fast, but the ideal resistive-wall
instabilities remain essentially unaffected by rotation. In Section
3.2 we will present numerical and analytic results which confirm the
destabilising effect of a resistive wall for the MHD stable profiles
(with an ideal wall) of Antoni et al [14]. In a previous publication
[15] we have presented results on the resistive wall instabilities
which occur for tearing mode stable profiles of the type parameterised
by Robinson [13]. The torque effect due to the eddy currents in the
resistive wall, which acts to inhibit mode rotation in the tokamak, is
also present in the RFP. Due to the different geometry and generally
larger fluctuation level in the RFP the rotation damping time due to
the resistive wall is considerably shorter than that in the tokamak.
These results are discussed in Section 4.2.

In Section 2 we describe the MHD equations and numerical methods which
are used in these studies. In Sections 3 and 4 linear and non-linear
results are presented on the influence of a resistive wall on MHD
instabilities. Finally, conclusions are given in Section 3.

2. Equations and Numerics

For reasons of computational efficiency we solve a set of reduced
equations, derived by Strauss, which are applicable to RFP geometries
[16]. These equations are based on an ordering scheme in which the
fluctuating magnetic field is assumed to be small relative to an
axisymmetric mean average field, and slowly varying on an Alfvenic time
scale. In addition the pressure is ordered to be small and cylindrical
geometry is assumed, so that toroidal effects are ignored. The
ordering and derivation of these reduced equations is discussed fully
in Ref [16]; we state the results here without a detailed derivation.

The magnetic field (B) is split into a spatial average (<B>) and
Y
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where
B> = (2nL)'1f§dzI§ﬂ Bde (2)
and L is the periodicity length in the azimuthal direction (z). The

fluctuating magnetic field and velocity are represented in a potential
form,

4"
B = Vx(y<B> + ar) (3)

and

\
V = <B> x V¢/I<B>|2 (4)

where T is the unit radial vector. The parallel component of Ohms law
yields

—

.. D2 .w+lt (5)
|<B>|?
where
¢ = i Ve (1<B> 127y - <B><B>evyp - T<B>*Va) (6)
[<B>|?

Here the magnetic field is normalised to the equilibrium toroidal
magnetic field, Bo, at r = 0, distance is normalised to the minor
radius 'a', the resistivity (n) is normalised to its value at r = 0,
time is normalised to the Alfven time Ty = af(popo)/Bo (with Po the
density at r = 0), and S = TR/TA where TR = a"’po/qQ is the resistive
"

-

transit time. An equation for a is derived from Tx B +<H>xB=0
(a consequence of the ordering)

L3, 2y - @y 7

where € = 2na/L is the effective inverse aspect ratio and &(= 2nZ/L) is
the 'toroidal' angle (0 <E<2n). The evolution of ¢ arises from the
vorticity equation

By

%E (V2g) + Ve (V929 + v{‘%"] x <B>) = Bev
BeVC



These equations have been used by Holmes et al [17] for a study of

tearing modes in the RFP; the notation and conventions in this paper

are identical to those of Ref [17]. In addition to Egns (3) to (8) for
Y

the fluctuating field, E, equations for the evolution of the average
magnetic field <B> may also be derived. These are given in Refs [16]
and [17] and will not be reproduced here.

The effects of the resistive wall are manifest in the boundary

conditions. Using the so called thin wall approximation [18], that the
wall resistive skin depth >> wall thickness, yields

1% =0 (9)

ar ]r_ = Twat (10)
where r , r_ are just inside and outside the resistive wall
respectively and the wall time constant L Tilabfﬂw: with 6 being the
wall thickness and N its resistivity. Taking the wall to be at r=l,
representing the field in the vacuum region outside the wall in terms
of modified Bessel functions as

ﬁr = AK’ (enr) (11)

where primes denote derivatives with respect to r and using conditions
(9) and (10) gives:
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g;rﬁr - (m? + nze?)Km/a;— %r (12)

For the velocity boundary condition we use %r 0 at r = 1. This leads
to the problem that we form a resistive boundary layer near the wall
"

[19] since for V.= 0 Ohm's law becomes aﬁr/at = n/S (V’ﬁ)r (and aﬁr/at
# 0 at r = 1 for a resistive wall). This Vr = 0 boundary layer however
has no effect on the marginal stability and in general has little
effect on the overall stability. The remaining boundary conditions at
r = 0 for y and ¢ arise from regularity of the solution.

Of particular interest for the resistive wall stability problem is the
issue of the effects of plasma rotation. To bring out the main

features of this effect we will consider the simplest form of rotation
- uniform toroidal rotation. It is in fact simpler and equivalent to



translate the wall toroidally, which represents a Doppler shift of the
time derivatives. So for example boundary condition (12) becomes

ar® dK_ a%

arr - (m3 + n2e?) K /—7 B - -1 (EE‘ + iw ﬁ ) (13)

where gy is the angular frequency of the 'rotating' wall.

In the numerical solution of Egqs (5) to (B8) we use a finite difference
representation in the radial direction (r) and a truncated Fourier
series in the angular directions 6, . Thus for example y is
represented as '

¥v(r,0,E,t) =) (¢m (r,t) sin (mé+nf) + w (r,t) cos (me+nE))  (14)
m,n »T

The linear terms of Eqs (5) to (8) are time advanced fully implicitly
using a time centred difference scheme. This allows very rapid
convergence to the linear eigenvalues [20]. For non-linear
calculations the additional terms are included purely explicitly and
the timestep is limited accordingly when the non-linear terms become
dominant.

Although we have emphasised the applicability of these reduced
equations to the RFP they may also be applied to the tokamak. In fact
in the tokamak limit <B,>*1 and <Be>%o(e) they reduce to the familiar
reduced tokamak equations [21]. Numerically for tokamak problems we
solve the reduced tokamak equations:-

8y _ lovsas _9yla 3% ., nv?
3t - (tasar oarrog®te€artys LV (15)
3v: ¢ 1368 86103
ot " Gwear arrae V1°C
1oy a ayla av?
—_dv (16)
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Using the appropriate limit of Eqn (12) as the wall boundary condition.
It should be noted that there is no distinction between fluctuating and
average quantities here, and these equations are also used to evaluate
the average fields (<y> and <¢>). These reduced equations are solved
for tokamak problems because they contain fewer terms and are thus more
efficient computationally than the reduced RFP equations.



We will not examine how good an approximation the reduced tokamak and
RFP equations are to the full MHD equations in this paper. In Ref [22]
it is shown that the reduced tokamak equations are a good approximation
at large aspect ratio and low B, and in Ref [17] it is shown that the
reduced RFP equations are a good approximation to the full MHD
equations when B=0. In fact the reduced RFP equations contain an exact
representation of the marginal ideal MHD equations and thus the
marginal ideal and resistive stability boundaries are reproduced
exactly by these equations.

3. Linear Results

3.1 Tokamak

Considering a resonant surface of radius, Ty where the safety factor
q(rs) = m/n we may derive an approximate dispersion relation for the
(m, n) resistive wall tearing mode. Assuming a vacuum to exist for T,
srsr (with r, being the wall radius) we may solve in this region to
obtain y = AL (enr/r ) + BK (enr/r ), where I and K are the modified
Bessel functlons In the tokamak llmlt the arguments of the Bessel
functions are small (enr/rw << 1) and the first term in the series
expansion of Im, Km is sufficient. We retain the full terms Im’ K
however so that the results may be latter applied to the RFP. The
approximation of a vacuum for T, <r ST, is often quite good for the
(2,1) tearing mode since in many cases there may be little toroidal
current flowing outside the q = 2 surface. Using boundary condition
(12) we find that

1dv
iig [w dr]r A

al(r ) (K’ (en))? wt
= A’ + = = L W_ (17)
v rsKﬁ (enrs)[thKﬁ(en)B-K&(enrs)a(rw)]

where a(r) = (m?/r? + n’e’/rw’), B = K (enr )I (en) - Kﬁ(en)I (enr

r.=r /r , and A is the value of A~ w1th no wall (i.e. T, T 0). In
this equatlon and throughout the rest of the paper we have reverted to
a dimensional form. In the tokamak limit (ne<<l) Eq (17) may be

considerably simplified to the result obtained previously [10]

2muT ;Zm-l wTw(A; - A;)
A'=A" - = A; - = (18)
v rt [uwt (l-r )+2m] wt + 2 m(l-tT)
wooow s W s



where Aé is the value A° when Ty = W

The logarithmic discontinuity (A°) is related to the growth rate, w, by

[23]
“<B_>r_ ,2/5
- W5 0375 |“Eq z w|
TpU 0.547 (rwA ) (S) %, (19)

and thus the requirement for instability (w>0) is that A">0. In fact
from Egqns (18) and (19) we may prove the more general result that when
A; >0, then instability exists for all T, (except possibly Tw=w). This
result was noted previously by Jensen and Chu [24], and is the analogue
of that proved by Pfirsch and Tasso in the ideal limit [25]. It is
most easily seen by regarding Egs (18) and (19) as describing two
curves in the (A",w) plane; the intersection(s) of these curves
.describe the solution(s) of the problem. Equation (19) is a curve
waA‘4/5 in the w>0, A">0 quadrant while Egqn (18) varies between A; for
w=0 and a smaller value as w»=, Thus if A;>0 the two curves must
intersect in the w>0, A">0 quadrant and hence a growing solution (w>0)
exists for any T, as noted above. This is a very useful result since
it shows that to examine the ideal and resistive stability boundaries,
with a resistive wall (051w<w), it is sufficient to study the stability
boundaries with no wall (t. = 0). We have numerically confirmed the
result that A;>0 implies instability for all Ty in many cases. An
example is shown in Fig 1 where the variation of growth rate (w) with
1, for the profile q = 1.1 (1 + 25r8)” withe =0.1, m=2, n=1, n=
1, and S = 107, The open circles shown in Fig 1 are from the numerical
solution of the reduced tokamak equations and the solid line is from
the dispersion relation [Eqns (18) and (19)]; they are in good
agreement. In this case A; = 4,6 while with a perfectly conducting
wall (tw=m), A& =-1.68. Hence although instability persists for all
finite T, the singular limit T, ™ is stable; this stability for B, B
= is also confirmed by the numerical solution of the reduced tokamak

equations.

The resistive wall stability is modified significantly by plasma
rotation [18]. For the simple uniform toroidal rotation discussed in
Section 2 the effect is to Doppler shift the growth rates in the wall
boundary conditions by iw . So for example the dispersion relation for
the resistive wall tearing mode [Eq (18)] becomes [10]



2m(w + iww)rw;im-l
A" = A" - 20
* [(w + iw )T (1-r Zm) + 2mlr =
wow s W

It should be noted however that we must not Doppler shift the growth
rate (w) in the resistive layer relation, Eq (19). With the rotation
(uw_#0) the growth rate is complex and the proof that the resistive wall
tearing mode is unstable for all T if A;>O, is no longer valid., If
A;z Aézo then as W~ in Eq (20)

2mr m-1

A" = A"+ —S o
Av = 2m—1]r Aw (21)
s W

Hence as the rotation speed is increased the growth rate asymptotes to
the ideal wall (Tw = w) growth rate. For the case that A;>O>Aé it may
be shown that a critical rotation frequency (wcrit) exists beyond which
the mode is stabilised [8,18]. These results on the stabilising
effects of rotation are reproduced by numerical solutions of the
reduced tokamak equations. Figure 2 shows a comparison of the
dispersion relation [Egs (19) and (20)] with numerica% growth rate (wR)
and frequency (wI) for the profile g = 1.1 (1 + 54re)”™, with § = 5 x
105, e = 0.1, m= 2 and n = 1. For this profile A; = 5.3 and A% = 2.6
and so the result given in Eq (21) is applicable with the growth rate
asymptoting to the ideal wall growth rate at high rotation speed.

The rotation effects described above are for a resonant tearing mode.
Non resonant ideal modes may be destabilised by resistive wall effects.
The growth rate for these non-resonant modes is given by [18]

L]

wt = rwA1 (22)
with
; 1 dy r +A
A1 = ;_._];18 [$ d—r- I'w_}\- (23)

A particular case of such an ideal mode is that which occurs for q < 2
in the tokamak [8]. Rotation has essentially no effect on these ideal
modes. The appropriate dispersion relation is obtained by Doppler
shifting the growth rate in Eq (22) by iw_ [18].



This result is also confirmed in our numerical simulations though the
numerical technique shows poor convergence to a linear eigenvalue

for ww> w,. Figure 3 shows how the ideal growth rate (S = «) varies
with U for qa=l.7 with JZ a (1-r?), Ty ™ 104 and € = 0.1. It can be
seen that w, is essentially independent of w, while Wp = W in
agreement with the analytic results. These locked modes for g <2 are
thought to be associated with the hard disruption limit which occurs in
the tokamak [8]. In JET for example when q, -2 a disruption occurs
which is proceeded by a (2,1) mode with a growth time of the order of
the wall time constant [7]. Also this mode often shows no coherent
oscillations and is essentially locked to the wall throughout most of
its duration [7]; this is in contrast to density limit disruptions
(with »2) where the pre-disruption (2,1) [or (3,1)] activity
generagfy has a long oscillating (non-locked) phase [7].

3.2 RFP

In the RFP a wider range of instabilities are destabilised by a finite
conductivity wall, than in the tokamak. With a perfectly conducting
wall it is possible to find RFP equilibria which are stable to all
ideal and resistive modes at B = 0 [13,14]. Here we will adopt the
equilibrium parameterisation given Ref [14]. The equilibria in this
case are specified by <J> x <B> = 0 and

- -
— <J>+<B>

= 222280 =y (1-1%) (24)
I<B>z €

Figure 4(a) shows A° for this profile with Mo = 3.6 and a = 3.2. Here
A" is defined as

(25)

[this is consistent with the tokamak definition Eq (17)].

Results are shown in Fig 4(a) for a vacuum (Tw=0) and ideal wall

(Tw = ®) at r = 1. The convention is used that the modes which are
resonant within the field reversal surface have toroidal mode numbers



n<0. With an ideal wall for this profile (pc = 3.6, a = 3,2) all modes
are stable (i.e. have A“<0) but with a vacuum wall a wide range of m =
0 and 1 modes are destabilised. Recalling that A;>0 implies
instability for all Tw(#w) we see that the resistive wall will
destabilise a wide range of tearing modes. Figure 4(b) shows the
growth rates obtained by solving the reduced pinch equations for the
m=0and m=1 (n<0) modes with S = 4 x 105, € = 0.1 and T, = 103,

The regions of instability corresgond to A;>0; as ne~0 the m = 0 growth
rate tends to zero since ma(ne)zf [see Eq (19)]. For - 1.8 <ne<-1.6
Fig 4(b) shows instability (see also Fig 5). These are non-resonant
'on-axis' ideal modes [18] and are analogous to the qa<2 ideal tokamak
modes discussed in Section 3.1. To study non-resonant ideal modes in
the RFP we define a generalisation of Eq (23).

aB
= lim [— —£]

1
A”
ﬁr dr rw+h

1 (26)

A=0

where B_ is obtained by solving the marginal force balance equation
[RHS of Eq (8)]. The growth rates of the ideal non-resonant modes are
then given by Eq(22).

Figure 5 shows A’ as a function of ne for equilibria defined by Eq
(24) with various values He and a; with a superconducting wall these
equilibria are stable to all resistive and ideal modes. However with a
resistive wall ideal instability (A",>0) occurs for non resonant modes
'within the axis' (n<0) and ‘outside the wall' (n>0). For typical RFP
parameters (pcm3.4) the internal and external non-resonant modes are
about equally important. At higher Mo (and F,BO) the external modes
become more important, and vice-versa at lower Mo These results are
in accord with those given in Refs [26,27]. Figure 6 shows a
comparison of the numerical growth rate obtained by solving the reduced
pinch equations with the result from dispersion relation Eq (22) with
B = 3.4, a = 3.5, § = =, Ty 102 and -1.7 € ne < -1.2. There is
excellent agreement between the numerical solution and dispersion
relation.

The effects of rotation on resistive wall instabilities are the same in
the RFP as the tokamak; the resistive wall tearing modes are

stabilised by rotation if A& < 0, while for sub-Alfvenic rotation the
non-resonant ideal modes remain locked and essentially unaffected by
the rotation [18]. These conclusions are confirmed in Fig 7 which
shows the growth rate as a function of rotation frequency (mw) for
u=3,6 (l-r3¢2) with § = 5 x 104, € = 0.1, and B ™ 103, There are



two pairs of growth rate curves shown, cne for n = 18 and the other for
n =20, The n = 20 case is a resonant tearing mode with Aé = -1,67;
the strong stabilisation effect for ww% 5x 10-3 TA'1 can be seen. In
contrast the n = 18 case is the on-axis ideal non-resonant mode; its
growth rate (w,) increases very slightly with w, a result predicted
analytically when the inertia is retained [18], while its frequency
(wI) is such that it remains locked in the laboratory frame (wI =—ww).

If we examine the stability to ideal non resonant modes, for profiles
which are unstable to internal tearing modes but stable to ideal modes
with a perfectly conducting wall, then we find that the internal
on-axis ideal mode is strongly unstable. Figure 8 shows A’, for the
internal non resonant modes with the profile p = 3.5 (1 - r2e8); this
profile is ideally stable but tearing mode unstable with a
superconducting wall. In Fig 8 results are shown for various locations
(Rwall) of a superconducting wall in the vacuum region. The results
show that the ideal on-axis mode is unstable, even if there is an
infinitely conducting wall just outside a resistive liner, for this
tearing mode unstable profile. This situation may correspond to the
HBTX-1B RFP experiment where there was a resistive liner at r = 26.7 cm
and thick (effectively infinitely) conducting shell at r = 28.8 cm. In ;
this experiment large amplitude locked modes, resonant near the
magnetic axis, were sometimes observed [28]. In these cases the usual
internal resonant magnetic activity is also present; indicating perhaps
that the profiles are tearing mode unstable. Thus it appears that the
ideal on-axis resistive wall modes may provide an explanation for the

experimentally observed locked modes.

4, Nonlinear Results

4,1 Tokamak

The linear and non-linear results are in many ways analogous. In the
absence of plasma rotation the ability of the tearing mode to grow
sufficiently slowly that its flux can penetrate the resistive wall
gives the linear result quoted in Section 3.1, that a tearing mode is
unstable for all T, (#<) if it is unstable for T, = 0. Non-linearly we
have an analogous result that the saturation width is relatively
independent of T, for T <w., Figure 9 shows the m/n = 2 single
helicity island width (W) evolution for various L with g = 1.1 (1 +
(r/0.627)4)”, S = 105 and € = 0.1. From this figure it can be seen
that the island saturation widths for B = 0 and = differ considerably,
The saturation widths for T, 0 and 10* however differ very little,
despite a 40% reduction in linear growth rate for the W B 10% case,
relative to B 0.

- 13 -



Rotation also has an analogous effect in the linear and non-linear
regimes. In Section 3.1 it was shown that the linear growth rate
asymptotes to the T, =™ result as -0 for all Tw>0. The non-linear
analog of this result is that the saturation width asymptotes to the

T result as w e, Figure 10 shows this for the same parameters as
Fig 9; it can be seen with a sufficiently fast rotation (mw = 0.06)
that the Ty & 103 (2,1) single helicity island evolution is essentially
identical to the T, m- result. This is despite the large difference
in growth rates and saturation widths in the absence of rotation
between the B ™= 10® and = cases (Fig 9).

Linearly we have seen that rotating the plasma causes the tearing mode
to rotate (and not remain locked to the wall). However non-linearly a
mechanism exists which tends to cause the tearing mode to lock [10,11].
This arises because the eddy currents driven in the resistive wall by
the rotating mode produce a net torque which opposes and reduces the
plasma rotation. We may calculate this torque by integrating the
poloidal and toroidal components of the equation of motion over the
plasma volume

2
T d<Ve> T

w =
Io P dt i 2 2 (%r ﬁB )r =r (27)
o (m,n) m,n m,n W
and
T d<v > T
z v
J‘o Pr —g¢ dr = 2u 2 (%r ﬁz.  —
o (m,n) m,n m,n w

(28)

We consider the case in which a single Fourier component (m,n) is
dominant and eliminate BB’ ﬁz in Eqns (27) and (28) using the resistive
wall boundary conditions. The result for the rate of change of
rotation frequency (Q) is

aQ -0t r ﬁ 3 m2/r 2 + nle?
W Wwr s

A2 — =
Tao"dt © = T2WB ?  m? + nlel
I's (o]

(29)

where we have assumed that the average flows (<Ve>,<Vz)) exist only
within the island and considered the plasma as a solid body rotator (ie
the entire plasma has the same angular frequency). We relate

ﬁr (r = rw) to the island width W by assuming a vacuum to exist for
r <r<r . With this assumption we find



mBgyq 2rs(Av - Aw) maT

W
2 —= = —(—)3 2
TA” dt (8rs Ty ( qBo )? 4(m?+n2e?) /A + m=AQ=1w=/(m=+n=ez) (30)
where
2 Kl;](en)rw2 _ -
A= (K'(en)I‘'(enr ) - I'(en)X (enr )) (31)
o B lenr 3 m m s m m s
m s
B.q’
and is evaluated at e
In the tokamak limit (ne<<1), A=l and Eq (30) reduces to
. a _ ( W )3 iy (mBeq ), ZISmQTW(AV—AW) -
A dt Brs W qB0 4m? + 031w2

which is the result given in Ref [10]. 1In deriving these equations for
dQ/dt we have used a simple MHD model and have taken no account of
viscosity or neo-classical effects. The effect of viscosity would be
to couple the flow in the island region to the plasma outside the
island, thus increasing the volume of angular momentum which the torque
has to slow. The effect of neo-classical terms is to damp poloidal
rotation in the tokamak [29], and thus weaken the torque effect from
the resistive wall., These effects must be borne in mind when comparing
this theory with experiment. The analytic expressions, Egs (30) and
(32), are however the appropriate formulae to compare with numerical
solutions of the reduced tokamak equations. Figure 11 shows the time
evolution of Q and dQ?/dt, for the same equilibrium as Fig 9, and
compares the analytic [Eq (32)] and numerical results. For this case
the imposed plasma rotation frequency w, = 10-2, S = 10¢, and T, = 400.
From Fig 11 it can be seen that the analytic theory gives a reasonable
approximation for the time evolution of dQ?/dt. The solutions of Eq
(32) for Q are discussed in Ref 11.

For Qt <<m
w

Q= Qoe_(Cth/l*szA:) (33)
where Qo = Q(t = 0),
mB
- W 2] 5 o _ e
c (ars . rw’(qBo )2 2 rm (Av A7)



and we have assumed W is constant in time. It should be noted that
since the decay (in Eqn (33)) is exponential, true mode lock (R = 0)
never occurs within the limitations of this theory. It is also
interesting to note that these expressions for mode lock depend on the
Alfvenic timescales and are independent of the resistive timescale
(TR). This is in contrast to the non-linear growth time of the tearing
mode which varies with TR and determines the duration of the
pre-disruption MHD activity. Thus given that the Alfven time is
relatively invariant between tokamaks, we see that the ratio of
disruption duration (TR timescale) to mode lock time (TA timescale) is
greater in the larger tokamaks. Hence mode lock is more likely to
occur in large high temperature tokamaks (e.g. JET) than in their
smaller counterparts. An alternate way of seeing this result is to
examine the island width required to produce mode lock. Solving Eq
(32) we find that the island width (Wc) to reduce an initial frequency
(Qo) by a factor of 10 in a mode growth time is,

W= Cle'erA’(O.QQQoﬂrw + 36.8/1 ) (34)

where C, = 256 g¢‘m~3 r;’ q"’(A;—Aé)‘i, and vy is the growth rate of the
perturbed magnetic field. Taking typical values we find WCNIO% for
JET, ~25% for DITE [30], and ~70% for TOSCA [31]. Thus mode lock is
likely to occur in JET but unlikely to occur in TOSCA, where Wc exceeds
the disruption threshold. As noted above however care must be
exercised in applying Eq (32) directly to the experiment and these
values for Wc are most appropriately interpreted as a relative scaling
between the various experiments.

4, RFP Results

In the RFP a full non linear study would necessarily include a self
consistent dynamo model. Here we focus on the very restricted problem
of the mode locking for a single helicity mode.

Considering a typical internally resonant mode m = 1, n = -11 for the
profile p = 3.6 (1 - r?¢9) with € = 0.2, we find evaluating the
constants in Eq (30) that

9x10-3W3 Q1
2@= M
A dt (10.240.39 Q31 2)r 3
w''w

T (35)

Comparing with the equivalent result for a typical m = 2, n =1 mode in
the tokamak shows that the RFP mode lock rates are “8 times faster than
in the tokamak when QTW((I, and 12 times faster when Qtw>>1. The main
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reason for the higher mode lock rates in the RFP is that the factor
(A;—A;) occurring in Eq (30) is 5 times larger in the RFP than in the
tokamak. This difference in (A;~Aé) between the RFP and tokamak is a
fairly general result and occurs because the wall has a strong
stabilising influence for the RFP, but does not in general for the
tokamak; thus we should expect rapid mode lock in the RFP. Also in
the RFP a broad range of internally rescnant modes with relatively
large fluctuations (8B/BVv1%) are generally observed [32], thus further
enhancing the mode lock rates in the RFP relative to the tokamak. An
exception is near q,“2 in the tokamak where (A;—A&) becomes large and
calculations show rapid mode lock [8].

These results on mode lock in the RFP are again borne out by the
numerical calculations. Figure 12 shows the time variation of Q1 and
dQ2/dt for the single helicity m/n = 1/11 with p = 3.6 (1-r2+s%). The
solid curve for dQ?/dt, in Fig 15, comes from evaluating the analytic
result, Eq (30); it can be seen that there is reasonable agreement
between the analytic and numerical results for the time variation of

dQz/dt.
5. Conclusions

It has been shown that allowing for the effects of a resistive wall can
destabilise ideal and resistive MHD instabilities, which would be
stable if the wall were perfectly conducting. Near g 2 for some
tokamak configurations, and in general in the RFP, an ideal
resistive-wall mode occurs with a growth time al/rw. The analytic and
numerical studies presented show that these ideal resistive-wall modes
are essentially unaffected by sub-Alfvenic plasma rotation and remain
locked to the wall. They appear likely candidates for explaining the
q,=2 disruption activity in the tokamak [8], the observed locked modes
in HBTX1B [28) and much of the MHD activity in HBTX1C [33].

For the resistive-wall tearing modes, sufficiently high plasma rotation
velocities are stabilising if Aé(D, and modes do not lock to the wall.
There is however a non-linear effect which causes mode lock [10,11];
the eddy currents driven in the wall by the rotating MHD activity
produce a net torque on the plasma which opposes, and slows, the plasma
rotation. Full non-linear calculations, which are in reasonable
agreement with analytic theory, have shown this mode locking effect in
both the RFF and tokamak. In general the mode lock rates predicted by
the theory are faster in the RFP than in the tokamak. This is mainly
due to the generally large values of (A;—A;) in the RFP. Strictly the
theory predicts an exponential decay of Q as the mode locks and exact
mode lock (0=0) never occurs. However the exponential decay does
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rapidly cause the mode rotation time to exceed the disruption duration,
and thereby produce effective mode lock. Also in this region of slow
rotation any small stray error fields may lead to absolute mode lock
[34].
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Fig.1 Comparison of growth rate versus 7,, between dispersion relation (solid line) and
numerical results (circles) for m=2, n=1 with g=1.1 (1+25r%)% and S=10".
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mode (g, =1.7) showing mode lock (w;= —wy).
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Fig.7 Growth rate (wg) and frequency (wy) as a function of rotation
frequency (w,,) for p=3.6 (1— %), §=5x10*and 7,, =10°. For the non-
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Fig. 10 Single helicity m/n=2/1 non-linear island width evolution showing
strong rotation (w, = 0.06) causes the resistive wall mode to saturate to the ideal
wall (7,,= o) width.
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Fig.11 Non-linear evolution of @ and dQ*/dt for a single helicity
m/n=2/1 simulation with $=10° and g, =3. In the lower plot the
numerical (broken curve) and analytic Eq(32) (solid curve) results

are compared.
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Fig.12 As Fig.11 but for the RFP profile p=3.6 (1—r>®) with the single helicity
m/n=—1/11. The analytic result (solid curve, lower plot) is from Eq(30).












