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Abstract

The ion thermal conductivity ();) arising from strong ion temperature gradient driven turbu-
lence is derived, taking account of effects from ion resonance damping (linear and nonlinear),
and broader radial eigenmodes. It is assumed that when a mode resonates with ions (as deter-
mined from a local solution of the gyrokinetic equation), it will saturate at a level too small
to contribute significantly to transport. The remaining modes are fluid and strongly turbulent,
and a mixing length estimate is used to find X;. The results are a prediction of the threshold
of strong transport (which is different from the linear stability threshold), and an ion thermal
conductivity given approximately by:

LfPi 78

L (1+7)

xi = 0.037 575 (1 — 1.2)° o},

which contains more physical effects basic to the 7); mode than previous estimates of X;. A
more accurate but more elaborate form of ); is supplied in the text.

I. Introduction

In the last decade there have been a number of nonlinear studies of the ion temperature
gradient driven instability (“n; turbulence”). However, as yet no single theory has included
enough basic dynamics to determine the associated ion thermal conductivity x; to within
an order of magnitude. This work is an attempt to bring together previous theories in order
to predict x; more accurately for all regimes of ;. The sheared slab model is considered,
for which the most detailed nonlinear understanding is available.

To see what physics must go into an accurate prediction of the x; from 7; turbulence,
consider the following argument. In the fluid strong turbulence regime, the transport
associated with a mode increases quite rapidly with the radial modenumber,! [ (with
diffusivity increasing like (2/ 4+ 1)®), and so x; is quite sensitive to whatever effect it is
that reverses this trend at high l. For high enough [ the modes stabilize linearly, but
before this occurs, there are at least two changes in the nonlinear physics that effectively
cut off transport. These are the onset of ion Compton scattering (which replaces 3-wave
resonances), and the transition from strong to weak turbulence, which do not necessarily
occur together. Although these are not well explored for ; modes at high [, a recent study
of the [ = 0 mode near the instability threshold? indicates that the presence of ion Compton
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scattering holds the fluctuations and transport down to a negligible amount (by a factor
of (Lr/L,)* < 1 compared with fluid turbulence), and it is reasonable to expect a similar
diminution for higher [. Weak turbulence (which occurs roughly when |y| < |w,|) will also
hold the transport down by introducing an additional factor of approximately v /w, into
the mixing length estimate of x;. Thus, transport is determined by the radial eigenmode
which is on the boundary between different regimes of nonlinear behaviour (either fluid
vs. kinetic saturation, or strong vs. weak turbulence). No previous study has addressed
this issue, which leads to the conclusion that no prevoius prediction of x; from 7; modes
is very accurate.

An accurate prediction of x; must take combined account of the effects of ion reso-
nances (linear and nonlinear), strong and weak turbulence, and higher radial eigenmodes.
Although a full analytical theory is probably unfeasible, all these effects can at least be
accounted for with the aid of three assumptions that incorporate results from previous
detailed (but incomplete) analyses. First and most importantly, nonlinear kinetic effects
can be incorporated by assuming that whenever linear wave-particle resonances are sig-
nificant for a mode, then nonlinear resonances will saturate the instability, and will hold
the amplitude to a level too small to contribute to transport (even though the mode may
be linearly unstable). This is supported by a recent kinetic weak turbulence study,? and
here it is additionally assumed that robust damping occurs also for strong turbulence with
ion resonances. The second assﬁmption is that the frequency of a normal mode is given
roughly by the local solution to the mode equation, in which w is solved as a function of
k). In reality, a normal mode will span a range of k; and have only a single frequency, but
this may be obtained by some judiciously selected average of the local frequency over the
width of the normal mode. This assumption allows substantial analytical simplification of
the problem, and is supported by the success of local approaches? in light of full normal
mode analyses.!'” The third assumption is that transport from an 7; mode in the fluid
strong turbulence regime is well approximated by the mixing length estimate, y; = yA2,
chosen at some average wavenumber (although this will not hold for all regimes of the
n; mode). This assumption is supported by a variety of studies of fluid strong turbulence
from 7; modes, including dimensional analysis,® a two-point renormalized spectral theory,*
and a diffusion-as-eigenvalue calculation.®

With these assumptions, the analysis can proceed as follows. Starting with the kinetic
linear dielectric function,’® a local approximation is used to derive the frequency as a
function of radius, from which the region of fluid strong turbulence may be assessed. The
fluid region is determined by the condition |{| = |w / \/§k||v,~| > 1, (i.e., the parallel phase
velocity is larger than the ion thermal velocity). The strong turbulence region (which is
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not the same as the fluid region) is determined approximately by the condition v > 0, since
weak turbulence for the present problem occurs near the limit of linear stabilization. (The
definition of the strong turbulence region is rather less certain than that of the fluid region,
but fortunately it appears that the latter provides the determining condition except for
very large 7;. Furthermore, with the present definition, a mode that is weakly turbulent
is close to linear stability, where the associated transport is sure to vanish.) Knowledge
of these regions then enables determination of the transport threshold (from the condition
that a region of fluid strong turbulence exist), and the ion thermal conductivity (from a
mixing length estimate applied to the broadest mode contained within this region). The
growth rate necessary for the mixing length estimate is obtained from a normal mode
analysis, which obviously may be performed in the fluid limit for the modes of interest.

II. Model and Local Analysis

The equation describing the linear kinetic #; instability in sheared slab geometry
has been derived previously.®® The ions are gyrokinetic, with temperature and density
gradients in the radial (£) directions, the electrons are adiabatic, and the magnetic field is
in a sheared slab configuration, with B = By (2 + L—'y) This yields

€5 (W)JJE =0, (1)
where the linear dielectric function is
2 1 rl 92
ez (w) =21 +1/7) —mi¢"To+ 7 | 5 +b l—ﬁ —1-m(* + Q| ¢Z({)To. (2)
where,
20).
Q:W/w*i: Wei = -"-:y—_zt_m1 T=Tc/Ti1 i =Ln/LT1
dlnn dinT; w?
o P =1 _ kD g _ b
L, = de ’ Lz dz '’ ¢ 2kﬁ'vf : T = €7 In(b),

b=p? (K2+k2), pi=vi/Q,  Qi=eB/mic, v? = T;/m;,

w = w, + iv is the linear frequency, Z(¢) is the plasma dispersion function, and I, is the
modified Bessel function of order n. For a sheared slab geometry, k| = kyz/L,. where z
is the distance to the rational surface. The local solution to Eq. (1) is symmetric about
z = 0, and so consideration is restricted to z > 0.

The strong turbulence and fluid regions may be described in terms of two positions
in ¢ (Fig. 1) which vary as functions of 7:, b, 7, and L,/L,. First, the fluid region is
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demarcated by the Landau damping radius, zzp, defined as the position where |(| = 1.
For modes contained within zpp, the phase velocity will be larger than the ion thermal
velocity, and resonances will not occur. It is important to note that while the condition
|¢| > 1 is only barely satisfied in the local theory, this condition is well satisfied for normal
modes within the fluid region, for which w is constant while k; — 0 for z — 0. Second,
the strong turbulence region is limited approximately by the marginal stability radius,
Zm, inside of which 4 > 0 (and vice versa), which has been derived previously®. Modes
narrower than z,, will be strongly turbulent (with |y.| 2 |w.| on the average over the
mode), while modes that extend beyond z,, will become weakly turbulent and eventually
stabilize. The appropriate mixing length is then zps; = min(z,,,zrp), since this is the
width of the broadest mode with both |¢| > 1 and || 2 |w,|.

For a local analysis, it is convenient to eliminate w and k| from Eq. (1) in favor of ¢
and z, yielding

ez (€)= V2¢sap = n:® + (6 - mi¢® + V2(s2) (2 () =, (3)
where the following notation has been introduced:
1+1/7 n; 1 Pei1
= =— -1, ce=|=+bl1-=— ;
L ‘T i+o(-x)

8 =Ln/L,, { = ¢+ + (i, and = has been normalized to p;. Here 7. is the (k, dependent)
critical value® of 7;, which follows from the expression for the marginal stability radius z,n,,
where 4 = 0. This is derived by setting the real and imaginary parts of € ({) to zero at
Tm, yielding

6
3 Rp— -
2p(p—1)
2 ___ Pb
bm ni(p—1)

For 7; > 7., then 22, > 0 and instability can exist. However, near threshold the instability
is essentially kinetic, since |{| < 1 when § < 1.
The fluid threshold can be found by noting that || =1 first at £ = 0, where Eq. (3)

can be written as 5 q
—— 2 —_—
7= ¢ (”czm)' )

Since the right hand side of Eq. (4) must be real, then ( must be imaginary, and thus at
the fluid threshold, ¢ = 7. The right hand side of Eq. (4) can then be evaluated, leading
to a fluid threshold of

fid = (p! 4 .319) 7.
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Figure 2 shows 77" and 7 as functions of b. The minimum value is 7™ ~ 1.2 (compare
the linear threshold of .9), which occurs at b ~ 1.

To find the Landau damping radius, an expression for ¢ (z) is needed. This is obtained
by first finding ¢ (z = 0) from perturbing Eq. (4) about ¢ = i for small n; — "1, and then
expanding ¢ (z) to second order in a Taylor series and solving Eq. (3). After quite a bit of

algebra, this yields

. _ pfuid _ 2
@) =1+ 12.4-("‘+)- 202 =T58) o2 (5)
Setting |¢|* = 1 yields the Landau damping radius for 7; ~ pf*
a\1/2
(ni — nﬂmd)l
= .247 < . 6
LD s(p— .758) (6)

Unfortunately, the expansions that go into Eq. (5) have a rather narrow range of conver-
gence, and Eqs. (5) and (6) are only valid for 7; very near the fluid threshold (as tested
numerically). As 7; increases well above threshold, zzp moves beyond the radius of con-
vergence about z = 0. For this regime, zpp may be found by an expansion of ¢ (z) about
¢ = . This is done by noting that {; (where { = { + i(;) is small near z,, and so the
approximation €, ({,) =0 and ¢; = ;e—‘r"/%f% is applicable. The solution around z,, is then:

r ~ constant = (m

Setting |¢|> = 1 yields the Landau damping radius for 7; > "<

P (1-v-1+ 1/Cen /Vr). (7)

When (2, > 1, the mode is fluid across the entire zone of instability, and so z,, is the

correct mixing length. This occurs when

-1
N 2 [l—.5+b(1—£l)] 5
4 Lo

In Fig. 2 this value is the boundary of the "Unstable and Fluid” region. For low #; (< 4
for 7 = 1), it is zp that limits the mixing length, while for larger 7; it is Zm.



ITII. Fluid Normal Modes

The local theory has provided the width of the broadest fluid, strongly turbulent
mode. For a mixing length estimate, a relation between the mode width and the growth
rate is required. This is obtained through a normal mode analysis, which can be done in
the fluid limit since ¢ > 1 for these modes.

The structure and growth rate of the fluid normal modes is obtained by expanding
Eq. (1) to order (kzp;)* and 1/¢2, and taking k2 — —82/8z2, which yields the Weber’s

equation:

[A—Bz?]¢=0 (8)

where

o 2
_ 1_"_01% [Ty (% -0) ~ Tod] .

The solutions of Eq. (8) are the Hermite functions:

s=n((8)'<)=(/5%),

where the dispersion relation is A = (2l +1)vBC, and l = 0,1,2... is the radial mode
number. The mode width is obtained by taking the normalized > moment of ¢, yielding

A = (z+ %) J/C/B. (10)

The present analysis considers only the ! that yields A, = zumr, radial quantization may
be neglected, thereby approximating ! as continuous. Thus, eliminating ! between Eq. (10)
and the dispersion relation, and setting A, = zpsp yields:

[p— 10 +[1 —ni/npe) QF — [26°234,) @+ 28°234 (L4 — mi/npr) =0, (11)

where 7. = (b—bI'1/Ty)”! may be regarded as the point where finite Larmor radius
corrections become important. When 7; < 74, one recovers the usual ; growth rate by
balancing the second and fourth terms in Eq. (11), yielding

Q=i\/1+1’],'.9$ML, (12)
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For higher values of 7; or b, then 7;/74, in Eq. (11) is no longer negligible, and numerical

solution is required.

IV. Transport

With the mixing length determmed and the growth rate given by Eq. (11), the ion
thermal conductivity can now be estimated via x:(b) = yz%,,. In the near threshold
regime, Eqgs. (6) and (12) yield

1/2
o — oy Pl kypiT§ (1+m—mMm _oaud)3/2 20 (13
Xi (b) = .015 Li (1 _ 758F0 n 1/7)3 1= ﬂi/nﬂr (77: Ne ) Piaki ( )

Taking k,p; >~ Vb, then x; (b) is maximized for b ~ 1, which yields

2 _ 3/2

73 (1+154/ P S (14)

Xi

The 7; scaling in Eq. (14) covers only a very narrow range above threshold, since terms
of higher order in 7; — 7f"i¢ have been neglected in deriving zyp. As 7; increases, the
numerical coefficient in Eq. (14) increases, while the scaling with other parameters remains
largely unaffected.

In the 7; > 7f"id regime, a mixing length estimate using Egs. (7) and (12) yields

3/2

i 2
(b) = Lfk " (%—1) To (1+ni_ni/n.ﬂr)1/2
A I3 P 0¥ 1/r)(1+1/7—Ty) 1—n:/npr

X (1 — Vomem/—1+ 1/{,";)3 P29 (15)

The right hand side of Eq. (15) vanishes at low b from the k,p; coefficient, and is reduced
at high b by the 74 terms (numerical solutions of Eq. (11) indicate that these begin to
diminish 4 for b 2 1/n;). Choosing b ~ 1/27; roughly balances these two effects, yielding;
3

T I3
1P e (L2007 (0 = n) 10 (16)

Xi =

Equations (14) and (16) represent x; at two extremes, but what is needed is a value for
x; that is valid for all ;. Analytically, this is difficult or impossible to obtain accurately,
and so it seems appropriate to use a numerical strategy, as follows. The dependence on
s = L,/L, is extracted easily by noting that the substitution sz — z' in Egs. (3) and (11)
eliminates s from the equations, which may be reinserted at the end to yield x; oc 1/s2.
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The ion thermal conductivity may then be obtained by a mixing length estimate, with
2z from numerical solution to Eq. (3) and 4 from inserting this into Eq. (11)). The b
dependence is eliminated by maximizing x; as a function of b (the resulting b is shown in
Fig. 2 for r = 1). This leaves n; and T dependence, which are obtained by hand choosing
a form that looks like the numerical solution (using Egs. (14) and (16) as guidelines) for
all regimes in 7; (except 7; < 0), and in the neighborhod of 7 = 1. This produces

L2p,
Xi = if f (i, 7) P39 (17)

Numerical evaluation of f(7:,7) is shown in Fig. 3, and a reasonable fit is given by:

; 3
f(ni,m) = (I_T—)Tmax 0.026 (n; — 1_2)3.1+.3\/F, 0.066+/7 (Th' - (1 +0.6e*-09/-rz)) ] ,
+7)?
(18)

where terms of the form (; — a) vanish if ; < a. Equations (17) and (18) are the principal
result of this work. A simpler but less accurate estimate is given in the abstract. There is
no restriction on the range of applicability in either n; or L,/L,, although there might be
an additional term when 7; < 0 (where Eq. (18) predicts no transport).

Equation (17) shows improved confinement with increasing T;/T, and decreasing L,
(which may be related to increasing current), which compare favorably with experimental
observations.’ The scaling with L, is ambiguous, since more peaked density profiles (lower
L,,) will increase x; through the 1/L? dependence in Eq. (17), but also decrease x; by
driving 7; closer to threshold in Eq. (18). This could underlie the seemingly contradic-
tory experimental observations that pellet injection improves confinement by peaking the
density, while the very flat density profiles of H-modes seem to show no degraded confine-
ment. Finally, Eq. (17) shows a rather strong dependence on the temperature gradient,
with x; o« L33, With this, it is possible that the strong diminution of x; towards the edge
(from the T~3/2 dependence in p?) could be overcome by only a mild increase in 7;.

V. Conclusions

This paper has presented a method for including the effects of higher radial eigen-
modes, ion Compton scattering, and weak turbulence in the x; resulting from 7; turbu-
lence. The important threshold is not the linear stability threshold (n; ~ 0.9), but the
threshold of fluid behaviour (7; ~ 1.2). The resulting x;, given by Eqs. (17) and (18),
is rather different from that calculated by the usual method of considering only the fluid
! = 0 mode and the linear stability threshold.

The assumptions of this paper, along with the model of a sheared slab geometry with
adiabatic electrons, may be regarded as rather crude, but from a physical point of view they
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are less crude than more rigorous theories or more elaborate models that ignore altogether
the effects considered here, which are quite basic to the 7; mode. Thus, it is possible
that Eq. (17) could give better agreement with experiments than previous predictions.
The calculational technique used here, which is based mainly on a local solution of the
gyrokinetic equation, could be applied to a more realistic model, such as one incorporating
toroidal effects or unthermalized ion distributions. However, a more rigorous approach
would have to address the nonlinear gyrokinetic equation in the limit of strong turbulence,
which is perhaps analytically unfeasible; therefore, numerics are probably necessary. It is
especially desirable to check the assumptions that ion Compton scattering will reduce the
transport in the strong turbulence regime (shown previously only for weak turbulence?),
and that nonlinear resonances occur along with linear resonances.
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Fig.1 t=w/] 2k, asa function of sx, for 5;=2, b=0.5, and 7=1, showing the marginal
stability radius, x,,, and the Landau damping radius, x; p.



Unstable and fluid

Fig.2 Zones of behaviour for the local theory. The dotted line represents -
The heavy solid line is the b that maximizes x; (for 7=1), taken here as b

rms*
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10 20 3-0 4.0
i

Fig.3 Numerical f(5;, 7) used in Eq.(17) (solid lines), shown next to best fit,
Eq.(18) (dotted lines).









