CLM-P870

CLM-P870

Virtual Particle Electromagnetic
Particle-Mesh Algorithms

J.W. Eastwood

TORY AEATECHNOLOGY

=P
>3

>c
oo
(@ J= =




This document is intended for publication in a journal or at a conference and
is made available on the understanding that extracts or references will not be

published prior to publication of the original, without the consent of the
authors.

Enquiries about copyright and reproduction should be addressed to the
Librarian, UKAEA, Culham Laboratory, Abingdon, Oxon. OX14 3DB,
England.




CLM-P870

Virtual Particle Electromagnetic
Particle-Mesh Algorithms

J. W. Eastwood

Theory and Computing Division
Culham Laboratory, Abingdon
Oxfordshire OX14 3DB

January 8, 1990






Abstract

A new class of current conserving particle-mesh algorithms for solving the coupled rel-
ativisitic Vlasov-Maxwell set of equations is presented. These new numerical schemes offer
considerable advantages over the currently used finite difference PIC methods. They are
charge and energy conserving, have good dispersive properties and are computationally fast.
Their finite element derivations allow them to be applied to complex geometries more readily
than their finite difference PIC counterparts. The local nature of their discretised equations
is ideally suited to massively parallel computer architectures.

In this paper, an outline of the general derivation is given. One and two dimensional cases
are treated in some detail, and the extension to three dimensions is discussed. Procedures
for lumping and noise reduction (using a transverse current adjustment - TCA), both of
which result in substantial speedups, are outlined. The name 'virtual particle’ arises from

an interpretation of the current assignment scheme.
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1 Introduction

The particle-mesh (PM or PIC) approach has long been established as an effective method of
simulating the evolution of systems described by the Maxwell-Vlasov set of equations [1,2}.
The new variants of particle-mesh schemes described herein were developed to meet the need
for accurate and computational inexpensive simulation to be performed in conjunction with
experimental work on microwave sources at Culham Laboratory. The requirements for such

a device modelling code are that it must
(a) explicitly treat at least two spatial dimensions,
(b) be capable of handling awkward geometries,
(c) handle a variety of boundary conditions,
(d) have low numerical noise, and
(e) have good conservation, dispersion and numerical stability properties.

In addition, to be an effective engineering design tool, it must be computationally fast, and
in this respect, local algorithms have considerable advantages on the parallel architecture
machine currently available. The novel schemes presented in this paper meet all of these
requirements. An implementation of the Virtual Particle method in cylindrical geometry [16]
has allowed extensive 2-D simulations to be performed on a personal workstation rather than
on more powerful (and more costly!) large scientific computers that earlier finite difference
PIC codes require.

Much of the speed gain in the Virtual Particle schemes arises from the elimination of
charge assignment and solution of Poisson’s equation to correct for accumulated errors in
Gauss’ Law. In particle-mesh codes, the electron (or ion) phase fluid is represented by a set
of Lagrangian sample points (particles) which carry mass and charge through the mesh on
which fields E and B. (or in some instances potentials A and ¢) are defined. The particle
density and motion are used to construct, by some assignment scheme, the source charge
and current densities needed to integrate Maxwell’s equations forward in time. Accelerations
at particle locations are found by interpolation from the mesh defined fields. Usually the
discrete approximations to the Maxwell-Vlasov set of equations is not charge conserving: If
the time dependent Maxwell equations (Ampere’s and Faraday’s Laws) are used to advance
E and B using currents computed from the particle dynamics, then the initial condition
of Gauss’ Law (F = V- E — p/eg = 0) is not conserved and V - ¢E, as given by the
mesh defined fields, may differ significantly from the charge density p computed from the
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particle distribution. In such circumstances, the reliability of the computations would be
questionable. _ _

Three approaches to the well-known “charge conservation” problem have been devised.
The first repeatedly solves Poisson’s equation to find a correction to the longitudinal com-
ponent of E so that F'is reset to zero at each timestep [3,4]. This approach gives a relatively
small overhead in simple geometries where rapid elliptic solvers [1,chap.6] can be employed,
but becomes a large burden (and an obstruction to exploitation of parallelism) in the com-
plex geometries of microwave devices. Several codes, for example WAVE [5] and ZOHAR [6)
successfully use this method.

The second approach to maintaining charge conservation is to add a “pseudo-current”
term into Faraday’s Law which has the effect of diffusing the residual error F away [2].
The pseudo-current method has the advantage of removing the need to repeatedly solve
elliptic equations, but the drawback of making Faraday’s Law parabolic, thus complicating
the treatment of boundary conditions and introducing a diffusion parameter which may alter
the physics.

The third alternative, which is used in the schemes proposed in this paper, is to de-
vise a current assignment scheme which ensures that some approximation to Gauss’ Law is
identically satisfied (to roundoff). This approach was first proposed by Buneman|9] using
an impulse approximation current assignment. Unfortunately his scheme appears to gen-
erate a strong noise field [2]). Another instance, using a fraction timestepping approach,
is discussed by Morse and Nielsen[11] and is used in the ISIS code[8]. More recently, Vil-
lasenov and Buneman([9] have proposed a less noisy current conserving scheme based on area
weighting assignment[10].

The existing algorithms most closely related to the ones proposed in this paper are the
energy conserving schemes devised by Lewis [1,12,13]. Indeed, in the limit At — 0, the new
Virtual Particle schemes described below reduce to Lewis’ Schemes. The crucial difference
is extension of the finite element formulation to the time coordinate. It is this factor which
leads to exact charge conservation (i.e.F = 0 for all t). The resulting algorithms are similar
to those of Villasenov and Bunemann. Indeed, the current assignment scheme proposed in
[9] is mathematically equivalent to the 'Virtual Particle’ current assignment scheme for the
case of linear support functions in Cartesian geometry. The finite element derivation of the
Virtual Particle method has the advantages that it specifies an optimal (in the sense of Least
Action) combination of current assignment /force interpolation and field solver prescriptions,
and it is more general: it can be used to gives schemes in arbitrary coordinate systems, or

using higher order and/or various element shapes and connectivities.



In this paper we shall focus on relatively straightforward illustrations in Cartesian geom-
etry - other instance are discussed elsewhere [16,17]. Section 2 gives the set of differential
equations to be solved, followed in section 3 by an outline of their variational finite element
discretisation. An important factor to note in section 3 is the method of prescribing the
local support functions for potentials in terms of a common support function S: this ensures
exact charge conservation and thence leads to fast computations by eliminating the need to
compute charge densities and longitudinal electric field corrections at each timestep.

The Virtual Particle scheme most similar to existing PIC schemes is that arising when S
is linear on a rectangular net of elements. It is this case which has been used in Section 4
to illustrate the practical details of the derivation of the discrete equations, and to provide
a link to the more commonly used finite difference approach. In section 5, the discussion
of higher order charge conserving current assignment schemes has been restricted to one
dimension to avoid excessive algebra. Comments on the relaxation of restrictions assumed

in this paper and concluding remarks are given in the final section of the paper.

2 The Mathematical Model

The electromagnetic fields evolve according to the Maxwell equations

6B

= VxE 1)
8D

—_— — 2
= VxH-j (2.2)

subject to initial conditions

VD=p (2.3)

V-B=10 (2.4)
where

D = ¢E, (2.5)

B = uH (2.6)

and the symbols have their usual meanings [14). The electron phase fluid evolves according

to the relativistic Vlasov equation

af P 9f p Of _ 5
5 Tm 3x+F'(_3—p5'—0 (2.7)

whose characteristics are the equations of motion
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X=v (2.8)
p=F=gE+vxB) (2:9)

where x is position, v is velocity, p is momentum, m is mass, p = mv = ymgV, and

_ 1 _ pg 1/2
1= o~ () .

The first two moments of the one particle distribution function f give respectively the charge

and current densities:
P=qffdap; (2.11)

i=q [ fxp (2.12)

A similar set of equations apply to ion phase fluids. For clarity, we consider only a single
species (electrons) here.

If the distribution function is represented by a set of sample points (i.e. “superparticles”)
Fx,pt) = 3 Nob(x = %4(1))6(p — py(t)) (2.13)
g

where (xg,p,) ; ge[1, N;)] are the coordinates of the N, superparticles, each of mass M = N,

mg and charge ) = N,q, then the Maxwell-Vlasov set may be written in terms of the action

integral
D-E-B-H Mc?
I=fdidr{ ——e——ou— j-A| - —dt 2.1
j dr( . pé+3j A) f{gj = (2.14)
where
B=VxA (2.15)
0A
E=-vp- (2.16)

Treating I as a functional of the vector potential A, the scalar potential ¢ and particle
coordinates {X,} leads to Euler-Lagrange equations which reduce to Maxwell’s equations and
the relativistic equations of motion. More extensive discussions of this are given in references
[12,13,15]. The charge conservation property follows from the divergence of Eq.(2.2) and the
time derivation of Eq.(2.3) :

%;J- =-V.j (2.17)
If our numerical scheme identically satisfies this equation, then Eq.(2.3) will be true for all

time provided that it is satisfied initially.



3 The Discrete Equations

The discrete approximations to Eqs.(2.1)-(2.13) are obtained by substituting finite element
approximations for potentials ¢ and A, and particle coordinates x, into Eqs.(2.14)-(2.16) and
taking variations with respect to the unknown potential and particle position nodal ampli-
tudes. For simplicity, we shall assume local support functions satisfy Eq.(2.8) and Eqs.(2.15)
and (2.16) exactly. More generally, we could consider weighted residual approximations to

these equations.

3.1 The Field Equations

The first integral in Eq.(2.14) is the integral of the field Lagrangian density. Its variations
with respect to potentials give the inhomogeneous Maxwell equations. To ensure Egs.(2.15)
and (2.16) are satisfied everywhere, we assume there exist a local-support function S asso-

ciated with nodes labelled (p, n) on a space-time lattice,
S = Sp.n(x,1) (3.1)

and that support functions T, U, V ;and W; are related to derivatives of S by linear operators
A; and A; by
oS

B av | ' (3.2)
gﬁ = —Au W, (3.3)
aigt = 8:Bi) Vi (3.4)
aiz;xk =MAT i#j#k (3.5)

Operators A; and A, act on the node indices p; and n, respectively, where i labels the
spatial and node label coordinates; z; and p; respectively. (A, and A; are analogues of finite
difference operators). Summation is implied over repeated indices unless the indices are
enclosed in braces.

The finite element approximations to the potentials are
¢ = U (3.6)

A,‘ == A(,‘)H’r(,') (3?)



where @ and A are nodal amplitudes. Eq.(3.6) is a shorthand notation for

#(x,1) = Pp Upa(x,t)

and similarly for A;. Substituting Eqgs.(3.6) and (3.7) into Eqgs.(2.15) and (2.16) gives

0Ak oWy

B; = €1 = g
‘T Gk, T g,

Ak (3.8)

ad¢d  0A;
E = —ar-% (3.2)
U oWy,
= % Ao

Similarly, substituting them in Eq.(2.14) gives stationary points:

fa’ta' [ Da—r' —pUJ s} (3.10)

BW 61’1’
/did‘n"[ D() a1 -—Hkﬁk_,() 6 —@ +7J )”( = (3.11)

Inspection of the nodal equations (3.8) - (3.11) reveal a number of conservation properties:
From Egs.(3.8) and (3.9) it follows that V-B =0 and B = =V x E for the discrete system.
Taking A; of Eq.(3.10) and summing A; of Eq.(3.11) over ¢ give two expressions for the
discrete approximation to §(V-D)/8t. These two expressions are identical provided that

/dtdr [ 9 s 35} =0 (3.12)
az;

Substituting from Egs. (2.11) - (2.13) for p and j, and using S = 0 at the limits of the
integral show Eq. (3.12) to be true. This implies that if Eq. (3.11) is used to update D, the
approximation Eq. (3.10), to V-D — ¢ =0, will be true (to roundoff) for all times provided
it is satisfied initially. All the examples considered below have this property.

An expression for field energy conservation can be obtained from Eq.(3.11) by multiplying
by nodal field amplitudes EF; and summing over spatial node indices:

/dtdr(D-A1E+H-%—?+j-E)=O (3.13)

where E; = W,;E*, and 1_;3;- = —e,-,-kaE'k/c?rJ-.



3.2 The Particle Equations

It follows from Eqgs.(2.11) - (2.14) that the contribution to the action integral of some particle

g 1s

2
Ig=/dt [- - A (3.14)
7
Let the £ — th component of the position of the particle, z, be approximated by
Ep= g} X 1) (3.15)

and v; = ¢, then

6A 3zk
dt 3.16
Ba:f ./ ¢ [ zk] oz} ( )
+fdt A+ M, 20l (3.17)
Oz}
Integrating the first term in the second integral of Eq.(3.17) by parts gives
0A,, 04
aQ |-2¢ _ % X"+ [ dtyMy X" =0 3.18
az[ =4 [ Bz az +”"‘(axf axm)] + [ dirdto IS
1.e.
/di [Q(E+v xB), X"+ pX"| =0 (3.19)

3.3 The Virtual Particles

The prescriptions for assigning charge and currents from particles to the mesh are given by
the source terms in Egs.(3.10) and (3.11):

Charge assignment

gpn = ./dtd‘erp'n(x,t)
= [&Y QuUpa(x,(t).1) (3.20)

current assignment
L = [didrjyw,

/d‘ZQg:ﬁ(f)gW(-')(*g(f),f) (3.21)
g

I

Where z(;), is the i — th component of the position of the g — th particle. Eqs.(3.20)

and (3.21) are integrals over piecewise polynomials in ¢. Such integrals are given exactly



using Gaussian quadrature [18]. The support assignment functions U and W correspond
to the assignment functions of conventional finite difference/particle methods. It is these
observations which led to the concept of Virtual Particles: Gaussian quadrature exactly
computes integrals of polynomials of degree n by taking a weighted sum of the integrand
evaluated at the n Gaussian quadrature points. The difference between these new schemes
and conventional ones is that current is assigned in the usual fashion, but from “virtual”
particles distributed at Gaussian points along the trajectory segments betwen the timelevels
at which particle coordinates are stored, and with velocities proportional to the segment

lengths in each element.

4 A 2-D Cartesian TM Model

The lowest order form of S which allow Eqs.(2.15) and (2.16) to be exactly satisfied is
piecewise linear in all coordinates. We shall use this choice in a two dimensional Cartesian
transverse magnetic (TM) model to illustrate the practical realisation of the method outlined
in section 3. On a uniform net of elements, this choice leads to a numerical scheme very

similar to that using the standard interlaced TM finite difference net [2].

4.1 The Field Equations

For clarity, we shall work with units which give length unity sides to elements and E =
D,B = H. On a regular array of elements, S becomes a product of triangle functions, where

for a node with global indices £,m,n
Sem " (2,9,1) = Ac(@)Am()A"/2(t) (4.1)

Indices £,m,n respectively label in the z,y and ¢ directions, and the triangle function is
defined as

1—|z—k ; [z—-k|<1

Adlz) = Bl k)= { 0 ; otherwise (42)

The other support functions (U, V;, W;, T;) are similar products of triangle and top hat (I7)
functions:

H(z):{l ; —1/2<2<1/2 (4.3)

0 ; otherwise

Let us now consider single element contributions to Egs.(3.10) and (3.11). Variables are
either piecewise constant (C) or piecewise linear (L) over elements, as summarised in Table

1. Figure 1 shows the node locations on the element. Note that if a regular array of
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such elements are assembled, one obtains the interlaced TM meshes used in finite difference
schemes [2]. To interpret Table 1, consider for example the electric fields E; and E,. Using
the cardinal labelling shown in Fig.1lc and assuming the point (z,y) = (0,0) is at the south

west corner, the components of the field are
E, = Eny + Es(1 —y) (4.4)

and similarly for other entries in the table. For the south west node U = Usw = (1—z)(1-y)

giving the contribution to Eq.(3.10) for the SW node

ol
A (8@ ) =1/6(2Eg + 2Es + En + Ew) — '/dtd:rdypUSW (4.6)
SW
(Fields scale as fluxes in Eq.(4.6) i.e., for elements of sides Az, Ay, replace E; by E;Ay and
E, by E,Arz.)

Figure 2 illustrates diagramatically the multipliers of the electric field node amplitudes for
Usw,Unw,Ung and Usg. Shown against nodes are six times the node amplitude multiplier.
Assembling the contributions of the four elements gives the global discrete approximation to

Gauss’ Law prescribed by Eq.(3.10) for node £,m as
O(ayEr) + 0y(aEy) = ¢ (4.7)

where difference operator 8, and 8, (and averaging operators o, and a,) respectively act on

the indices £ and m:

Ocfeom = fex1/2m — fe—1/2.m (4.8)

ez fem = (fecrm + 4fem + fer1,m)/6 (4.9)
and similarly for 0, and a, on index m. In Eq.(4.7), for node £, m

9= qim = / didzdypUsm (4.10)

and all terms have the same time index n. Repeating the above exercise for Eq.(3.11) gives
node amplitude multipliers as shown schematically in Fig.3, and assembling contributions
from adjacent elements on a uniform net give the discrete approximations to the components

of Faraday’s Law
O(ayE;) = 0y(ayB;) — I, (4.11)
d(azEy) = —0(ayB.) - I, | (4.12)
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where,

I = ::4-11//22,111 = ./dtda:dyI’VIj,: (4.13)
I, = I::n]z{}-zl/? = /dtd::dylflfgjy (4.14)

The remaining field equations (3.8) and (3.9) can also be expressed in operator notation for

node amplitudes:-

B, = 8,A, — 8,4, (4.15)
E, = -8:¢ - 0,A: (4.16)
E, = —08,6 — 8,4, (4.17)
= 6,B, = 6,E, — 9.E, (4.18)

Note that these equations for the fields differ from the usual finite difference equations only

in the appearances of the averaging operators in Egs.(4.7), (4.11) and (4.12).

4.2 The Particle Equations

The expression Eq.(3.19) for the discrete approximation to the equation of motion assumes
that particle positions vary continuously in time (by setting X™ to a triangle function) and
this leads to implicit equations of motion. From a computational cost viewpoint, such a
scheme is unattractive.

In general, the timestep in explicit electromagnetic calculations is controlled by the
Courant condition on the field equations. Consequently, we can employ lower order ap-
proximations in the particle orbit calculations with little loss of accuracy. This approach is
adopted here. Instead of assuming particle positions vary linearly from timelevel n —1/2 to
n+1/2, we take it constant over the interval, so x = 3, II"(¢)x", then to evaluate Eq.(3.19)

we set v = V to yield the usual finite difference expression

P2 — it = Qv [En(n) 4 97 B BT («19)
where

I = (VP2 4 yn=1/2y 1o (4.20)
and

x"t = X" v A (4.21)

The fields at particle locations are the value of the finite element fields at that point. Thus,
for this example, E; is the NGP in z and CIC in y interpolant of the nodal values, E, is
CIC/NGP and B, is NGP/NGP (cf. Table 1, with L = CIC, C = NGP).
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4.3 Charge and Current Assignment

The charge and current assignment schemes for this example are given by evaluating Eqs.(4.10)
and (4.13)-(4.14) respectively. For the impulse approximation to the motion (x = II"(¢)x"),
the contribution of a single particle to p in time interval "~ /2 < t < t"*V/2 is Q§(x —

x")II"(t), so the contribution of the particle to ¢}, is, by Eq.(4.10)
6qtm = QUim(X") (4.22)

and since U is linear in z and y, (cf.Table 1), Eq.(4.22) simply states that charge assignment
is by the CIC or Area Weighting scheme [1,2].

Evaluation of Eq.(4.13) and (4.14) for the impulse approximation is treated as a limiting
process, assuming a particle moves linearly from x" to x™*! in some small time interval
T =t —t"t1/2¢(—¢/2,¢/2) and letting ¢ — 0. From Egs.(2.12), (2.13) and (4.13), the

current contribution of a single particle is
5= / QdiaWy(x(1),1) (4.23)

where x = Y, IT*(¢)x"
For 7(€ (—¢/2,¢/2))

n+l _ n n+1/2
i ol . A ~ | (4.24)

€ €

Hence Eq.(4.23) becomes

n+1/2
UT

¢f2
§.= | Odr

—¢f2 €

sl ) )

W (x" +

Substituting s = 7/e and letting ¢ — 0 gives

61, = ] Qdsv™ 2 W, (x(s),0) (4.26)
Similarly, from Eq.(4.14)

61, = f Qdsu™V/2W, (x(s),0) (4.27)
Eqs.(4.26) and (4.27) give the current assignment prescription which satisfies charge conser-
vation,

0ig = —0:1: — 0,1, (4.28)

when ¢ is accumulated using CIC. Note that from Egs.(4.7), (4.11) and (4.12) this charge
conservation property is unaffected by lumping any of the averaging operators acting on

components of E and or B.
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Eqgs.(4.26) and (4.27) prescribe current assignment as the path in'tegral of mixed NGP/CIC
current assignment from points along the line from x" to x"*!. If points x™ and x"*! lie in"
the same element, the integrand is a linear function, and the integral is equal to the integrand
evaluated at the midpoint. For a path crossing element boundaries, the contribution to each
element is given by the integrand evaluated at the midpoint of the trajectory segment in
that element. Figure 4 illustrates the charge and current assignment from a single particle.
The current assignment scheme corresponding to area weighting charge assignment from a

unit charge in a unit side element.:-

bpNE = TY (4.29)
bpnw = (1 —z)y (4.30)
épse = 2(1 —y) (4.31)
bpsw = (1 —z)(1 - y) (4.32)
1s
Iy = jAz (4.33)
bls = (1 - g)Az (4.34)
I (4.35)
§lw = (1 — 5)Ay (4.36)

where Z = (27 +1,)/2,§ = (ys+vi)/2, Az = z;—z;, Ay = y;—y;. Points (z;,y;) and (z;,y/)

are respectively the start and end points of the trajectory segment in the finite element.

4.4 Lumping

The evolutionary equations for the electromagnetic fields, Egs. (4.11), (4.12) and (4.18)
require matrix inversion at each step to invert the averaging operators. Lumping the time
averaging operator (i.e. a;B, — B,) reduces the matrix inversion to tridiagonal solutions to
find E; and E, from a,E; and a,E,. Lumping has no effect on Gauss’ Law (Eq.(4.7)) and

the charge conservation property, but does degrade accuracy.
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Extending lumping to the space averaging operators o, and a, leads to further reductions
in the computational work at the cost of further degredation of accuracy, but conservation
laws for charge and energy still exist (cf. section 4.5). The main benefit of lumping is
that the computations become completely local: there are no matrix inversions or Poisson
equations to solve. Such schemes are particularly attractive for implementation on parallel
architecture computers.

A measure of numerical stability and of the loss of accuracy due to lumping is given by
wave dispersion analysis. A plane electromagnetic wave, in vacuo, satisfies the dispersion
relation w? = k2+k? where w is frequency and k = (k., k) is wavenumber (c = 1 is assumed).
The corresponding dispersion relation for the finite element equations is obtained by Fourier

transforming Eqgs.(4.11), (4.12) and (4.18) with I, = I, = 0:-
WF(rwfw,) = K2F(nk, [ K.) + k2F(rk, [ K,) (4.37)

where for elements of sides A;,A,, A, in the z,y and t direction, respectively

2T 27 2T
= N =— K = — 4.38
wg At’ \I AI, v Ay ( )
and
- 2 9
F(8) =) (4.39)

~62[1—2/3sin% 0]
Equation (4.37) can be parameterised in terms of the mesh aspect ratio a = A,/A;, the
Courant number C = A,;/A and the wavevector direction ¢ = arctan(k,/k;) to give Q =
Q(k, @, C, &) where ) = w/%w,, & = |k|/2k, and &, /2% = 1/A = \/ [1/A2 +1/A2]. In the

absence of discretisation effects, {1 = k. The dependence of a,C and @ give a measure of

numerical error.

For numerical stability, the frequency w (or Q) must be real which, by Eq.(4.37), implies
C < 1. Figure 5a shows the dispersion curves for wave propagation on a square mesh using a
typical practical Courant number C' = 0.5. The curves are drawn only for the first Brillouin
zone of the numerical mesh. They show a small angular dependence Q(x, @ = 0) # Q(x, ¢ =
45°) and increase in wave velocity (€ > &) due to the discretisation. However, for wavelength
greater than 4A, numerical errors are small.

Figures 5b and 5c show the effects lumping. Lumping only B, (figure 5b) causes
an increase in phase velocity, whilst lumping all three averages reduces phase velocity and
increases angular anisotropy. The case shown in figure 5¢ is equivalent to the standard TM
interlaced finite difference approximation [2]. Omne difficulty introduced in case 5c is that

the wave phase velocity is subluminous: the numerical mesh is behaving as a slow wave
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structure, introducing the possibility of numerical Cerenkov instability [19]. Note in figure
5b that the lumping of B, which is equivalent to adding a solenoidal current, increases phase

velocity. This point is exploited in TCA (cf section 4.7).

4.5 Energy Conservation

The lumped approximations to the field equation retain an exact conservation law. Defining,

the averaging in time operators A and G by
(A )2 = (o4 4 )2 (4.40)
(G f?)r = frtizpn-is (4.41)

and defining similar space averaging operator A, and A, we may write the energy conser-

vation law for the lumped (in space and time) scheme in terms of nodal amplitudes:-

E; E) B;
(oA + A+ Gi5) + Ay(LAE:) + AL, AE,) ) =0 (4.42)

The sum in Eq.(4.42) is taken over all elements. Poynting fluxes at the surfaces are included
by means of surface currents in the ohmic terms.

The impulse approximation to the particle equations of motion, Eq.(4.19), also has an
exact conservation law for the kinetic energy. Dotting Eq.(4.19) with p™*+1/2 4 p»=1/2_ rear.
ranging and summing over particles, g, gives

Tr+1/2 _ pr=1/2 _ Z(pn+1/2 + pn-lfz) .En

—~ " (yn+1/2 4 - 172 (4.43)

Note however that Eqs.(4.42) and (4.43) do not imply exact energy conservation (to round-
off). This is because the impulse approximation used in the particle equations of motion
lead to an ohmic exchange term which is not identical to the ohmic exchange term in the

field energy conservation law. The discrepancy gives a measure of time truncation errors.

4.6 Charge Conservation

The charge conservation property, Eq.(4.28) causes Eq.(4.7) (or its lumped approximation)
to be satisfied for all time if it is initially satisfied and if fields are advanced using Eqs.(4.11)
and (4.12) (or their lumped equivalents). The method of derivation of charge and current
assignment ensures charge conservation: this can be verified directly by using Eqgs.(4.29)-
(4.36) for particles in a single element, and assembly the results. The proof is a little more
elegant in terms of the assignment functions. The (CIC) charge assigned to a particular

node at a given timelevel from a single particle of charge unity is
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g =A(z)A(y) (4.44)
Differencing over one timestep gives

8q = Az +v)A(y +vy) — Alz)A(y)

10
= ./l)ngA(z+sv=)A(y+svy)

= /] dsv.A'(z + sv)A(y + svy)
0
= /1 dsvy,A(z + svuz)A'(y + svy) (4.45)
0
But A'(z) = —8,1I(z),A'(y) = —0,I1(y). Therefore
1
Og = —5,/0 dsv.II(z + svz)A(y + svy)

1
- 31,/0 dsvyA(z + sv)II(y + svy)
= —-8.I, — 8,1, by Eqgs.(4.26) and (4.27) (4.46)

4.7 Noise Control using TCA

The algorithms derived using the variational time centred formulation are lossless, apart
from radiation and particle fluxes through the boundaries. The small number of simulation
superparticles and discountinuous current a.ssignmeﬁt (cf. section 5.2) enhances current
fluctuations above those in the physical counterpart. The radiation field noise energy depends
on all past fluctuations and can rapidly mask collective phenomena being studied. The
obvious expedients of increasing the number of particles and refining the current assignment
are unattractive because of larger computational costs. The transverse current adjustment
(TCA) scheme described below allows computations to be successfully undertaken with
particle numbers which in its absence would be too small to keep noise levels acceptable.
The idea behind TCA is to introduce a dissipative solenoidal current, j;, which attenuates
noise generated by particle graininess but leaves collective modes and charge conservation

unaffected. One choice which has proved both simple and effective is
ja = [BIVa x V4 x E(= — [B| Va X AB) (4.47)

where V, is the discrete gradient operator and A, is the backward time difference operator.
Equation (4.47) may be interpreted physically as a consequence of a lossy medium or nu-
merically as a small adjustment to the time centring of the magnetic field. It adds an energy

loss term
Z |B| A(B,A0,B, (4.48)
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to the power balance equation (4.42).

TCA is most simply implemented by precomputing an additional current given by Eq.(4.47
The effect of the TCA term on dispersion for the lumped case is shown in Figure 6. TCA
introduces a multiplicative factor (1 4+ B(1 — ezp(—i27w/w,))) on the r.h.s. of Eq.(4.37),
causing solutions for §2 to be complex. Plotted in figure 6 are 2, (solid) and /8.

The stability criterion, with lumped space and time averaging operators and TCA be-

comes
C*(1+28) <1 (4.49)

The best approach to combining noise control with good dispersion appears to be to choose
some small 8 to suppress nonphysical noise effects, then set the largest timestep to satisfy
Eq.(4.49). Figure 6b shows one such case, with 8 = .05 and C = 0.9: this gives good
dispersion at small k, and damps the poorly represented large ¥ modes. Illustration of the
effectiveness of TCA is given elsewhere [16]. Typical, a coeficient of 8 ~ .01 (corresponding

to a 1% shift from exactly timecentring 8 in Ampere’s Law equations) is sufficient.

5 1-D Electrostatic Models

In one dimension the longitudinal (electrostatic) and transverse (electromagnetic) compo-
nents of the field separate respectively parallel to and transverse to the spatial mesh. In
this case, the methods outlined in the previous section can be applied directly to the one
dimensional electrostatic and/or electromagnetic particle model, with the interesting result

that Poisson’s equation needs solving only once to initialise a calculation.

5.1 CIC charge assignment

Linear support functions in the variational finite element formulation lead to the usual energy
conserving 1-D electrostatic model [1]. For particles of unit charge on a unit spaced mesh,

the charge assigned to node p from particle g is
bgp = Azg — p) = Ap(z,) (5.1)
amd the electric field E satisfies

Epir72 = ¢p-1 — ®p (5.2)

where

¢p-1 = 2¢p s ¢p+1 = -4 (53)
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From Eq.(5.1),

0i(6g,) = (Ig+”g) Ay(zy)
= / di :rg+vgt)

/0 vgth;,(asg + v,t)

1
= —0, | diy,Il t 5.4
[} dtwTi(a, +vy1) (5.4)
Substituting Eq.(5.2) into (5.3), differencing in time and using Eq.(5.4). gives
0,0.F = —0,1, (5.5)
where
i fldt TI(z, + vyt) (5.6)
e = [ divgll(zg + v, ;
Summing Eq.(5.5) in = gives
BE=1I -1, (5.7)

where the constant of summation Iy (the return current) is determined by the boundary
conditions. Egs.(5.6) and (5.7) provide the basis for a novel (but equivalent to standard
schemes(1]) method of stepping forward the 1-D electrostatic model in time:

Timestep loop. |

1) update positions for particles g = 1, N,

In+] s Ign o ,ugn+1/2 (58)

g

ii)compute currents at nodes p + 1/2

I::ll/zz Z max [p,mm p+1,m"+1)]

— max [p,mm(p+1,.'rg] (5.9)

i) compute return current

e.g for fixed vo]tage b.c.

iv) advance fields

B =Epap+ (Inﬂm I::;/;) e’ (5.11)
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where ©7 is a dimensionless factor depending on the N,, N and At.

v) update velocities

v;‘+3/2 _ v;+1/2 + EM () (5.12)

vi) go to i).
A similar timestep loop can be defined for ‘momentum conserving’ schemes, differing in that

Eq.(5.2) is replaced by

Ep = (¢p-1— dpt1)/2, (5.13)
Eq.(5.11) is replaced by

Eptt = Ep + (BH° — (IR + T4 @ (5.14)

~and the interpolation of E in Eq.(5.12) become CIC rather NGP.

5.2 Higher Order Schemes

A whole family of Virtual Particle schemes can be obtained in one, two and three dimensions
by choosing appropriate local support functions. We illustrate the process here by considering
the spline function family of schemes in one dimension. The hierarchy of charge assignment
schemes CIC, TSC, PQS, etc., [1] arise from linear, quadratic, cubic spline, etc. support
functions. In each case, the corresponding current assignment function is the next lowest
order. Thus, on a uniform net of unit width elements, if current is assigned to nodes from a

particle according to

Ly = /0] dsvWpi1p2(z + sv) (5.15)
then charge is assigned according to

g = fH(:c')W,,(:c — 2')ds (5.16)

Current assignment is implemented in terms of the contributions from trajectory segments.
Consider the segment from z; to z; in element p, as shown in Figure 7. Current assignment
from that segment for the various charge assignment/current assignment combinations are

as follows:
CIC charge assignment

Ij i !
Loy = /r dz'Tlp11/2(2)
= If_zi=A-75 (517)
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Eq.(5.17) gives the NGP prescription of current Az from a virtual particle at position Z =
(zi + .'.Cf)/?.

TSC charge assignment

Ip_1/2 = IAz

IP+1/2 = (1 i E)AZE (518)
This current assignment scheme can be likewise interpreted as CIC from a virtual particle
at position Z with current strength Az.

PQS (cubic spline) assignment

Iy = /I_I’afa:l/z(l/z—:.:)2 (5.19)

Ly
L = '/r dz(3/4 - z)°

s
Loyspp = /I dz1/2(1/2 + z)°

The quadratic integrand requires two point quadrature for exact evaluation: this is inter-
preted as TSC assignment from two virtual particles at # + Az/+/3 with current strengths
Az/2. Alternatively, the integrals can be evaluated directly. One scheme, using two pdint_

quadrature for I,_y/, is

g = (34122
Ar = (z; - ;)
g = z-1/2
v = §+Az/V3
y2 = §—Az/V3
Iz = %c- v+l
Iys;z = Ly +ZAz

Lz = Az =Ty — Tpy3/2

giving a rea] arithmetic operation count of 16 per trajectory segment.
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6 Final Remarks

The finite element formulation of the Virtual Particle (VP) Electromagnetic Particle-Mesh
algorithms provides a systematic approach to obtaining charge conserving schemes for solving
the coupled relativistic Vlasov and Maxwell equation set. These algorithms are competitive
with their existing finite difference PIC counterparts in accuracy, in computational speed
and storage, and in flexibility. They can be tuned for speed by restricting elements to one
form, or some speed per node can be traded for flexibility in element shape and connectivity.

The emphasis in this paper has been to outline the general derivation, with simple one
and two dimensional Cartesian cases used to illustrate details. The examples were chosen to
show the link with conventional finite difference based schemes [1,2] and to provide easy to
follow examples of procedures followed in more complex cases. Programs implementing the
1-D schemes of section 5.1 and 2-D schemes of section 4 have been used to study 1-D and
2-D diodes, magnetically insulated transmission lines (MITL) and magnetically insulated
transmission line oscillators (MILO) [20,21].

More general cases and higher dimension charge conserving virtual particle algorithms
will be subjects of future reports. It is apparent from the discussion of section 3 that
virtual particle (VP) methods generalise straightforwardly to three dimensions, to general
coordinate systems and to more general element shapes [17,20]. Already, the 2-D Cartesian
scheme and program have been extended to polar coordinates to study cylindrical diodes,
MITL’s and MILO’s [16,22,23]. Some work has been undertaken in developing 3-D schemes,
where it has been shown that it is possible to express the whole timestep loop in terms
of local operations on single elements or between continguous neighbouring elements [24].
This makes the VP method ideally suited to massively paralle] architecture machines with
neighbouring processor connectivity.

Practical details for the successful modelling of realistic devices - such as data adressing,
input-output and diagnostics, treatment of awkward shaped boundaries with possible elec-
tron emission and of electromagnetic power injection and extraction - have not been dealt
with here. However, they present no serious obstable, as has been illustrated by the 2-D
cylindrical and Cartesian simulations referred to above.

For the problems to which the VP method has thus far been applied, numerical noise has
not caused serious difficulties. Linear element current assignment, both with and without
TCA, has allowed calculation to proceed for tens of thousands of timesteps without failing.
If this lowest order (linear) support proves inadequate for more noise sensitive situations,
then the schemes of section 5.2 or their multidimensional equivalent can be used, but with

the obvious increased cost per particle per timestep. The associated increased cost per node
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point per timestep arising from higher order support functions can be avoided if desired
by using lower order field representations in a weighted residual (instead of variational)
derivation. The advantage of the higher order spline functions is that they reduce numerical
noise. Their disadvantage is that if they implemented without lumping, they give non-local
and implicit approximations which are difficult to implement in awkward geometries. It
seems likely that alternatives to splines would give a better compromise in some cases, and

this possibility will be the subject of a future study.

23



References

[1] R. W. Hockney and J. W. Eastwood, “Computer Simulation using Particles”, McGraw-
Hill (1980) (student edn. Adam-Hilger, 1988).

[2] C. K. Birdsall and A. B. Langdon, “Plasma Physics via Computer Simulation”,
McGraw-Hill (1985).

(3] J. P. Boris, Proc. 4th conf. Num. Sim. Plasmas, (N.R.L., Washington, 1971), p3.

[4] L.Haber et al., Proc. 4th Con{. Num. Sim. Plasmas (N.R.L., Washington, 1971), p.126
[5] D.W.Forslund et al., Phys. Rev. A, 11 (1975)679.

[6] A.B.Langdon and B. F. Lasinski, Meth. Comp. Phys., 16 (1976) 327.

[7] B.M.Marder, J. Comput. Phys. 68 (1987) 48.

[8] G.R.Gisler and M.E.Jones, Bull. Am. Phys. Soc. 29 (1984) 1208.

[9] O.Buneman in : Relativistic Plasmas eds. O. Buneman and W. B. Pardo

(Benjamin, N.Y. 1968).

[10] J. Villasenov and O. Buneman, “Rigorous Charge Conservation for Local Electromag-

netic Field Solver”, to appear J. Comput. Phys. (1989).
[11] R. L. Morse and C. W. Nielsen, Phys. Fluids 14 (1971) 830.
[12] H. R. Lewis, J. Comput. Phys. 6(1970) 136.
[13] H. R. Lewis, Meth. Comp. Phys. 9 (1970) 307.

[14] J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory. (Addison- Wesley,
1962).

[15] H. Goldstein,“Classical Mechanics”. (Addison-Wesley, 1950).

[16] J. W. Eastwood and T. C. Hender, “VENUS-RZ, a 2-D relativistic electromagnetic

particle-mesh code”, in preparation, (1989).

[17] J. W. Eastwood, “Charge Conserving Virtual Particle Electromagnetic Particle-Mesh

Schemes in General Curvilinear Coordinates”, in preparation (1989).

[18] A.J. Baker, Finite Element Computational Fluid Dynamics. (McGraw-Hill, 1985) p.114.

24



[19] B. Godfrey, J. Comput. Phys. 15 (1974) 504.

[20] J. W. Eastwood, Underlying Research on EM Modelling, Annual Report, Culham,
February 1989.

[21] J. W. Eastwood, paper SD10, IEEE Int. Conf. Plasma Sci. Seattle, May 1988.
[22] J. W. Eastwood, paper 3D1, IEEE Int. Conf. Plasma Sci., Buffalo, N.Y., May 1989.

[23] J. W. Eastwood and T. C. Hender, paper IM1 13th Conf. Num. Sim. Plasma, Santa
Fe., N.M., Sept. 1989.

[24] J. W. Eastwood, paper PMA11, 13th Conf. Num. Sim. Plasma, Santa Fe, N.M., Sept.
1989.

25



Table 1: Support functions for the linear brick element used in the 2-D TM

Cartesian example. L denotes linear and C constant over an element.

Variable X y t
¢ L L C

Az C L L
Ay L C L
E, C L C
By L C C
B, C C L
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Fig.1 The space-time finite element brick showing the
location of nodes and quantities stored at those nodes. Index
triplets (¢ m, n— 142), etc. give the global (%, y, t) node coordinate
for elements assembled in a uniform lattice.
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Fig.2 Node amplitude multipliers (x 6) for the electric field amplitudes
in Eq.(3.10). Indices fand m are global node indices.
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Fig.3 Node amplitude multiplier (x6) for the electric field and

magnetic field amplitudes in a) the x-component and b) the y-

component of Eq.(3.11). Indices {, m, and » are respectively x, y and
r global indices of the nodes.
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Fig.4 a) Charge assignment from a single
particle and b) current assignment from a
single particle trajectory segment for a linear
support function.
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Fig.5 a) Frequency Q versus wavenumber « for plane EM waves on the square lattice shown in figure 1

for wavevectors along a mesh axis (0°) and mesh diagonal (45°) using Courant number 0.5. b) As a), but

with the time averaging term lumped in the discrete field equation. c) As a), but with space and time

averaging terms lumped. The nodal equations are equivalent to the standard TM leapfrog finite difference
equation for this case.
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Fig.6 a)Frequency (solid curves) and damping (broken curves) for the lumped scheme with TCA, 8=0.5,
and 1.0, §=45°, show that damping improves wave dispersion. b) Typical operating parameters (C=0.9,
3 =0.005) show a lumped scheme with TCA gives a good combination of accurate dispersion at long

wavelength and noise damping at short wavelength.
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Fig.7 Node labelling for the 1-D assignment scheme examples. Charges are stored at integral nodes (p,

p+1, ..). Element p is centered on node p+ ¥ for CIC and PQS, and on node p for TSC.
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