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Abstract

Studies of the propagation of heat pulses, launched by a sawtooth collapse or by modulated
auxiliary heating, yield information on transport properties in the tokamak. Corresponding
values of the thermal conductivity are often found to be significantly larger than values
obtained from power balance calculations. A full treatment of the heat-pulse must, however,
include possible coupling to an associated density pulse. Such effects are discussed in the
context both of neoclassical transport theory and of a model of anomalous transport due
to drift waves. It is found that the discrepancies between heatpulse and power balance
measurements could arise from coupling between density and temperature perturbations
due to the presence of off-diagonal terms in the transport matrix.






1 Introduction

The sawtooth collapse in the central region of a tokamak plasma can launch a heatpulse
which propagates radially outwards. By fitting solutions of heat conduction equations to the
observed shape of the pulse, information about the thermal conductivity can be obtained
(CALLEN and JAHNS, 1977). It is often found that the thermal conductivity deduced from
heat-pulse measurements (xF) is about a factor 2 greater than that obtained from power
balance calculations (xF2). Similar experiments can also be performed using modulated
ECRH (ASHRATF et al., 1988). The sawtooth also launches a density-pulse which can yield
information on the particle diffusion coefficient (KIM et al., 1988). Again, the density pulse
value is found to be about a factor 2-5 larger than that obtained from gas-puff measurements,
which are indicative of the equilibrium value. GOEDHEER (1986) has shown that neglect
of perturbed source and sink terms can lead to an overestimate of transport coefficients,
though not all of the discrepancy can be explained this way.

In this paper we consider the effects on heat-pulse (and density-pulse) measurements of
possible ‘off-diagonal’ terms in the transport equations, that is terms in which a density
gradient drives a heat flux, or a temperature gradient drives a particle flux. A pure temper-
ature perturbation is then no longer a normal mode of the system (HOSSAIN et al., 1987),
and it is necessary instead to consider the eigenvectors of the transport matrix. These in-
volve some combination of density and temperature perturbations, so that even a source
of pure temperature perturbations would generate density perturbations at some distance
from the source. If the propagation of a heat-pulse in such a system were to be modelled by
a simple heat conduction equation, the value x"F of the thermal conductivity so obtained
could differ substantially from the value xF2 corresponding to the equilibrium temperature
gradient. The presence of off-diagonal terms therefore provides a possible explanation for
the discrepancy between equilibrium and perturbation transport coefficients.

In section 2 we consider a model transport matrix with constant coefficients in order to
demonstrate the basic mechanisms. We then illustrate these ideas with two examples: in
section 3 we consider neoclassical transport theory for which off-diagonal terms are known to
exist and have been calculated, and in section 4 we consider a model of anomalous transport
due to the dissipative trapped electron mode for which off-diagonal terms are also present.
Some concluding remarks are presented in section 5.

2 Model System

The evolution of temperature and density profiles is governed by the coupled transport
equations
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Here n and T denote density and temperature, I' and @ are the particle and heat fluxes,
and S, and S; are the corresponding source terms. The heat flux @) can be decomposed into
diffusive and convective terms:

Q=q+ g-I‘T. (3)

The particle and diffusive heat fluxes can be expressed in terms of transport coeflicients as
follows:
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and we shall neglect thermal and particle pinch terms. In steady state the time derivative
terms in egs. (1) and (2) vanish, and thus the diffusion terms balance the source terms.
Suppose the resulting temperature profile were to be modelled by a simple heat equation of
the form:

FE{ (-—nx b PT)}_S,,, (6)

i.e. one in which off-diagonal terms have been neglected. The value of x*® so obtained
depends on the density profile; if we assume

_ndl _ 1 .
= Tdn (7)

then we obtain
X*B = xo0 + My, (8)

and we see that the presence of off-diagonal terms implies x*2 # xo-

Information about transport coefficients can also be obtained by studying the propagation
of temperature and density pulses. When the time-dependant source terms are localised
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in space, we can study the propagation in the region where the source terms are small, in
which case the time derivative terms balance the diffusion terms. This has the considerable
advantage that models for the source terms, which are often complex and uncertain, are
not needed (TANG, 1988). We begin by writing the density and temperature as the sum of
steady state and perturbed quantities:

H(T,t) = nO(r) + ﬁ(r:t)'r (9)
T(r,t) = To(r) + T(r,1). - (10)

We now linearise the transport equations (1)—(5) with the assumption

Bﬁ, - 3n0

B 2 (1)
T _ 0Ty

Togr > T2 (12)

This gives a set of coupled transport equations which can be written in matrix notation as

10 d
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For simplicity we take the elements of P to be constants; more realistic examples will be
given in the next two sections. The general solution of eq.(13) is given by

u = oq(r, t)u; + az(r,t)u,, (16)

where the u; are the two solutions of the eigenvalue equation
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P -u; = Ajuj, (17
and a; are given by

a;(r,t) = A(z;) exp(iwt), (18)
where A(z;) satisfies the Bessel equation

2
A, 1 a=o (19)

p - oz
dz; = zjdz;

with

zJ-:r(-‘i)%l“. (20)

Away from the source, the term with the smaller eigenvalue A; decays more rapidly, leaving
a pure eigenmode u,. If the resulting heat-pulse were to be fitted by a solution of a simple
heat equation of the form

307 10 ( wpoT
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the value of x"'F would be given from the eigenvalue A; by xFF = 3X;/2 and thus

11 3. . 3[r2 2 ‘.8 v
xPF = 3Xo + §M12 + ZD + T { (§X0 + §M12 = D) % §Ml2(D + M21)} : (22)

The presence of off-diagonal terms therefore implies x"'F # xFB. If My, = M2 = 0, however,
we obtain ¥ = PP = y,. Thus the existance of off-diagonal terms can provide an
explanation for the apparant discrepancy between x*2 and x'F.

3 Neoclassical Transport

We next consider neoclassical transport theory as an illustration of the results of the previous
section. The fluxes I' and @) can be written (HINTON and HAZELTINE, 1976)



I'= —f(r)n[1.044" 4+ 1.20T"/T], (23)
Q = —f(r)nT[1.204" + 2.55T" /T, ‘ (24)

where primes denote derivatives wtih respect to r, and we have set T; = T, = T and neglected
ion gradients and electric field terms. Here

f(r) = const.r—3/2¢g?nT-1/2, (25)
! 3 T'

A= 2o 26

n 2T 7 (26)

In these canonical variables (A,T) the Onsager Symmetry of the fluxes (23) and (24) is
explicit. For simplicity we shall approximate f(r) by C/r? where C is a constant.

If the equlibrium temperature profile were to be fitted by a simple heat equation of the form
given in eq.(6), and we again assume 7 = 1, we would obtain

XB = 0.25 (C) , (27)

r2
To study heat-pulse propagation we again linearise the transport equations with the assump-

tions (11) and (12). The resulting coupled equations can be written

~u=CM-=—u, (28)
T

u=(’§/"°), (29)

T
1.04 —0.36
s ( —0.24 0.86 ) (30)

These equations can again be written in terms of the eigenvectors of M, giving

u= Cl.’](I,t)ll]_ + Qg(ﬂ?,t)uz, (31)



where

M- ‘Uj = ,\jllj, (32)
A = 0.64, u; = ( ggz ) ; (33)

The solution with frequency w and bounded as £ — oo can be written

a; = exp(—k;z) {a; cos(wt — k;z) + b;sin(wt — k;z)}, (35)
k; = (w/2C0))7, (36)

where the coefficients {a;,b;} are determined by the boundary conditions. We consider the
case of a 6-function heat source at r = 0 varying like cos(wt), and no source of particles. This
gives b; = a;, and a;/a, = —1.80. Thus close to the source (the ‘near field’) there are density
fluctuations even though there is no (fluctuating) particle source. This is a consequence of
the presence of off-diagonal terms in the transport matrix.From equations (31) and (35) we
have

~ 0.19% (near field). (37)

n
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Further away from the origin the two eigenmodes decay at different rates so that at large
distances from the source (the ‘far field’) the solution is dominated by the eigenmode u
since this has the largest eigenvalue. From eq.(34) we then have

~ —1.69— (far field). (38)

Note that the far field result is independant of the boundary conditions. If the far field
temperature profile were to be fitted by a solution of a simple heat equation of the form (21)
the value of xHF would be determined by the eigenvalue A, giving

r2

P = 1.89 (C) . (39)



Comparing egs.(27) and (39) we see that the presence of off-diagonal terms in this case
leads to a large discrepancy between xHF and xFB. This calculation can be generalized to
allow for a modulated heat source localised away from the axis. The far field results remain
unchanged, since they are independant of the boundary conditions.

4 Anomalous Transport

As a second example of a transport matrix with off-diagonal terms we consider the anomalous
transport due to the dissipative trapped electron mode, as calculated by HORTON (1976).
Using the results derived in the appendix we can write the fluxes in the form

~ [ 16n 10T
I'=—-nD {2;5;4-6?5}, | (40)
~ [10n 16T
q= _nTD{;-a—T-I-lE)TE}’ (41)
where
N cTu\? €L, /T\Y2 {108n\®
p= () 23" (G5 “2)

and L, is the shear scale length, € is the inverse aspect ratio and the other symbols have
their usual meaning. Unlike the cases considered so far, the fluxes are non-linear functions
of the gradients. This can lead to discrepancies between x¥"F-and xFB, in addition to those
due to the off-diagonal terms (GENTLE, 1988). If we define xF2 by eq.(6), and take n = 1,

we obtain
xFB = 16DT. (43)

Linearising the transport equations, again using (11) and (12), we pick up additional terms
arising from the Vn terms in D. The resulting equations take the form
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The eigenvalue equation for R is given by
R- u; = /\jllj, (47)

with solutions

0.24

'\1 = 167, u; = ( —0.97 ) 3 (48)
0.44

X, = 38.33, up = ( i ) . (49)

In the far field region we then have

¥F = gAQf)T = 57.5DT, (50)
and thus
il T (51)

In this model the discrepancy between xHF and xFP arises partly from the existence of
off-diagonal terms, and partly from the non-linearity of the fluxes.

5 Conclusions

Measurements of transport coefficients in a tokamak by perturbative (heat-pulse and density-
pulse) methods often give values which are significantly different from those obtained from
equilibrium profile measurements. We have shown that such apparant anomalies can arise
from the presence of off-diagonal terms in the transport matrix. Another consequence of
off-diagonal terms is that a pure temperature perturbation (or a pure density perturbation)
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is no longer a normal mode of the system. Away from the source region, the ratio of density
to temperature perturbations is determined by the eigenvector of the transport matrix, and
can be compared with the experimentally determined ratio (BISHOP et el., 1989). We
have illustrated these results with the examples of neoclassical transport, and anomalous
transport due to the dissipative trapped electron mode.
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Appendix : Evaluation of fluxes for the DTE mode.

HORTON (1976) has given the following expressions for the quasilinear fluxes due to the
dissipative trapped electron mode:

- 1dn 1dT
= — OyA_ " 0 ol 9
g nD{(ImG )An dr +{ImE )T dr}’ (52)
= 1dn 1dT
— 1 - 2y = 98
K= nTD{(ImG )An o + (ImG T } , (53)
where
D CTc PLs 1dn 3
= = (-3 4
& (CB) 8 (nar) ’ (5 )
3 2e\ /2 oo dt t1/2e7H(t — )"
= (?) ]0 I —ent +i(ta/t)3/?’ (35)
2/3 '
i3 = ( % ) 3 (56)
€W,
k_LCTe
W, = (CBTTL) ’ (57)
and, in HORTON’s notation,
3

The distincion between 3I'T and 3I'T is largely a matter of convention, and is discussed in
ROSS (1988); we shall use the $I'T convention. Only the total heat flux @ has physical
significance. Note that, if A = 1 in eqs.(52) and (52), the fluxes would satisfy an Onsager
symmetry. In fact we shall take A = 1/2 since this is a more typical value. In the {3 > 1
regime the dominant contribution to ImG" comes from small t, and this allows the following
approximate analytic expression to be obtained:

(%)mtg”ImG” = Bieseresfn =10 (59)
= Bons o (n=1) (60)
= 21/2---(n=2). | (61)

Eqs.(40) and (41) then follow.
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