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SUMMARY

In this paper we present the development of a
mathematical model of detonations in multiphase systems. The
governing partial differential equations and the constitutive
physics are briefly described. Emphasis is given to
describing the principles which underly the finite difference
scheme used to solve this problem. We present some examples
of the results obtained with this extremely stable and robust
scheme. Special attention is devoted to interesting numerical
phenomena arising in these simulations.

1. INTRODUCTION

The purpose of this paper is to discuss a number of
interesting phenomena, both physical and numerical, which
arise in solving a class of nonlinear partial differential
equations. Specifically, we have been interested (see [1,2]
for an account of the experimental background and physics
underlying the models) in developing models of detonations in
multiphase systems with a view to understanding vapour
explosions. The latter may arise in many engineering
contexts, for example, in the metal casting industry and in
the transportation of liquefied natural gas over water [3].
They are also studied by the nuclear industry, in connection
with the highly unlikely event that prolonged loss of cooling
of a reactor core leads to significant melting of core
material. In this case such an explosion may result if this
melt contacts residual coolant [3].

Our aim here is not to go into the physics but to look at
several challenging issues which arise naturally in the
numerical simulation of the phenomena in question. In
particular, we address the following points: (i) issues
relating to "well-posedness” of the initial-boundary value
problems formulated and the bearing these have on the choice



of the numerical methods used to solve them; (ii) the effect
of mesh size on accuracy, as opposed to stability; (iii) the
distinction between numerical and "real" instabilities.

The plan of the paper is as follows: 1in Section 2 we
give the mathematical formulation of the problems solved. No
account of the derivations or the physics involved in the
constitutive relations is discussed. Section 3 gives a brief
but relatively complete account of the finite-difference
scheme and the solution procedure. In Section 4 we present
typical results produced by the code, showing strong and weak
detonations in multiphase flow of gases. Section 5 is devoted
to a detailed discussion of the three issues mentioned above.
Finally, in Section 6, we present our conclusions.

2. MATHEMATICAL FORMULATION

Consider a one-dimensional duct with constant
cross-sectional area. Let Pis Vi, €4, Ti' o (i1 =1,2) denote
respectively the thermodynamic densities, velocities, internal
energies, temperatures and volume fractions of the two
components forming the mixture. These variables are assumed
to be functions of x, the distance along the tube and the
time t. It is convenient to introduce the effective
densities 51 = Py -

The following set of equations govern the temporal and
spatial evolution of the above variables [4].

a, v, = 1 (1)
9P ;
Hfl + %ﬁ (Fyvy) = my (2)
vy + LBv) = - oy L2+ D+ F. (3)
1

e (Biles+ 3 vD) + F(Byvy(hy + 3 VD))

R o R WP S (4)
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These equations are simply conservative forms of mass,
momentum and energy balance equations. They contain some new

quantities which need explanation. The mass sources m; are
governed by the following assumptions: we assume that
species 2 1is converted into species 1 ('l' is "burnt gas"
and '2' is "unburnt gas", say) so that

m. =0 and m. + m = 0.
1 1 2



We further assume the constitutive rule,

o | S

H(T - T,) (6)

where Tg is a constant 'transformation' time-scale, TO is a
specified, constant critical temperature for combustion, say,
and H 1is the Heaviside function. This is a simple
phenomenclogical representation of the transformation
processes modelled in terms of the two parameters 7. and
B

The variable p(x,t) 1is the 'common' pressure in the
mixture. For the present, we assume the perfect gas equations
of state,

P = (71 = X3 CvipiTi’ (7)

e; = C,3Ty (i =1,2) (8)
where 7;, Gy are constants.

F? are 'drag' forces between the components

parameterised in the following manner:
FY = K(vy - vy) = - FD (9)

For the purposes of this paper, we choose the following simple
formula for K:

P15,

_ (10)
(B1+5y) D
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where 7 is a phenomenological, 'drag-relaxation' time-scale
which must be specified. The forces F. represent momentum
Im-
i
transfer between species due to mass transformations. We
adopt the constitutive relation,

F. = mqyvy = - F. (11)
i¥1
3 Wy

The drag and phase change work terms ¢; and ¢, may nov be
written down (see [4] for detail). For example,

®1

% K(vy- vp)? + % my (vy- vp)2 + viK(vy- vp)
: 1 .2
+my vyvy - E m; vy - (12)

Conservation of total energy requires the identity,



¢2 = - @1. (13)

The enthalpies, h; are given as usual by,

i

hy =e; + %I , (14)
The energy transfer terms A; satisfy:
where

R = (P1PyCy1C040)/1P1Cy1 + PpCyplrr - (16)

We assume further that

I

qy m; (hy, + Q) (17)

q9 - m1h2 (18)
where T is a relaxation time which (like TS) must be
specified, as must Q which is the "heat of reaction" per
unit mass. It is Q which provides the energy to drive the
detonation wave. We are not concerned with the
physico-chemical processes which lead to the determination of
Q but simply wish to examine the consequences of the above
equations given Tgr TT» To' Cvl’ CVZ' Y1, V2. Tp and Q.

The formulation of the problem is completed by specifying
the initial and boundary data. For the problems considered in
this paper these are very simple. The initial velocities,
volume fractions (of course subject to Eq.(l) and oy 2 0),
pressure and temperatures are specified. The densities,
internal energies and enthalpies follow from the equations of
state. The solution domain is assumed closed at both ends of
the 'tube' and thus the velocities are set to zero there. We
do not include viscous forces or heat conduction in our
equations and hence no other conditions are needed.

3. NUMERICAL SOLUTION SCHEME

The solution scheme used to solve the above problem
depends directly upon the following general postulates:

(1) The mathematical initial-boundary wvalue problem is
actually an approximate (i.e.inexact) representation of some
physically meaningful problem.

(2) Since ultimately the aim is to find an approximate
solution to the physics problem to the level of accuracy of
experiment there is little point in solving the mathematical
problem to a greater degree of accuracy than that required to
match experimental results qualitatively and quantitatively.



(3) The numerical solution scheme must be numerically
consistent and stable. It must, in addition be qualitatively
consistent in having the correct conservation and
non-negativity properties required by the physics. The latter
requirement over-rides any condition of formal (i.e. in the
Taylor expansion sense of numerical analysis) higher order
accuracy. Thus, we will prefer to have a first-order scheme
with proven qualitative consistency properties than a
second-order scheme which cannot guarantee (for arbitrary mesh
sizes) positivity of wvolume fractions.

We have developed (see [4,5,6,7]) a solution scheme which
embodies the above requirements. This has been extensively
tested and compared with experiment where data are available.
The purpose of the present paper is to outline the scheme and
present some interesting numerical phenomena arising out of
the solution of the equations presented in the previous
section.

It is useful to have a clear idea of the solution
procedure used to step the variables forward in time. Assume
for the moment that the above equations have been cast into
suitable finite-difference form (using uniform Ax, At).
Equations (2) (or, rather, their finite-difference versions)
are used to time advance p; using an explicit method (lst
order accurate in At, Ax). Equations (3), (4) are solved
using an explicit time advancing scheme (except for the drag
terms which we treated implicity) to obtain, v; T;, p and oy
at t + At. In the case of perfect gases, the calculation of
the o's and p 1is particularly straight forward. From
equation (7) we obtain,

(73 - DCy1p1Ty = (13 - 1)CyeaTy (12
whilst Eq.(l) gives

P 7

1,22 _ (20)

P P

Thus knowing ﬁl, Py, T1,Tp at t + At, Py, Py are simply
calculated from the two simultaneous equations. This gives p
at t + At. The time march from t to t + At 1is then
complete. With more complicated equations of state, Eq.(19)
is replaced by three equations involving the two extra
variables e, ey. Whilst the calculation of py.Py must now
be done by, say, Newton's method the principles remain the
same.

Particular care is taken in the formulation of the

finite-difference scheme. If we denote ﬁz(xn,t) by Xz(t) (a
N-vector where n = 1,N), the finite-difference form of Eq.(2)
for 'unburnt gas') takes the schematic form,



Xp(t + At) = AXy(t) - e—:H(T-TO) Xy(t + At). (21)

The backward differencing of the sink term gives stability,
Ot
T

whilst for accuracy we require < I

If the convective terms are properly upwind differenced,
the matrix A which depends on v, at t, At and &x is
positive-faithful [8], provided max|v2|At < Ax. This means

that, in the absence of my, bz(xn,t) > 0 for all Ry and t
if Ez(xn,O) > 0 and that Z Ezﬂx will be conserved.

Equations (3), (4) are also comservatively upwind
differenced. Note that we use a staggered-grid for the
accurate and stable representation of the convective fluxes
which must be carefully averaged to ensure that
Rankine-Hugoniot conditions are implied by the
finite-difference equations to the accuracy needed. The F?
terms are treated with particular care. The result is a set
of two-by-two matrix quations for wvi(xf,t + At), Vo (%%, t+At)
aB eacg node xF = x, + 25 . These matrix equations embody
F{ + F5 = 0 at each node and lead to implicit, stable matrix

tnversion subject as usual to the accuracy condition

?E << 1. The formal order of accuracy is O0(4Ax), 0(Ar).

However, the method is known to be remarkably stable with wvery
benign convergence behaviour and more than adequate accuracy,
bearing in mind the three operating postulates, as will be
explicitly demonstrated in the next section.

4. EXAMPLE RESULTS

The details of the various types of detonation waves that
are predicted to occur depending on the initial conditions,
the burning time (Ts), the drag and the temperature
relaxation times (TD and TT) and the burn threshold
TO (Q>0 only if T > TO) have been discussed in detail in
reference 6. Here, we simply give some examples to illustrate
the typical results. By setting Ty to be just above the
temperature of the unburnt gas and introducing a weak pressure
pulse, we get a transient detonation wave called a "weak
detonation" which approaches the classical Chapman-Jouguet
point on the p - V diagram from below along the detonation
adiabatic [9]. Figure 1 shows the development of the pressure
pulse in time for a weak detonation.

If we set the pressure pulse high, increase Ty and
decrease the burn time by a factor of ten, we get a shock
compression of the unburnt gas followed by a decrease in
pressure due to expansion. Detonation waves with these "Von
Neumann spikes" [10] are called 'strong' detonations. They
too are transient phenomena, ultimately settling down to a



steady, Chapman-Jouguet detonation on a fairly long
time-scale. Figure 2 shows the development of the pressure
profile as a function of time. The front propagates with a
nearly constant velocity, somewhat faster than a true, steady-
state Chapman-Jouguet wave. Ultimately the disturbances from
the wall will weaken the front sufficiently to slow it down.
In the case of the weak detonations, the front velocity is
slower than the C-J velocity and ultimately speeds up. From a
practical point of view, transient states like strong and weak
detonations are of importance, since in engineering
situations, the tube length is finite and the time it takes
for steady detonations to develop can be rather long compared
to the time of travel available.

Pressure profile every 0.2ms

Pressure [MPa)

Fig.l. Transient pressure profile for a weak detonation.

We have also simulated C-J detonations by careful choice
of the conditions. Care is necessary, since any slight
variation leads to stronger or weaker transients which can
take a long time to "settle". Comparison of the numerical
results with standard theory [11] gives excellent agreement
for the front propagation velocity and conditions at the C-J
point. The shock-compression and the Von-Neumann spike are
also well-captured. Figure 3 shows the pressure profile
development. The steady state is attained after 0.8ms. We
have explored interesting non-equilibrium phenomena when 7
and 7 (thermal and velocity equilibration times respectively)
are longer than the burn time r,. These waves no longer have
sharp fronts as expected [6].

5. DISCUSSION

We now move on to the discussion of interesting numerical
phenomena that arise in these simulations. In the first
instance, the governing system of differential equations
represents a driven (heat source) dissipative (TT, T 75)
system. The total mass is conserved. However, in the absence
of viscosity, the system is formally non-hyperbolic [12] (i.e.
can have complex characteristics). We have shown by the
results presented here and by detailed analysis elsewhere [13]
that this in itself does not make the initial value problem
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Fig.2. Transient pressure profile for strong detonation.
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Fig.3. Transient pressure profile for a C-J detonation.

ill-posed. For the accuracy needed, the implicit
regularization of the finite-difference equations suppresses
the "high k" instabilities due to non-hyperbolicity and leads
to meaningful solutions comparable with those obtained from
standard, hyperbolic, gas dynamic equations. We believe this
to be due to the special care taken in the scheme to implement
qualitative consistency.

The second important phenomenon concerns the relative
importance of stability and accuracy. We have found our
scheme to be robust and stable for practically all mesh sizes
Ax, At, subject only to fairly weak restrictions. However, it
is very important to bear in mind that At must be smaller
than the relaxation times Tg,» Tr, Tp to get accuracy. This

is easily illustrated by a very elementary example. Consider
the o.d.e.



dy
B~ % o (22)

which has the following finite difference form

At

1 -
y(t +8t) = { —2 } y(t) . (23)
1+’2?

ﬁ%though this centred implicit scheme is stgble for arbitrary
77+ the qualitative consistency is lost if > 1. BSince the
differential equation implies that y(t + At) cannoE change
sign, this is consistent with (23) if and only if %% < 1.

We have found that a similar restriction applies to AOx.
For example, if Ax > VpT, where Vp is the detonation front
velocity for the prescribed conditions, we get what looks like
a weak detonation. However, this is a completely spurious
solution as Figure 4 shows. We plgt the solutions for wvarious

values of the accuracy parameter ? . Grid independence is

D's
obtained only when Véé_' %E << 1 simultaneously. However, it
D

must not be forgotten that the equations themselves are not
valid if Ax =+ 0, since at the very small scales, turbulent or
laminar viscosity, thermal conduction etc. must be taken into
account. These must be explicitly included if Ax is made
very small. When they are included, the equations become
parabolic and are always well-posed apart from truly physical
instabilities (Rayleigh-Taylor, Kelvin-Helmholtz etc. which
are typical in accelerating multi-component flows).

As a final point, we note that we have used a modified
version of this code in situations where the gases are
imperfect and the possibility of phase changes is allowed. 1In
a liquid-vapour transition the abrupt change of sound speed in
the two-phases sometimes leads to pressure oscillations behind
the propagating front [2]. It is important to note that these
are real properties of the system and are not numerical
instabilities, although easily confused with the latter.

6. CONCLUSIONS

In this paper we have described numerical techniques needed to
model transient multiphase detonation phenomena. Our approach
to the problem shows the importance of designing a robust and
qualitatively consistent scheme. It is also essential in all
cases to verify the quantitative accuracy of the results in
comparison with experiment and analytic theory, where
possible. Without such verification it is not possible to
ensure by a priori considerations alone that the results
obtained are meaningful.
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