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ABSTRACT

In this paper we describe a low Mach number instability which occurs in a scheme we
have advocated for the solution of gas dynamics and multiphase flow problems. We
illustrate the instability and explain its origin using a simplified Von Neumann stability
analysis. Finally, we present a simple modification to the scheme which completely
eliminates the instability.
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Nomenclature

area factor
Courant number
specific heat at constant volume
speed of sound
internal energy
Mach number
mass flow rate
pressure
temperature
time

velocity

space coordinate
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Greek Symbols

p density

6  non-dimensional wave-number (defined in eq. (8))
v ratio of specific heats

A eigenvalue of the stability matrix

At time-step

Az space-step

Subscripts

exit condition at the exit
inlet  condition at the inlet
tot stagnation value

0 reference value






1 Introduction

A very fundamental problem in numerical simulations of complex physical phenomena
is the proper distinction and recognition of purely numerical instability effects from
physically caused instabilities inherent in the system studied. It is emtirely possible
for a numerical scheme to be stable and accurate for a range of physical conditions
and yet become unstable and totally unsuitable for problems lying outside that range.
Unless the user is aware of this, it is easy to mistake the manifestations of a numerical
instability for a genuine physical one. The purpose of this paper is to report an in-
teresting numerical instability associated with the explicit, first-order scheme we have
advocated earlier as a suitable practical and robust method for solving gas dynamics
(1], and multiphase fluid dynamics [2]. Somewhat unusually, the instability manifests
itself at low flow Mach numbers and exhibits a threshold.

We first describe a simple flow situation in one-dimensional gas dynamics which is
typical of how the instability arises. With numerical examples we show that it is indeed
a low Mach number instability with a threshold. We then present a simplified Von
Neumann stability analysis of the scheme which qualitatively explains all the features
shown by the numerics. We also describe and illustrate two distinct methods of totally
eliminating the instability in those situations where it might be expected to arise.
Finally, we show by concrete examples how the same instability occurs when the scheme
is used to calculate the nonhyperbolic multiphase equations and how it is suppressed
in that context. The present results clarify and put in context our earlier, correct,
results obtained with the scheme in question. Users of this scheme should be aware of
the stability limits discussed here and methods of enhancing the scheme to suppress
instability in those cases when it can be expected to arise.

2 A typical example

We consider one dimensional, transient, compressible inviscid flow of a perfect gas in a
nozzle. The governing equations are [3],
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In the above equations, 7, C, are constants characteristic of the gas, whilst A(z) is a
user specified area function describing the geometry of the nozzle. The initial-boundary
value problem for the above system (including sources) has been discussed by us else-
where [4]. For the present purposes, the following remarks suffice:-

1. The solution domain is 0 < z < L. The “inlet plane” is at z = 0, whilst z = L is
the location of the exit plane, as shown in Figure 1.



2. At the inlet, we specify pio: and pyo;.
3. At the exit, p.rit/Dio is prescribed.
4. Initial data are given for p,v and p at ¢ = 0.

The details of the solution procedure and the determination of the inlet mass flow rate
Titinlet follow the methods described in earlier publications and do not concern us [1,4,5).
The above problem is well-posed for both subsonic and transonic (i.e. choked flow) and
is expected to lead to the well-known steady nozzle flow with or without a standing
shock. If the flow is wholly subsonic, it must be isentropic provided the initial entropy
distribution is uniform. In the case of choked flow, the entropy must increase in the
final steady-state monotonically from the inlet to the exit planes.

We remark that in our scheme, equation (1) is conservatively upwind-differenced
spatially and is explicit in time and preserves the positivity of p (and conserves the
total mass in a closed domain) provided that the condition |vme=At| < Az is satisfied.
Equation (2) is also conservatively differenced and explicit first-order in A¢. However,
the velocities at ¢ + At are obtained from equation (2) after the new densities are
available by a solution of equation (1). In the original scheme, equation (2) was solved
using the pressures at time ¢. The finite-difference forms of equation (2) is used to
advance the velocity field. The pv at the old time are used in the convective term
to transport v(z,t + At). Thus, a tri-diagonal matrix solution is required to obtain
v(z,t + At). The treatment of equation (3) is straightforward, since the new v’s are
available.

For numerical stability, this scheme requires the more stringent condition,

Az
(Ca + |U|)ma:: o —

At

where ¢, is the local sound speed. As we shall shortly show, this condition is necessary
but not always sufficient for numerical stability. As our first example, we consider the
nozzle flow of a perfect gas in the geometry illustrated in Figure 1. The grid sizes
and other parameters have been chosen for convenience rather than great quantitative
accuracy. We note that, L = 230mm, Az = 1.92mm and At = 0.5us, except in one
case. The sound speed for the chosen conditions is of the order of 1000m/s. This
implies a Courant number, C = ¢,At/Az, = 0.4. The results obtained in three distinct
cases will be considered. In all the cases, the following parameters and conditions were
the same: piot, pror at inlet; uniform pressure, density and velocity at ¢ = 0; the exit
pressure ratio was held constant in time; the calculations were carried out with the
same conservative, explicit, upwind difference scheme for a time of ¢ = 20ms (i.e. for
4 x 10* time-steps). A detailed description of all the parameters and conditions used is
given elsewhere [4]. The three cases correspond to the exit pressure ratios (pess /Prot)
and inlet and exit Mach numbers (Mjniet, Mezit), shown in Table 1. It should be noted
that the exit pressure ratio is specified as a boundary condition in all three cases whilst
the code calculates M. and M.z as a function of time. In all cases, M,; reaches
a steady value after about 10ms. It is the steady values that are given in the table.

Figure 2 shows the Mach number M as a function of distance z, when all the fields
have reached their steady-state. Figure 2a corresponds to case a in Table 1. It shows



Case Dexit /Ptot Miﬂlet Mem't

a 075 0.37 0.52
b 0.88 0.30 0.39
c 0.91 (not converged) | 0.33

Table 1: The effect of exit pressure ratio on the inlet and exit Mach numbers.

that the flow goes sonic at the throat and accelerates sharply until a maximum Mach
number of about 1.2 is reached just aft of the throat section. As the flow area increases
further, a standing shock forms and the flow returns to subsonic conditions. Figure 3
shows the entropy, which is always monotone increasing as a function of z. It also shows
that the flow is isentropic (or nearly so) both behind and in front of the standing shock.
The small rise at the front part of the throat is due to numerical dissipation and the fact
that the one-dimensional flow model is strictly invalid at “corners” in the area profile.
This example demonstrates that the explicit, conservative scheme described by us in
earlier references can and does lead to stable, qualitatively consistent and quantitatively
accurate solutions [1,4] (provided Az /L is small enough) under the conditions of case a.
Figure 2b shows M(z) at ¢ = 20ms for case b. In this case, the flow is seen to be entirely
subsonic and very nearly isentropic (see figure 3) as expected. M;n;.; is now somewhat
lower than case a at 0.3. It is clear from these two examples that the scheme is well able
to handle mixed (i.e. supersonic-subsonic-transonic) flow regimes as well as completely
subsonic flows with no hint of numerical instability.

The real surprise then is represented by case ¢ which only differs from the other
two in having a slightly higher exit pressure ratio of 0.91. The expected value of the
inlet Mach number in steady, fully subsonic, isentropic nozzle flow conditions is 0.27.
However, Figure 2c demonstrates that a violent numerical instability exists in the region
between the inlet plane and the beginning of the constant area throat section. This
figure leads to several interesting observations:

1. a very modest change in the inlet Mach numbers from 0.3 to 0.27 is sufficient for
the instability which is entirely numerical in origin;

2. case ¢ corresponds to a saturated (i.e. the field values are not unbounded in time)
instability;

3. the instability is confined to a sharply defined “zone”.

Thus, Figure 2c shows that the correct steady solution for the given conditions is indeed
calculated by the code for z > 0.065m. Indeed there is no hint of any difficulty with
the solution in the exit zone where M falls to 0.33.



3 Analysis of the instability and its resolution

The numerical instability illustrated above for our scheme is remarkable in that for
given values of the local Courant number C(z), it occurs below a threshold value of the
local flow Mach number M(z). Fortunately, a very simple and direct explanation of
this behaviour can be given. The practical approach to the elimination of the instability
itself is quite straightforward and will be demonstrated. As cases a and b illustrate,
such a resolution may not always be called for but it is sufficiently “easy” as to be
worth implementing in general.

To understand the nature of this numerical instability, let us consider an extreme
case. Thus, let us set A(z) = Ay (i.e. a uniform channel), and M;,,.; = 0 (i.e. no
flow) in equations (1)-(5). If we consider an initial value problem for the system
with a small initial disturbance about a uniform thermodynamic equilibrium state
with spatially periodic conditions at z = 0 and L, we have the familiar problem of
linearized acoustics. Making the isentropic assumption, it is easily shown (and long
recognised in the literature [6]) that the scheme described earlier is unconditionally
unstable for arbitrary finite values of C' = %‘% For the scheme to converge, we require
At ~ O((Az)?). It is plain that if M were not exactly zero but sufficiently small, the
instability must persist since the numerical dissipational stability produced by upwind
differenced terms in the continuity and momentum equations cannot outweigh the basic
“acoustic” instability of the explicit (forward time, staggered space) scheme. However,
case b suggests very strongly that if M satisfies a condition like M > C, the scheme is
indeed stable. This can be explicitly demonstrated by a simple Von Neumann stability
analysis in the case when the channel is uniform and the unperturbed flow is uniform,
subsonic and isentropic.

Thus, assume p(z,t) = po+4(z,t),v(z,t) = vo+9(z,t), with §/pp << 1 and vo > 0.
It is convenient to set

p(nAt,mAz) = po + pnexp{ikmAz} (6)
and ' "
v(nAt, (m + -2-)At) = vp + Un exp{ik(m + -é)Az} (7)

where k is a wave number, m,n are integers and 1 < m < N, where NAz = L. We
introduce the non-dimensional parameters,

Peils M=t = Bt

—_— C= . 8
& V1po/po Az ®)
Putting p7,1 = Pnt1/P0y Uny1 = Uns1/Cs, , We obtain, from the continuity and the
momentum equations (assuming an isentropic equation of state) the linearized finite-
difference equations

Prs1 = Pn(l — MC(1 - e7%)) — 2Cisin(§/2)}, (9)
and
Ty = O [1- MC(1-e %) (10)
+ b5 [M?C(e¥/? — e=¥#/2) — 2iC'sin(6/2)] .



Let A(6) =1 — e~%, B(§) = ¢¥/? — ¢~3%/2 and D(§) = 2isin(é/2). The eigenvalues A
of the Von Neumann matrix are given by the secular equation,

(1- MCA-\)?+C*D(M?B - D)=0. (11)
Consider first the simple “no flow” situation when M = 0, in which case
A=1%CD. (12)

Plainly, the scheme is unconditionally unstable for C # 0, § # 0.

Although equation (11) is the complete dispersion relation, we are only interested
in circumstances when C < 1. Furthermore, we shall actually assume that M is small
enough for the condition M2 << M to hold. If then follows (neglecting O(M?) terms),
that,

A=1-MC +cosSMC + 2iCsin(6/2) — iMC siné. (13)

It is easy to show that |A| < 1 if and only if

C < M(1£2Ccos88/2). (14)

For arbitrary §, 1 + 2Ccos(6/2) > 0 if C < 1/2. The inequality (14) implies the
following stability condition (i.e. condition sufficient for stability):

M>C (for C<1/2). (15)

Since, for consistency, we require M? negligible compared with M, the condition C <
1/2 is not really restrictive. In terms of basic flow variables the stability condition (15)

may also be written as
ax

At

In this form, the meaning of this condition can be readily understood. c2At is the
basic “anti-diffusion” present in this explicit numerical scheme, driving the instability.
When a flow v is present, the upwind-differencing leads (in leading order of %ﬂ) to
a “numerical diffusion” stabilizing the scheme, represented by the diffusivity v'oAz.
When the net stabilizing diffusivity, voAz — ¢2At is non-negative, the scheme is stable.
Our simulations show that this result is approximately valid locally even though the
simplified Von Neumann analysis presented above is not. The result also appears to be
valid when area changes occur. Our examples show that an explicit numerical scheme
discarded as unsuitable in the literature owing to its manifest instability can actually
be used (unchanged) to obtain perfectly valid, stable results under other conditions
with substantial flows present.

Returning to case ¢, the next question we ask is, can we show that equation (16) is
indeed sufficient? Figure 4 shows the result of running case ¢ with the only change being
At = 0.25u8 (i.e. C < 0.2). Clearly there is now no hint of instability anywhere and
the solution coincides with that shown in figure 2c where the latter is converged. The
instability can indeed be suppressed by satisfying the condition (16) without altering
the scheme. We next present a very modest enhancement of the scheme which removes

vo— > cZ. (16)



the need for condition (16). Returning to the “no flow” case (M = 0), we retain the
stability equation for the finite-differenced continuity equation in its usual explicit form:

Br.1 = B — 2Cisin(6/2)i. (17)

However, in the momentum equation, instead of using the pressure at time-level n, we
use an isentropic estimate p***(mAgz, (n + 1)At), obtained using p(mAz, (n + 1)At)

thus:
p(mAz,(n + 1)At) }"
p(mAz,nAt) '

Note that equation (18) is actually exact if the flow is locally isentropic. In the limit
as At — 0, p*** — p(mAz,(n + 1)At) except at shocks or detonation fronts. Thus,
equation (18) is expected to preserve numerical consistency in the usual sense and
is, in general, an excellent estimate of the pressure at the new time-level. Using the
appropriate linearized form of equation (18) in the momentum equation, we obtain, as
a replacement for equation (10),

™' (mAz,(n + 1)At) = p(mAz, nAt) { (18)

Bhy1 = 05 — 2Cisin(8/2)5h, (19)

in the limit as M — 0. Although equation (19) is formally implicit, 5,,, can be
eliminated using equation (17) and the set of equations is effectively explicit. The
eigenvalues of the Von Neumann matrix are given by

A% 4+ M(4C?sin®(6/2) - 2) + 1 = 0. (20)
Thus a necessary and sufficient condition for the roots to be of unit modulus is
(4C?sin?(6/2) - 2)? < 4,
i.e. C<1l (21)

Thus, provided the usual Courant condition (required anyway for accuracy) is satisfied,
the scheme using equation (18) is stable for arbitrary Mach numbers (in particular for
M = 0), and yet is effectively explicit.

The above prediction was verified by repeating the calculation of case ¢ with At =
0.5u8, (giving C ~ 0.4) but using p*** in the momentum equations. This time the code
produced a completely converged result indistinguishable from that given in Figure 4,
which is the same solution obtained with the original scheme but using a smaller time-
step. It is therefore clearly more practical to use the “enhanced” explicit scheme which
costs no more than the original scheme for given accuracy and yet does not suffer from
the extra condition (given in equation (16)), which is more stringent in subsonic flow
than the condition C < 1.

It may be tempting to conclude that the results are rather specific. To show that
this not the case, we conclude with an example drawn from our multiphase calculations.
The example is taken from our simulations of multiphase detonations in melt/water
mixtures. The model is fully described elsewhere [2]. We must emphasise that there
is nothing wrong with our earlier calculations since these were obtained using a small
enough time-step for the instability to be suppressed. Figure 5a shows the result of a



simulation with a time-step of 0.5u8 and a maximum Courant number of 0.18. The
instability is evident in the regions of low flow velocity.

The method of removing the instability described above needed to be modified for
this case, since the equation of state is more complicated in this situation [2]. In fact
the equation of state is such that it is easier to derive an estimate for the advanced time
pressure assuming that the internal energy remains constant rather than the entropy,
as suggested in equation (18). Figures 5b shows that with this practice the instability
is again completely suppressed.

In the multiphase flow case there is no simple Von Neumann analysis and yet the
comparison shows that the instability exists and can be removed in a similar manner to
that used in the gas dynamics case. It is very remarkable that this particular instability
does not apparently care whether the underlying system of equations is hyperbolic or
not. The fact that it can be suppressed in both cases by exactly the same prescription
shows that multiphase equations are not necessarily more “ill-posed” or pathological
as regards their macroscopic behaviour than the hyperbolic equation systems of gas
dynamics, provided the flow simulation is qualitatively consistent and faithful [7].

Finally, we should note that the instability can always be removed by using the new
pressure field in the momentum equations, therefore making them fully implicit, and
iterating the solution. We found this practice to be the optimal one in our multiphase
flow simulations, since it allowed us to take much larger time-steps. However, the
modified explicit scheme was found to be preferable in our gas dynamics work, since
the computational time-step was limited by other constraints (a large heat source) [4].

4 Conclusions

We have demonstrated a novel low Mach number instability arising in a class of ex-
plicit, positive faithful schemes arising in gas and multiphase fluid dynamics. A simple
modification of the scheme which preserves its explicit character and is consistent with
the governing partial differential equations is shown to be effective in removing the
Mach number-Courant number threshold condition characterising the instability. Sim-
plified Von Neumann stability analyses are presented together with a complementary
set of numerical examples to illustrate and clarify the nature of the instability and its
practical resolution.
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Fig.1 The geometry used in the duct flow example.
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Fig.2 The Mach number profiles for the three different
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Fig.3 The entropy profile for the two converged duct flow calculations. (The entropy
values shown are increases above the inlet value.)
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Fig.4 The Mach number profile for case c of figure 2, obtained using a smaller time-
step or the modified scheme.
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Fig.5 Anexample of the same instability in a multiphase flow system. The figures show
the results of simulations with and without the modified scheme.






