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Abstract

The resonant layer equations governing tearing and micro-tearing modes in toroidal geom-
etry are formulated and solved for a plasma in the banana regime and for wavelengths in
the intermediate collisionality range v, < w. < V./e. It is shown that stability of such
tearing modes is determined by a competition between destabilising trapped electron dissi-
pation and stabilising effects arising from ion magnetisation and collisional broadening of the
passing-electron Landau resonance. Analytic stability criteria are derived, but for realistic
parameters these modes are predicted to be stable.
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1 Introduction

The discovery by Hazeltine, Dobrott, and Wang (1975) of the importance of the electron
temperature gradient for the stability of tearing modes has been responsible for much activity
in the development of linear stability theory (Drake et al (1977), (1980), (1983); Bussac et
al (1978); Mahajan et al (1979); D’Ippolito et al (1980); Rosenberg et al (1980); Gladd
et al (1980); Chang et al (1981); Cowleyet al (1986)) of both long wavelength (gross) and
short wavelength (micro) tearing modes. Initially the calculations were performed in plane
slab geometry, utilising both kinetic and two-fluid equations. These calculations showed
that, if the time dependence of the thermal force term is neglected, tearing modes are
strongly stabilised (Drake et al (1983); Cowley et al (1986) by finite ion orbit effects in the
semi-collisional regime (w.ve < kfv7,). However, kinetic analyses (D’Ippolito et al (1980);
Rosenberg et al (1980); Gladd et al (1980); Chang et al (1981)) (and two-fluid theory (Hassam
(1980)) which included a time-dependent thermal force term in Ohm’s law) showed that the
tearing layer could provide a strong source of energy. Indeed this could readily overcome
the negative A’ representing the stabilising effect of field line bending from the outer, ideal
mhd, region of the mode structure.

The resulting instabilities were suggested (Drake et al (1980)) as possible candidates
for explaining the anomalous electron thermal loss in Tokamaks. However, the calculations
predicted that at the low values of electron collision frequency v., (Ve < ws., the electron
diamagnetic frequency) typical of more recent Tokamak experiments, these micro-tearing
modes are linearly stable in slab geometry.

Interest in them was revived by a number of papers which sought to extend the lin-
ear theory to lower collisionality, v./e¢ < wy, when trapped particle effects come into play
(here € = r/R is local inverse aspect ratio and wye ~ Rg/€'/?vr, is the bounce frequency of
toroidally trapped electrons). For example Chen, Rutherford and Tang (1977) predicted an
extended range of instability at low collision frequency in a calculation which modelled colli-
sional detrapping of electrons with an ingenious, number conserving, Krook collision opera-
tor. The Krook operator used by Chen, Rutherford and Tang permitted analytic treatment
of both the weakly collisional (v./e¢ < w,.) and intermediate collisional (v, < wy < vefe)
regimes. It is not, however, capable of representing the boundary layer behaviour in ve-
locity space which is an inherent feature of the electron perturbation whenever v, < w...
The contribution to the perturbed longitudinal current éJ arising from passing electrons in
this boundary layer (just passing electrons) is therefore not obtained from a Krook model
operator. This deficiency was rectified in the work of Catto and Rosenbluth (1981), where

electron pitch angle scattering is represented by a Lorentz collision term. These authors



1investigated only the weak collisionality regime (v./€ < w..) where trapped electron dissi-
pation was found to be destabilising. In the present paper we reconsider the intermediate
collisional range discussed by Chen, Rutherford and Tang (1977). We obtain solutions of
the tearing layer equations using the Lorentz description of electron pitch angle scattering,
and derive the dispersion relation for micro-tearing modes in the important parameter range
defined by v, < w,, < ve/e. This calculation, which complements that of Catto and Rosen-
bluth, provides a more realistic treatment than that of Chen et al (1977) for the intermediate
collisional range. For consistency we also calculate collisional effects on the bulk of passing
particles where a slab-treatment is possible. Stability is then governed by a competition be-
tween the trapped particle effects and the stabilising ion orbit effects (calculated by Cowley
et al (1986) in the limit p; > 6, with §, the width of the tearing layer), and passing particle
collisional effects.

We also note the appearance recently of another group of toroidal calculations (Callen et
al (1987); Fitzpatrick (1989)) for tearing modes in the banana regime. Since they are based
on neo-classical fluid equations these calculations only apply to longer wavelength tearing
modes for which the inequality v, > w.. is satisfied.

The layout of this paper is as follows. In section 2 we briefly derive the relevant equations
and discuss their solution. In section 3, the effect of electron trapping is calculated and in
section 4 the effect of collisional broadening of the passing-electron Landau resonance is
evaluated. In section 5 we derive the dispersion relation for micro-tearing modes and relate
it to that obtained by Catto and Rosenbluth. Finally, in section 6 we discuss the significance

of the results.

2 Equations for Micro-tearing modes

In this section we derive the basic equations governing micro-tearing modes in a large aspect
ratio, circular cross-section model of a tokamak equilibrium with 8 ~ 0(e?). The starting
point is the Fokker-Planck equation for each charged species. In configuration space we
use the coordinates (r,f,¢$) with r a magnetic surface variable having the dimension of
length, and 8, ¢ the poloidal and toroidal angles. The poloidal angle @ is chosen so that the
magnetic field lines appear straight (%‘g = g(r)with g the safety factor), and the Jacobian
for the (r, 8, ¢) coordinate system is J = R?*r/R, where R is the major radius, and Ry the
major radius of the magnetic axis. The equilibrium magnetic field may then be written in

the form

B = ByRolf(r) V4 x Vr +g(r)V¢] (2.1)



so that the safety factor is g(r) = rg/Rof, and the operator B - V takes the form
B, [0 0
B2V = e o 2.2
Rq (ae t ‘-’aqs) 22)
We take all perturbed quantities to have the form

by = y(r, 0)8'.("19_"‘{’—“) ' (2.3)

and, since we have assumed 8 < ¢, we neglect the compressional Alfven component, 6B,
of the electromagnetic perturbation which is then described by the electrostatic potential @

and the longitudinal component of the vector potential Aj.

2.1 The electron perturbation

The perturbed electron distribution function

ed
= ——F. +g. 2.4
f 7 Pty (24)

is obtained from the drift kinetic equation for electrons in the vicinity of a resonant surface
rs given by m = ng(r,), namely
w9\ _ _efn T ALY -

(w wge — kypy = 2C + i—- 33) ——Te—(w - W) ((I> - T) (2.5)
where k| = (m —ng)/Rg ~ —ng'(r —r,)/Rq, wi, = wi[l — (% - %)], with
vre = (2T /me) %, 9. = 8InT. /8 Inn,, and w.e = %%L:‘ﬂ.

The magnetic drift can be decomposed into radial and geodesic components so that
m 0 U") v”a(vn)a
e N —— — )= 2.6
o r U5y (w“ s a0 \w./ or (4]

where w,; = e;B/m; and the collisional term is represented by a Lorentz model

0 0g.
Cle) = vz, 5 g, (27)

with ve(v) = ve(vre) (Hf‘)a , 4t the magnetic moment and v = (v? — 2uB)*/?

The width of the tearing layer § is given by w.. =~ kjvre, i. €. 6 = J%" In order that
the geodesic drift term in equation (2.5) is smaller than the bounce term for such a narrow
layer we assume €/ > q%‘*. Then for modes such that w < v, /e and collision frequencies in

the banana regime we may bounce-average equation (2.5) to obtain

(w—<wg>—-i<C>)g= —eFT(w wl)<®> (2.8)

for trapped electrons and



(W— < wie > —0tk) < |vy| > =i < C >)g,

_ me%(w —WT)< @ > =2 < [yl ) (2.9)

€
for passing electrons, where o = sign(y)) and %3 = 0. The bounce-average operators are

]
defined as

8 8 -1
<X>=(f°ﬁx)(/°£) (2.10)
—bp I'U“l -8 |'U“I
where 6, is defined as the turning point for trapped particles and = for passing particles. It

is convenient to introduce the quantity

K
G=g+m (“’ “’") o (2.11)
T w

and to use the approximations ® ~ &, A ~ A (where X = ;- § Xdf), which are justified

in subsection (2.3) below, to simplify equations (2.8) and (2.9) to the form

T

£ 3 2 ") cwy > (2.12)

Te( w

(w—<wge>=-1<C>)G, =—

(w— < wge > —Jk” <ly|>—-i<C>)G,

F,
= __eTc (w ww.c)[< wp>P4+o< |'U||| > (k”@ - —A”)] | (2'13)

. . | "
Thus only the untrapped electrons respond to the parallel electric field £y = —i(k® —w=L).

2.2 The ion perturbation

Because of their relatively large Larmor orbits, which typically exceed the width of the
tearing layer (p; > é) a more sophisticated gyro-kinetic treatment of the ion kinetic equation

1s necessary. For ions, one obtains

ed
T

where L = -4—-'- cosa, and X is the guiding-centre position X = r+ 2= sin a with & the gyro-

fi =t Fn + (X, 0, 0)e™ | (2.14)

angle in veloaty space. The equation determining g;(X) is then the gyro -kinetic equation

A , i )0
(w — We; — kuv" — !C ZD@ +1 R”ae)
- +E—§,—(w W) 7 ak gy (k“’*) (@(k) - E”A—l'@) e (2.15)

where $(k) = L [, dte*'®(1) etc, and ky = \/kE + k2, ky(X) = —3X,C; is the ion-

ion Fokker-Planck collision term, and the diffusion coefficient D = 0(»;p?). Definitions of

4



wg; and wY; are the same as for electrons with the appropriate sign changes and temperature
dependence. In the limit of interest, p; >> 6, the argument of the Bessel function in the

integrand of the right-hand side of equation (2.15) is large, so that the leading approximation

for g; is merely
g =~ 0 (2.16)

describing an unmagnetized ion response. Cowley, Kulsrud and Hahm (1986), however,
developed the next order term in their slab treatment of tearing modes, and we shall use
their result later. This requires that w > v; p?/6?, and more importantly, that the toroidal
geodesic drift term wy; ~ f’——'- should not exceed the mode frequency, i.e.

k L,
6 Pe > (-RT;) (217)

2.3 The electromagnetic equations

Solution of the kinetic equations for electrons and ions permits one to construct expressions

for the perturbed charge densities and hence the quasi-neutrality equation
ij = Ze_,-/d% fj =0 (218)
J J
and the perturbed current density

= E € f &*v vy f; (2.19)

to match to the external mhd solution.
Important constraints on the functional dependence of ®(#) and A(6) are obtained by

constructing an equation for B - V(j/B) from the kinetic equations (2.5) and (2.15). Taking
efd% (2.5) —e [ d®ve'l (2.15) one finds

1

Rq 00
where 7 = T,/T; and small ion terms have been neglected in the limit p; >> 6. For a
narrow tearing layer the geodesic contribution to wg. is dominant and generates a variation,

4], about the mean value Jj- Estimating g. from equations (2.12) and (2.13) we find that

(J“) +i kg = mo——(w'r + wee) + zef d*vwie ge (2.20)

< = Ln. ‘
alan~ I. <<1 (2.21)

where j follows from integrating equation (2.20) over a period in 6:

- 23
i Ry i) = ino = (wr + w) +de [ dvwacg. (2.22)
e
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Since %% = 0 in leading order the wy. g. term can be integrated by parts in ¢ and the
potentially larger geodesic contribution vanishes. Thus in the large aspect ratio limit we can
ignore all contributions from wy. and treat j) as independent of §. Amperes law, which in a

narrow tearing layer takes the form

dzA“ 47
= o 2.23
dr? ¢l A
then implies that A is also approximately independent of 6.
Returning to quasi-neutrality, equation (2.18) takes the form
2
— <I)(1 +7)= e/davge (2.24)
Te

because g; ~ 0 for p; >> 6. Since %% ~ 0 the only #-variation in ® arises from the
/v ~ 0(€'/?) region of the velocity space integration affected by trapped particles so that
® may also be treated as constant. In this approximation Ampeére’s law and the current
continuity equation (2.22) can be treated cylindrically so that equation (2.22) reduces to

noe®

k“j” = (WT + wae)D (2.25)

The only toroidal effect arises through the influence of trapped particles on the solution
of equations (2.12) and (2.13) for the electron distribution function. The solution of these

equations will enable us to compute jj and a conductivity o
j“ = O'E” (2.26)

Eliminating ® between equations (2.25) and (2.26) we obtain

g = noe*(wr + W-e)":fl.(: Ay (2.27)
noe?(wr + w.e) + 4 k“arT,c c

It is convenient to introduce a number of normalisations

47rn0T, (L,)2 A mewteo_
L.] 7 2ngc?

X=(r;r’l,,;)= gy

) e B?
where 6 = ,‘:—a‘{% is the tearing layer width. Combining Ampére’s law (2.23) with (2.27) then

(2.28)

yields

dA; _ —ifoer +1)6(X) A

X = T X% tor +1] (2.29)

Provided # << 1 we can treat A) as a constant and integrate this through the tearing

layer to obtain the jump in ;;I%u across this region. Matching this to the corresponding

discontinuity, A’, in the external ideal mhd solutions yields a dispersion relation



A = X
SA' = zﬂw(w‘r+1)/;°o e (2.30)

In lowest order & is the conductivity of a cylindrical collisionless plasma. This can readily
be calculated from the appropriate limit of equations (2.12) and (2.13) and has been given
previously (for example by Crew et al (1982) and Cowley et al (1986))

Go(X) = 2—;(-2 (73 -1)+ Lsz'(s)) (2.31)

=X
for & in the dispersion relation (2.30) leads to an approximately real frequency. In the next

section we shall calculate a correction 6(*), due to trapped particles, and in section 4 a

where s = ;ﬁ",—r = £ and Z is the Plasma Dispersion Function. Using this approximation

correction &{°), due to collisional broadening of the passing Landau resonance. Thus
6 = g5 460 4 60 (2.32)

and equation (2.31) can be expanded as

T e 0o
SA' = —ifa / dx{——%
iBo(oT + 1) - {(zXzao Yor+1)
(GJT -+ 1)(5'“) + &(c)) (2 33)
(X250 + Gt + 12 '

In section 5 we shall discuss whether this dispersion relation can describe instability.

3 Trapped Particle Contributions

If we retain the trapped particle effects as the only consequence of toroidal geometry , ie

ignore the bounce averaged magnetic drifts, equations (2.12) and (2.13) reduce to

(w—t<C>)G, =0 (3.1)
for trapped particles and
T
(w—cky <y >—-i<C>)G, = _i% (w ww. ) o < v > Ey (3:2)

for passing particles where we delete electron indices for simplicity. Introducing a pitch angle
variable A = 2u/v?, the Lorentz collision operator (2. 7) becomes
V(‘U) 0 /\'U” d ( 2T )3/2
=¥, I 29 9 e [ — _
¢ 2 15X B X’ ol = mu? ’ (33)
Equations(3.1) and (3.2) are solved by an asymptotic matching procedure based on the small
parameter w/v.s; with v.;; = v/e. Fig. 1 illustrates a division of velocity space into seven

regions of pitch angle ¢ = v /v.



In the trapped region I and the two just-passing regions II; and Il the effective collision
frequency dominates the mode frequency and the equations (3.1) and (3.2) are solved by
expansion in w/v.s; with appropriate boundary conditions at { = 0 and matching conditions
between passing and trapped regions. The solutions in IIz g must then be matched to those
in the regions III; p where |(| ~ O(\/v/—w) and collisions and mode frequency compete. In
these regions |¢| >> €!/2 and v} can be regarded as constant along the field line. Finally these
solutions must be matched to the regions IV g (where |{| ~ 0(1)) which are collisionless
since w >> v.

Expanding equation (3.1) for w << v.yy and integrating in pitch angle we find

AodA
Gt=at+btj

3.4
Ae < )| > ( )

in region I, where a; and b, are constants and A, = 1/ Bp,... The condition that G, is finite

as A — 1/Bpni, requires b, = 0. For the passing particles in regions II; p we find, with

Veff >> w,
A dA
G, =a, + ob, (3:5)
e < |U||| >
Continuity of G at A, implies
e, =a=a (3.6)
Integrating equations (3.1) and (3.2) through a boundary layer at A. leads to
0G, G,
— 2 =gt 3T
L e (8:1)
so that
by=b_=b | (3.8)

The constants @ and b are determined by matching to the solution in regions IIIf g. In the

limit |(| >> €'/? equation (3.5) takes the form

206 [ v |
G, ma+ By [_T -+ \/EI (3.9)

where v = vy/1 — AB,... and
pY-
By I\ [ 1 1

Y| <y >

I=27 )

In regions IIl;, r equation (3.2) takes the form

w §? eFp (w—wT
[w = k”‘Uc = ?a—cz]G‘, = —ZT ( " ) 'UCE" (311)

] =0.99 (3.10)




since |(| ~ \/5_ << 1. It is convenient to introduce the normalised quantities X and w

defined in equation (2.28) and u = v/vr and the quantity

eF, vr
Alw) = - Bl@ =1 —nc(3/2 — u )]w_ (3.12)
Then the solutions of equation (3.11) which are well-behaved as |{| — oo are
1A
G, = —5+¥y f dpexp[~ip(y — yo) — p*/3]
+C; [ dpexpl—ip(y o) = p°/3 (3.13)
where
Qwk?/3 v
= k~1/3 = k= 3.14
y C s Yo v ) 2W.XU ( )

and the contours T', are shown in Fig. 2.
For || — oo the contributions from the contours I', are exponentially small and the
remaining term reduces to the collisionless solutions of regions IV g. The constants C, are

determined by matching the || — 0 limit of result (3.13) to the form (3.9). This yields

Ce=mA €21 H(iyo)[Bi(iyo) F i Ai(iyo)] (3.15)

k1/3X

where A; and B; are Airey functions, H;(iyo) is the related function
Bi(ivo) = ~ [ dp explipyo — 7°/3) (3.16)

and prime denotes a derivative with respect to 2yg.

The parallel current is calculated by integrating the v moment of G,, given by equations
(3.13) and (3.15), over velocity space. It is clear that the effects of trapped particles are
entirely contained in the terms involving Cy driven by the matching to the trapped region
and this contribution, Jl(l ), we compute next. The remaining part of G, merely represents
the cylindrical result. In the next section we return to the question of the collisional effects
arising from such a term. |

To compute Jl(l) we interchange the order of integration over pitch angle (, represented
by an integral over an infinite range for the scaled variable y, with the integrals over p in

equation(3.13) (The y-integration [;°dy must be treated as

i, &

to allow this interchange.) After considerable manipulation we obtain

i = 2 0 (x) B, (3.17)

Il M Wae



with

WET res
§0(X) = 2x2%/? eXZI/D wdue ™ [ — 1 + n.(u? - 3/2)yo[H:i(2yo))? (3.18)
The contribution to A’ arising from this current is

(3.19)

. © (X)X
5 0ty — _;an N 2] o
= RRLHTOY | GRaXe 414 vl

The integration over X is dominated by the region yo ~ 0(1) ie, X ~ (£)}/2 >> 1. We can
therefore used the large X approximation to &y, ie GoX? ~ —i(& —1). A®) involves a double

integral over X and u. Changing the integration variable X to y this can be evaluated as

) _ _p: 3/2 (t:)—-l +7]e/4)(1+1'(.:3)2 (2)1/2 %
A" = —6:T'(5/4)n*“IK 1+ 5 B (3.20)
where we have used v(u) = v, /u® and
=1 = 321 ! ()12 = M ( — z )
K /0 PIHI )y = 5 V3 - 5in(2 + V3) (3.21)

(The evaluation of K results from using the representation (3.16) to express it as a triple

integral followed by judicious changes of variables.)

4 Cylindrical Collisional Contributions

As mentioned in the previous section the first two terms in the expression (3.13) for G,
represent cylindrical terms. However they are only valid for |(| << 1 since the Lorentz
collision term was approximated in equation (3.11). To obtain a solution valid for all ¢ we

must solve the cylindrical equation

iv 0 8, , —ieFy, (w—uwT
w = ¢ = 3 551 = ()56 = = ( w“’ )UCE" (4.1)

T

on the continuous interval || < 1.

We attempt a regular perturbation theory about the collisionless solution so that

- T
G - +zeFmE|| (w w.){l w

Tkl[ w T W kuv(
w0, 50 ( w )}
2("‘" - kIIUC) ¢ (1 ¢ )6C w— kuvc (4'2)

The parallel current can be calculated from the 27 f5° v?dv [, d¢ moment of equation (4.1)

which leads to the continuity equation

.
wn+-—]£ﬂl=0 \ (4.3)

10



where n = [d®vG. However, using the approximation (4.2) for G leads to a singularity
~ (¢ —¢o)™? at o = w/kyv in the integrand. '

To resolve this a boundary layer A{ ~ [(1 - Cuz)#] 7 around (o in which collisions are
important must be considered. In this region equation (4.1) for G can be solved by Fourier
transforming and expanding ¢ around (;. Calculating the contribution of the resulting
G to the integral over ¢ from the vicinity of (, we find that the only singularity is that
corresponding to the collisionless Landau resonance discussed in section 2. The collisional
correction n(?) is integrable in ¢ yielding

—4r weEy [* dvv(v) (w—wl
(o) — i * 4.4
" 3 k” T Jo (¢-1)* ( w Frm : (&4)

-2

Clearly this integrand has a singularity ~ (v — ki") invat (o = w/kjv = 1. In order to

discuss the interpretation of this singularity we consider a two-dimensional boundary region
1/2

in v and { near ( = 1 and v = w/ky. In terms of the small parameter A = (u/k”v) 4 we

introduce W = (1 —w/kjv)/A,t = (1 — {)/). Equation (4.1) then takes the form

w 2 -
. d d A (k"ﬂ:r) Wa A

T o PY o it S Nkl SR it 4.
(W =) dttdt ~3 wkjjvr A (4:5)

for ¢t > 0. This can be readily solved by Laplace transform in ¢ for the case W > 0. The
integration constant is chosen to remove a potential branch point in the Laplace transform
G(s) at so = exp(—im/4), thus ensuring convergent behaviour for G(t) as t — oco. A solution
valid for all W is obtained by analytic continuation from the solution for W > 0 and is given

by

1 s+50)7" Y2  ds(s—sp)° /2 A
(3) = -2Tio ( 0)t.r+1/2 f —(_D-)-;m_ (4‘6)
l1+e (s — so) c s (s+ o) A

where o = iW/2sy and the contour C is shown in Fig. 3.

To calculate the collisional contribution to n we must subtract G(® the Laplace transform

of the collisionless solution, namely

é(o) — —iews f 00 .!’ w:"'; W > 0 (4.7)
ze—stDOds Ws% W <0

The result is G ~ W=2 as W — oo so that the integration over W necessary to obtain

nl®),

n(® = 27 )2 (%)3 fD " AW E(0) ~ 0(N) (4.8)

11



can be evaluated by contour integration in terms of a sum over the poles of G,

W, = (2n+1)e~3"/4, This sum removes the branch point at so of the integrand in (4.6) and

the integral (4.8) vanishes. However, we must calculate the correction from integrating out

to a large, but finite, value of W in order to match on to the singularity in the integrand of

equation (4.4). This contribution is found to cancel the singularity, allowing us to integrate

the integral in (4.4) by parts and disregard the end point contribution from v = w/k;.
Calculating 3“) from equation (4.3) we obtain a collisional correction (<) to the nor-

malised conductivity

. 2 %W, dte“’ w—-143/2q
5 = / e+t |—— L7 _p (4.9)
3\/_ k|vTe ( w )2
k"ure k||'-’Te

The corresponding contribution to A’ is given by

—64 zﬁ Ve

fe) — AV
A 5 ﬁﬂew-e 1+ 70)° I(w,ne,T) (4.10)
where
. Me ds j°° dte™? w—1+3/2n,
1(&, 70,7 Pl =gt 4.11
(@76, 7) = 1¢ Y()s st L = n (4.11)

w

and we have again introduced s = Fjume = f Y (s) is a function of the plasma dispersion

function Z(s)

Filsji= {1 /2 [(a; —1Z' + %sz"] —1- a;f}z (4.12)

and P represents a principal part integration. Substituting the zero order solution &y =~

1+ %, discussed in the next section,

a0 ds s? dte™? 2
I_/o [Z' ¥ sZ" — a]? P/O oy Ul Ge )| . (4.13)

where « = 2(1 4+ @o7). A numerical evaluation of Im(I(e)) is shown in Fig. 4 indicating

that it can be adequately fitted by

Im(I(e)) = >3 (4.14)

for e > 2

12



5 Dispersion Relation and Discussion

The effects of trapped particles and collisional modifications to the circulating Landau res-
onance on the stability of micro-tearing modes can be examined by using equations (2. 33)
together with equations (3. 20) and (4.10). First we consider the lowest order solution arising
from 5. In the work of Crew et al (1982) and Cowley et al (1986) it was shown that this
lowest order solution was real and a good approximation could be obtained by using the
large X asymptotic form for o in the denominator of the integral. The integral could then

be integrated analytically to yield

. —(1470),. e
pivis @ -1-7) (5.1)
Since 3/6 >> 1 the solution is
@g¢0=1+95 (5.2)

Evaluating the corrections from &® and (9 using this value for & we obtain a growth rate

) ve€\1/2 1.(1 + 7o) ve) (1+7)
- o (2 (2
=e W (1 +T) Wae ( +TLIJO)
o1 A’
+wg( +.T) ¢ (5.3)
(1 + 7d0) B/7

The trapped electron term is destabilising whereas the collisional broadening of the Lan-
dau resonance term is stabilising. For micro-tearing modes A’ = —2k; is stabilising and
becomes important for short wavelength modes. The stabilising collisional term will tend
to dominate in the regime of validity of the analysis ie ve Jew.. < 1. However, the trapped
electron term in expression (5.3) has similar parametric dependencies to that found by Catto
and Rosenbluth (1981) -

50 0.7%72& (eu,)lﬁ i (128&’)]_1/2 ; (5.4)

w? Whe .

if one ignores the weak logarithmic dependence and details of the 5. and T dependencies. At
the transition, v./ew,. ~ 1, the numerical value is also similar to within a factor of about 2.
It is therefore reasonable to use the formula throughout the whole range ve fuiee < 1.
Finally we incorporate the ion orbit effects, parameterised by A = &é [2p; < 1 and
considered by Cowley et al (1986), as another additive perturbation term to yield a complete

form for the growth rate

§ = ~CiMIn(1/A)n? + Caiey [ = = Cor;

Ye _ Cuh (f—) (5.5)

Wae Ve
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where the C; have weak dependencies on 7, and 7

[~ F-dw{] 2]

C 0.
1 Q+n+0+F)70+ %)
c 0.24[1 4+ (1 + Z)7]
FT O+ EPR+)
C 0.84(1 + 7)
ST+ a+ B
1 (1+7)(14+%)
Cs = — 2 5.6
© T FEF0AD )
and we have made use of A’ = —2ky for short wavelength modes to express the field line

bending in terms of the parameter A

s 2
~ B. Rg?

where s = rq'/q and v. = (v.Rq/e¥?vr.).

SVw (5.7)

Two limiting cases in equation (5.5) can be investigated rather simply. These are (i) the

flat temperature case n;,m7. << 1 and (ii) the flat density case 5,,n; — +oo.

(i) Small ..
In the limit . — 0, stability is assured, since only the stabilising field line bending term

remains in equation (5.5)

(ii) 9e,mi — 00
The leading approximation for the mode frequency, equation (5.2), given by Crew, Antonsen
and Coppi (1982) for finite 7., must be recalculated for this case. When this is done it is
found that (5.2) remains accurate provided 7 & 1, and w, depends rather weakly on 7 for

7 < 1. The dispersion relation may be written in the form

(wél) = —CiAin) + Cy\/fe (:i)m il (:T) =l (“;T) (5.8)
where

wl = w..n.

Gy = =20t &y = 0354,

Cs = 3.36147 Cy= 226177

and the density scale length L, is replaced by the temperature scale length Lz in both A

and A. From the form of C it is evident that ion orbit effects become destabilising if
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dT; dT.
kel (5:9)

However, because of the larger numerical coeflicients associated with the stabilising terms

Cs and Cy, it is in general difficult to find a parameter regime in which micro-tearing modes

are unstable. Minimising these stabilising contributions over wavelength by the choice

Ve '
(wz:) = 0.82(rA)"” (5.10)
equation (5.8) for the growth rate becomes
v _ _[1 - %EL %{‘] - T 1/4
(wg;) = ) Aln(A™1) + 0.321 = T\/E(TAT)
147
5.5 ( : ) (rAp)/2 (5.11)

If the inequality (5.9) is not satisfied the ion orbit effects are stabilising and there is no
realistic parameter range in which micro-tearing modes are predicted to be unstable.
Returning to equation (5.5) for finite 7, and 5;, it is an inescapable fact that the trapped
electron term driving instability is rather feeble. Short wavelength modes are dominated by
field line bending, longer wavelength modes by collisional broadening. As in the || — oo

limit, instability is only realistically possible when ion orbit effects also destabilise, i. e. when

[di”,— _ dT.

dn
? i ] >2 [Te + TL] E (512)

6 Conclusion

We have investigated the stability of micro-tearing modes in a realistic parameter range
v < wye < Vess for a toroidal plasma in the banana regime v.sy < ws.. The presence
of trapped particles modifies the collisional slab response in a region of velocity space of
width \/u,/_w., around the trapped region when a Lorentz collision operator is employed.
These modifications have been calculated in section 3 by asymptotic matching procedures
in velocity space, leading to a contribution to the growth rate () ~ €'/ ?er/Vewne. This fits
reasonably smoothly onto an expression derived previously by Catto and Rosenbluth (1981)
in the complementary regime v,s; < w,..

However, stability is determined by a competition between this effect and stabilising
contributions arising from field line bending and ion orbit effects (calculated by Cowley et
al (1986)), which dominate at lower values of v./w,., and collisional modifications to the
circulating electron Landau resonance which dominate at higher values of v./w.. and have

been calculated in section 4. If the stabilising effect of field line bending outside the resonant

15



layer (ie A') is neglected short wavelength micro-tearing modes are found to be unstable as
reported by Connor et al 1989. However, when all stabilising terms are retained the trapped
electron driving terms are too feeble, for typical Tokamak parameters, to outweigh the
various damping mechanisms and the dispersion relation (5.5) predicts that micro-tearing

modes should be linearly stable.
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Fig. 2  Contours of Integration for equation (3.13)
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Fig. 3  The contour C in equation (4.6)
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Fig. 4  Imaginary part of integral I(e) in equation 4.13









