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ABSTRACT
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Superior hydromagnetic plasma stability properties have been attributed(l’Z} to vacuum

2
magnetic fields in which V" = gﬁg < 0, where V({y) is the volume enclosed by a magnetic

surface | = constant which encloses longitudinal flux F(|).

OT particular interest is the value of V” on the magnetic axis itself, and recently

Lenard(z) gave a general formula for V”(0) in terms of the shape of the flux surfaces
about a straight magnetic axis. This note describes the analogous expression for V”(0)

on a magnetic axis of arbitrary shape.

(3)

Our calculation of V”(0) follows closely the work of Mercier on the determination
of hydromagnetic equilibria in which the flux surfaces are expanded in powers of the dis-
tance p from the magnetic axis, V = pg Ve + pg Vg + eee Indeed our work is concerned
with the limiting case of Mercier's, but it is simpler and more illuminating to derive V”
directly for a vacuum field than to use the general theory of equilibria, If the axis is
straight then V”(0) can be expressed in terms of the lowest order flux function Y,
only, but if the axis has a non-zero curvature then we find that V”(0) can no longer be

defined solely in terms of Y, but involves also a knowledge of ;.
We consider a magnetic field B =V ¢ where
Val:p=0 ssa (l)

possessing a magnetic axis and a set of toroidal magnetic surfaces, | = constant, defined

by
BV =Vp-V =0 sen (2)

If X(Z) 1is a point a distance % along the axis, then a general point can be defined as
R =X(2Z) + p(2) p Cos 6 + p(Z) p sin © ve. (3)

Where n and p are the unit normal and bi-normal. A point in the neighbourhood of the
axis can thus be described by coordinates (p, 6, Z). However, (p, 6, Z) are not orthog-

onal and it is often convenient to employ the orthogonal set (p, 60, Z) where eo is

- 14
eo_e+fT

and T(Z) is the torsion of the axis. Then the line element is

defined by

dR® = dp® + p®d 87 + (1 - & p cos 6)% d £° — Y

-1 . ; )
where ¢ is the radius of curvature,



We now expand ¢ and | as

)
]

1 n
Lp ¢, (8, %) S

lp" v, (8, 2) .. (6)

where, because p = O is the magnetic axis,

=
L}

Py = 9y &)y 91 = 0, y, =1¥1 =0.

The requirement of analyticity at p = O means that YV, can be written in the form

Yy =a+ b cos 2 u, ees (7)

where u =86 - The functions a(Z) and b(%) are periodic functions of & with

N_lﬂ-

period L, the length of the axis, and the phase factor d(Z) is a function which changes

by an integral multiple of 4n when & increases by L.

Similarly
Y3 = p COS U+ qsinu+ r cos 3u + s sin 3u
g2 = A + B cos 2u + C sin 2u iii 18)

Pcos u+ Qsinu+ R cos 3u + S sin 3u

n

$3

where p = p(Z) etc.

We now substitute the expansions (5) and (6) into equations (1) and (2) and equate

coefficients of p'. 1In the lowest significant order equations (1) and (2) are satisfied

if
A _ (a2 'S-XDZ}I
B o= (D)2 cen (9)
cp; = - X.

where

-

x=(a2-b2)!é,D=( ... (10)

(] =%
St

A4
T

and the prime denotes derivative with respect to Z. The functions a(Z), b(z) and
d(Z) which define the flux surfaces to lowest order can therefore be chosen arbitrarily
and the corresponding potential is then determined. In calculating V” about a straight
axis only these lowest order quantities are needed, but to calculate V" about a general

axis, one needs to determine also the corresponding quantities in next order.



To third order in p, equation (2) yields four relations

p(6A + 4B) + q (4C + Dx) + 6Br + 6Cs + P (6a + 4b) + 6bR - p'x - 2exa’y - exb’y - 2exDbh = O
p(4C - Dx) + q (6A - 4B) - 6Cr + 6Bs + Q (6a — 4b) + 6bS - q’x - 2exa’h +exXb’'A - 2exDbp = 0
2Bp - 2Cq + 6Ar + 3Dxs + 2bP + 6aR - r'x - exb’p + 2exDbh = O

v 1LY
2Cp + 2Bq - 3xDr + GAs + 2bQ + GaS - s'x — exb’\ - 2exDbp = O

where u = cos g and A = sin g . To third order in p, equation (1) provides two further
relations,

0]

1]

BP - 6e Au - 2¢ Bp - 2¢ C) - (sp.x)' + exDh s
¢}

8Q - 6e AN + 28 Br - 2 Cu - (eix)’ - exDp

The set of equations (11) and (12) thus gives six relations between the eight third
order quantities p, q, r, s, P, Q, R, S, so that only two arbitrary functions are involved
in the specification of the third order termms. Consequently, whereas all the functions
a, b, d which are needed to specify . can be selected arbitrarily only two of the four
functions defining 15 can be so chosen. The degree of arbitrariness in V{5 is illustra-
ted by the following. If we were to eliminate P, Q, R, S from equations (11) - (12) we

would get two equations which could be put in the form

a’ =Ly (a, B, T, 8) + eQy

[3!

ces (13)

L, (ay, By, I, 8) + Qs

where o = (ap - br), f = (aq - bs) and L;, L, are linear in a, B, r, s. Consequently it

is in general possible to write p(%), q(z), r(z), s(z) as linear combinations of a, B,

a', ' where a(¥) and p(%) are two arbitrary functions.

With these preliminaries we are now in a position to calculate V”, The flux through a

surface ¢ = constant is given by

27 p(¥) A 5
F(y) = j. du j‘ dp (1 - ep cos ) " p Eg eee (14)
o o

and the volume enclosed by V¥ = constant is

L 2% p(¥)
v(y) = j‘ 4 j du ]ﬁ dp p (1 - ep cos 6) .. (15)
0

o} 0]

where p(y) is obtained by inverting the expansion (6) to give

.1
P --1;! R1+'LIIR2 + ase P (16)



where

Rz_l. and R __:E'.a_,,
Lo ' 2T 2(y)c

V2

Using these series expansions and equation (9) we eventually obtain for V* the ex-

pression.
" _l 2 j
v (o)_ﬂj[d; {L0+8L1+5L-A)‘ eon (17)
where
B =l 5 D2b2
o~ 4 | (a¥ - b?) (a'® - b*2) a~— (a® - b?)* [2a’(a® + b?) - 4abbﬂ + = c.. (18)

L, = ig l:(a-ub) (2a-b) u p + (a+b) (2a+b) Aq=-3 bry (a-b) - 3 bsh (ai-b{J vee (19)

Ly = - 5%3 [;(a - Db)u® + (a+b)ar® :]- ... (20)

It should he noted that equation (17) is an exact result not merely the first few temms in
an expression in powers of . The expression for L; is equivalent to that given by

Lenard for the straight axis and our result reduces to his in the limit 2z >0 and T - w.

When e =0, V' is determined by the second order quantities a(Z), b(z), d(z) only,
but if & # O it depends also on the third order terms and so involves two extra functions
which are independent of a(Z), b(z), d(%). It is impossible, therefore, to deduce the
value of V" for a system with non-zero curvature merely from its value for the correspond-
ing straight system. In particular, the determination of a form for Y, which generates
a negative value for V” in a straight system does not gaurantee that the same |, will
generate V” in a toroidal system, even one of small curvature, unless the 1y, contribu-
tion is made sufficiently small, Equally, it is possible to select |, so that the curved

system has a negative V” even though the straight one does not.

A particularly simple case which has non zero curvature is the helically invariant
system in which the functions a, b, d, p, q are all independent of Z. In this case it is

convenient to leave r, s as the independent quantities in ;. One then finds

2 T =R
v =:P'§';x-5 -%@2 ':z (a=b) r+ A (a+Db) Ej
s -
+§F Laf (a-b) (4a®- 5 ab+ 3b%) + A% (a+b) (4a°+ 5 ab+ 3b2}] vee (21)



and we note in particular that if the lowest order flux surfaces are circular ( b = 0)

This expression has been used by the present authors in a survey of the V"

(4)

properties of helically invariant field .

then V” > 0.
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