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1, INTRODUCTION

The simplest model for diffusion is one in which the system
of particles is uniform, The diffusion coefficient is measured
by identifying a group of test particles and following them in
time, As the test particles diffuse out of a limited volume
other particles diffuse in, so the entire system remains spatially
uniform, We will use this model to calculate the diffusion of a
plasma across a magnetic field., In this way we avoid the
complications which attend a density gradient in a plasma, such
as macroscopic electric fields and the universal instability, The
relation of this model to the diffusion of a plasma into a vacuum
is unknown, One hopes that a critical examination of the simple
problem will help in the solution of the more complicated one,
This model has been implicitely used for many calculations of
plasma diffusion, in the sense that macroscopic electric fields
and instabilities that are directly due to a density gradient have
been neglected, The diffusion of an ordinary gas, or of suspended
particles in a gas, is normally calculated and measured in this
way, For an ordinary gas there is no diffusion into a vacuum but
only a free expansion,

Our direct motivation is a recent calculation(I) in which the
diffusion is derived in terms of an arbitrary spectrum for the
electrostatic field of the plasma, For a stable plasma the field
spectrum was evaluated by superimposing the fiélds from dressed
test particles, The resulting diffusion coefficient has a
logarithmetric divergence whose apparent origin is the waves which
are propagating perpendicular to the magnetic field lines, It was

suspected that the divergence was related to the absence of Landau



(2)

damping for these '"Bernstein modes'',

In this paper we derive the diffusion equation directly from
the equations of the BBGKY hierarchy.(s) With this formalism we
can follow the time development of the one particle distribution
function in a straightforward and well known manner, We follow
the motion of a distribution of test particles which has én
arbitrary spatial and velocity dependence, There is no assumption
that the number of test particles is small, and they interact with
the plasma as a whole, with other test particles as well as field
particles,

The forces in the plasma are taken to be electrostatic, so
that the theory is valid when the ratio of plasma pressure to
magnetic pressure is small, As usual the number of particles in
a volume with the dimensions of the Debye length is taken to be
large, so that we consider only the first two equations of the
BBGKY hierarchy and neglect correlations between triplets of
particles, We write the equations for one species of particle
with charge e and mass m, The generalization to a many component

plasma will be specified in the last section,

2, BASIC EQUATIONS

(3)

According to Rostoker and Rosenbluth the development in
time of the test particle distribution £(1) = f(gl, Xl’ t) is

governed by the equation

V. X B
af (1 . 8£(1) e ~ ~1 af (1)
+ Vv + m[EM“) + ]n 5

ot ~1 ® ox

(1)

2
= = fd3X2d3V2 G ! . 25 (1,2)
m X, X, - X,| av

The function p (1,2) is the pair correlation function for a test



particle and any other particle of the plasma, including other

test particles, The forces are taken to be electrostatic and

the magnetic field constant, We also assume the entire plasma to
" be uniform and neutral so that the macroscopic electric field

EM(I) vanishes, The distribution functions are normalized so that
fd3 V, £(1) = a(1) = aX,, t), (2)

where n(1) is the density of test particles,

We introduce the spatial Fourier transforms

— -i lns-o'}‘__(.l
£(1) = fds X, e L7 (1) (3)
5 1 KkpoXy = i kyeX,
and p(1,2) = fd3 X1 a3 XZ e p(1,2),
and find
L4 ik, LV, + V, X0 o =2 T(1) (4)
at ~10° ~1 ~1 ~ ° ag1

m (2:)3 k% iy
e B
with D = s=——_
~ mc

We now define a series of coordinate transformations which are
designed to simplify the time dependence of this equation, Spatial
diffusion is most easily investigated in guiding center coordinates:

vXao

& X o o (5)

For the Fourier transform this is equivalent to the replacement
Cal
£(1) = x(1) £(1) (6)
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with

and
SR v, X g
(1) =fd2 bpe VTN g(g - » Yqo t).

o~
i*

We will use these coordinates only for the test particles, which

will always have the index 1, For the pair function ; we define

= i P | -~
.k, XV, L
with £ (1,2) = exp [ﬁ i M3 N] °
ﬂa

It is also useful to take the fast oscillation at the cyclotron
frequency explicitely into account. We introduce cylindrical

coordinates for the velocity and wave vector:

v, = VL cos ¢ , V& = VL sin ¢ , v, =W,
(8)
k =k cosa, k =k sin a,
x L y L
For test particles we change variables
= ¢, + Ot (9)

and for the third time change the notation for the test particle

distribution
g (85 t) = f (g t) o (10)

This means that the velocity derivatives should be replaced by



. 5 |
k, e 5y = k cos (¢1 -G, = 2 t) 37

agf 12 1
Kk (11)
L2 D, - “« 0 t) 9
- v sin (8 = q, 55
12 1
3
tk o W, @

1
which is a function of the time, We will not change the notation

however, With these changes the equation for g(1) is

agl1)  _
ot =
12
2 d3k ik, i X k bl
4dme 3 .2 ~2 o ~ 1 3] A a
met [y | [ e |[7 0 a]
" (2m)® k3 Q2 X1

We also set kz1 equal to zero, corresponding to a test particle
distribution that is uniform iﬁ the direction of the magnetic
field, Diffusion along the field cannot be calculated by a
perturbation theory in which the effect of collisions is
considered small,

The equation for the correlation between a test particle and

any other particle is

9 . ) g |-

at ~1 2
47ie? e 3 T, .. -
3
4mie® / d k3 "
M B f e e g k-
" ' > (2x)e i3 ~3° ay, T(si=k,=kqs ¥,) B(3,2)
4nie? . BF(2) /- _
* 5 ° dsv p(1,3),
mk3  ~2 oY, 3 P,



Here F(2) is the distribution function for the entire plasma and
does nof depend on the spatial coordinates; P(3,2) is the
Fourier transform of the correlation function for any two
particles in the plasma, The triplet correlation function has
been neglected in this equation since it is of second order in
the expansion parameter.(B) Otherwise the equation is exact;
there is no implication here that the number of test particles
is small,

It is useful to introduce here the integral - differential

operator

2 :
0(2) = ik o Y - B g = n(2) [d5V2 : (14)

with the notation

2
n(2) = drie k oF(2)
mkz
2
Using the same variables as before for test particle coordinates

of index 1 we find

[_Q. + 0(2)]5 (1,2) = % (¢, - 2 t) [g (1) n (2)

at
2 i X k (15)
. Axmie® 1'52‘,[ ‘+83]gmr(z)
mkg n2 1

3 - - as
axie? [ 973 4 i X (ky=k -kj3) 5 e, 158 )
‘27\:)3 kg ,ﬂ_z ~ 1

Finally the equation for the correlation between any two

particles is

[5@; + 0(2) + 0(3)] B(2,3) = S(2,3)
(16)
= [nm F(3) + n(3) F(z)] (2x)% &% (k, + kj) o



3, SOLUTIONS

The procedure for solving these equations is well known(4-6)°

First one can distinguish two time scales, The fast time scale

lis characterized by the plasma frequency or cyclotron frequency
while the slow time scale is determined by the collision frequency,
The distribution functions g and F are taken to depend only on the
slow time variable when they enter into the source terms of
Equations 15 and 16, Also we assume that F is independent of the
velocity phase ¢, First Equation 16 is solved and the result
substituted into the source term of Equation 15,

The Pair Function

The solutions are most easily obtained by the method developed

by Dupree(?), coupled with Bernstein's treatment of the linearized

(2)

Vlasov equations o To solve Equation 16 we write the

homogeneous equation for the integral operator G(2,3):

I:—Q- + 0(2) + 0{3)] G(2,3, t) = 0 , (17)

with the initial condition
G(293,t =0) = 1 ° (18)

We solve the equation by separating the variables

G(2,3, t) = G(2, t) G(3, t) , (19)
with
[3% % o(z):'G(z, t) = 0 (20)

where G(2) operates only on variables with index 2, Using a one-

sided Fourier transform defined by

iw, t
G(2, w,) = /th e G(2,t) (21)

o}



and some manipulations with the generating function for Bessel

functions,

= Jn (a) eins » (22)

Il= =02

iasin ©
e

we write the solution of Equation 20 as

I — B,(2) [1+m(2) H (2, )] (o)
s W = i —— e o 23
2 4 w, - kzz WZ - nfl

Here and in the future the limits of the sum over Bessel function

indices will not be indicated, The operator P is defined by

i Z B, (2) x "(2) exp - (0, -k, Wz):‘
T y (24)
oo k .Y i
= %@[ d¢2 Z Jn {_J-.\'ZI_J.%) Sxp ["I'f%(wz'kzz WZ’ - in¢2:]
5 n

which acts on functions of the phase ¢2o The operator H is

' . . a® v, B, (2)
H(2, wz) =/dV2 G(2, wz) = 27 Z f @, - kzz Wz e o (25)
n

The dielectric coefficient for electrostatic waves is

e(2) = elky, w,) = 1 - e(2) H(2, w)) 1 (2)
aF (2) oF(2) 26
" @V, [Pt ke, Tl Ly (26)
=1 + 47e 1.2 J_L 2 I (.szl 1.2).
mkg i w, -k o WZ - nll n

The solution of Equation 16 can now be written as

. |
B(2,3, t) = [ at G(2,3,t - T) (2,3, T) (27)

o

where we have taken the initial correlation to be zero., Any
initial correlations except those for k = 0 are quickly damped

away. In terms of the Fourier transform in time we have

8o



_ dw. dw G(2,w,) H(3,w,) S(2,3,w)
f a%v, B(2,3,0) = i /' s T R D s (28)

(27)2 W=y ™ Ny
In the integrals over Wy and w3 the contour of integration
passes above any singularities, while the imaginary part of
is greater than the imaginary parts of either W, or Wie Since

thes source term is time independent we find

d3k3 _
——t / d3v3 P(2,3,w)

(27‘._}3 (29)

[ b T
W 27 8(-52,w~w57 . mz-kyz wz—qﬂ
q

inl2) 1
Fo v w3y ) [Ene e | gxlm

P

1
+ e
mnw2+kzzw3+pﬂ ] ]
Here we have assumed that €(k,w) has no zeros in the upper half
w plane, The plasma is stable,

Test-Particle Correlations

The test particle correlation p(1,2) is more complicated
since the source is time dependent, Again we set initial

correlations equal to zero and find after some algebra;

_ im(@1-a2)
3 # _ e~ ;
[ a®*v, p(1,2,w) = ;{} —— H(2,wtk W)
m
k .V a
[ g(1) J (-Jf%—Ll) [ n2) + =2, 09Xk
mkzﬂ?' ~2 ~ ~1
2
Wemfl d3k3 = ] 47ie?
{th) =5 / /d5v3 P(3,2,w-mM J :‘ R . 5§
(27‘:)3 mkz e0oc 0@

2
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k .,V k J' k .V
Vv m 1 av iV 1 o
11 L1 L1 1
k .V -
12 41 dg(1)
kI () oW, [_F(z) (30)

continued

W = mil d3k3 -
+ . [ fd3V3 P(3,2,w~mf) ]} o
The term proportional to 5299 x 51 is the one that leads to
diffusion, Note that the argument of the pair function P is
the transpose of the one of Equation 29, This means that the

sign of 52 should be reversed,

Time Depeadesnce of the Distribution Function,

At this point we will be a little more specific in the

(5-6)

treatment of the two time scales o We expand each function

in a perturbation series:

g =8, % gy »

(31)
P = 8P1

where € is the plasma parameter, We consider the functions to
depend on both the fast time variable to and the slow time

variable tI’ so that the time derivative becomes

ad &) 3 ‘
A L T 32)

The zero order part of Equation 12 now reads

5%— €o (toﬂ t1) = 0 . k58
o

We have used go (t1) to evaluate the correlation functions, The

first order part contains both the slow change of the large

10,



quantity and the fast change of the small quantity:

- LI AL TN L
31;1 at
(o]
. (34)
3
.2 a® v, k Xk
i} 47:13 / —2 2 . l: g Y :H: (@,~0t) Bl1, 2)]
(27)%  x2 02

Wz write out the right hand side of this equation explicitely,

separating the parts according to time dependence:

3 2
ag (1) . ag, (1) k2 (47032)2 g (_1)_ il_c“a_ k 2 55
ot ot B 11 m 2 3 . 4
1 o 2 N (2%) 3
-iwt
g2 i [0 e 1 _
% Z Tp (22} 4 _/ 27 ® elk,s @ + k_, W, + nil)
n
d®v, B (2) ¥(2,w)
X i e =
Z f -E-kz2 iWI «Wz) + (n = m) 0
m
47Ci.ez f J { ) klz d J'( )
+ IV a + 5 v a
m (Z'Jt)a kaz‘[ n 12 1V.L1 8@1 n 12
-1wt
2] dw e 1
+ 2 5 (a )] f = ‘
z?.. aw 12 6(523 w + kzl Wl + nfl)
d®v, B (2)
X i Z f w+ k (W, = W.) ¥+ (n - m&t [n(?.) Jn(a'lz) go(T)
z2 1 2
m
4mie? 3 1 (
7:1: v(2,0) {___ I_(a,,) g (1) uEL% Tia,,) dg (1)
mk2 _Ll avll iv_L] n i a:i;l

og, (1)
tk, Ta(an) 5w ]:’
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=iwt i(@l-a.I)

k 3
+ 47e? _...I.....ﬂ1 f_li%_ E.L% X J (312) i /.@.‘.’3 e ° e e
m (27) % kg , B 2% w=fl E(kz,m+k21w1+nﬂ)

n

. dsvg By (2)
. ZEjf (2m)® @+ K, (W=W) + (o-m) 0 [n(z) Toe1l212) g (1)

m
4xie? (n+1)0 Jn+1(a12) ago(i) liJ_Z ago(”
- = 2k v ov - a1 2r2) e
mk 2 L1 11 I 1
2

Bgo(l)
+ ko Tolagn) v, ] ]

wefl * 0=>0N
- l:same term with {n+l + n =1 ]:l
(2-a;) *+ - (8~0)

- (i"_e.z_)g i.lf.l.lfiﬂ dak |: _a__ 7 (a,.)

n
K2 o 8
————— 1 a—
t IV, 79, Talagp) + k3w, I.(ag0) ] Tor1(agn)

. e"iwt ol (24~ ay) B (2) ¥(2,w-0)
X i 2% w=0 elkyy W + Kk o W + nfl) [ VZZwﬂc (W'F(n-m)ﬂ

we=0+w+
-[sametermwith[ n+1‘+n-1}:|
(@,-a,) * (8,~a,)
1 3 2
k2 (4Wei)2 go( ) d®k, EL% 2 i g |
2
~iwt + 2i (@1 -a.)

da 1
x i / w e e B -
2% =2 i1 5_(52, o+ ko, W+ )
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% / S Bm(z) V(2,w=20)
i —
: 2 ;{: w + kzz (W1 - Wz) + (n - m)il
m

' W=281 ~* w+2f1
+ [.same term with { n+2+*na-2 ] ] o
(@yway) * = (2,=0,)

Here we have used the abbreviations

k, V.,
aj, = —H (35)
. d3k3 _
and Y(2,w) = F(2) + = d®v, P(3,2,0) . (37)

The first term and last two terms of this unwieldy expression
contribute to the diffusion, The second term contains the
Fokker-Planck coefficients, while the rest are a mixture, Any
terms that do not depend on the fast time wvariable to contribute
to the slow time change of 8g° Any oscillating terms we must
attribute to the small quantity 8qe Any terms which are secularly
increasing with t, or oscillating and growing indicate that the
theory is not wvalid, since g cannot depend on to and g4 must
remain small,

The principle contribution to the time development of g, comes
from the pole at W = 0 occuring in the first two terms, Ths poles
at w = * 2 and w = * 2§l which occur in the remain terms lead to
oscillating parts of the time dependence of gqe

The pole at w = 0 does not occur singly however, but the
denominateor of the integral has the form

w_[‘w+ ko (W, -WZ) + (n - m) ﬂ] ek, W+ k 5, W+ nfl)

When ko = 0 and n = m , there is a double root at w = 0,

yielding a secular term increasing linearly with time, However if

13.



one integrates over the wave number kZz and the axial wvelocity
LY this secular term disappears, being only an isolated point
in the integral, The roots of the dielectric coefficient, whose
form is given by Equation 26, lead to terms that are damped with
the usual Landau damping coefficient, When kz = 0 the damping

(2)

coefficient disappears s but this too is an isolated point in
the integral over the wave number and does not contribute, The
roots of the function Y(2), given by Equations 29 and 37, also
contribute only damped terms,

The conclusion is that only the time asymptotic terms coming
from the pole at W = 0 contribute to the slow time development of
o° Of course the arguments given by Su(a) for the Kinetic
equation without a magnetic field apply equally well for this
case, He argues that the use of two time variables is invalid
for small values of the Fourier transform variable kzzg or for
values of 52 for which the Landau damping factor Y(EZ) approaches
the collision frequeﬁcy L &:wp/nhg, where KD is the Debye length,
The Landau damping time is the time required for correlations to
be established and must be shorter than the collision time if the
two time scales are to have any m=aning., Even this descrepancy

should only become ewident in the next order in the perturbation

theory,

4, DIFFUSION EQUATION

In order to evaluate the time asymptotic limit we need only

one integral:

14,



lim . 1 -. a®v, B_(2) ¥(2,w)
w*o e(w + kz?.. W.[ + nfl) Z _/E"i-"ﬁ'z'; IWI_:-WZ) + (n - m)il
m

43 2 (38)
N Y2 Tni2p) F2) ;
(5% - o i 5
kzz-TW1 WiT + (n m)fl + ic e (k W. o+ mﬂ)lz
z2 2
m
We find a kinetic equation of the form:
af (1) 8t _(1)
_.E_t._— ¥ !1 x;g-o 3 i = 0 o (39)
o ~1
ar_(1) :  ae o
—— = —_— D £ (1 ] (40)
9ty Z B EL [L 9
i =1

3 3 a.fo-.|)
* E: BV, [Bij Vi £,01) + Byy 5V, ] o
fg j=l
We use the original notation for the test particle distribufion

although it is expressed in terms of the guiding center

coordinates E,

The Fokker~Planck coefficients are

L 1
5 o] 0 d : 41
8 1 BL an (41)
0 0 B,

B -Z (V2.v2) EV V -K LY V =MV YV

L 2 * ¥ X oy 5 B x =z z

B = E vy vV, +K Bl + E(Vx'vy) 7 vY vV, + MV V, (42)
LY V. +MV YV LY V «MVYV B
z X zy z 'y z X ZZ

To shorten the following formulas we define the operators Pn and Qn:

15,



‘ 3
) = (i&)z f fﬁ_ A 7 1 (43)
(2x)® i3 Ly le(x_, W, +n0|?
?

v
- 3565
X [ d3v2 ;E: F(2) Ja {—4-—L—) 5 [kzztwi-wz) + nﬂ-mﬂa]

a,

and
2 d %
Q (V) = (25e) /_._.2_ A Z
n (2x)% kg
n,m
3 2 2 k2¥2 )
d®v, 3 e® F (2) J2 (—kg-dS) 1
X PP /' O o _a — a
- W7 ¥l e, lelk,, W, + m )2

where PP refers to the principal part of the integral, In terms of

these operators we have:

kz
D = L P “"Lg Jz(a ) 2 (45)
1 2n® = kgA n'M2
k“z
i —ll 2 2
B =1 A5 Tasr(212) # Jn-l‘a12)] ) (46)
2
k2
B, =7%P_ —fg o] CT S (47)
k
2
k22‘
™
E = F— Pn 2 Jn+‘(a.12) Jn_‘(a12) pe (48)
11 2
k 2 nil
= pe_1 L L8 ]
K = Qn _I_kz x Jn(aiz) Jn(a'Z) » (49)
2
L= —*—~ p ‘22 n? J2(a..) . (50)
. - vz W n kz n 12 3
11 2
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k 2k

_ 1 Z2
Moo= g n D Q —igz—— I (ag,) Jl(a,,) (51)
L 2
3 2
B = . AmePn /‘d x5 Z{: ol (a45) Im [ 1 (52)
— —— ?
L m vE, ) (2m)® K2 Billsges oWy Fall]
. L 2
n
ame? g [ Xy k, o
& :u_-uf 12 3 (a,,) J'(a,.,) (53)

1
X Re [ —_ - l]
€ (gz,kzz Wl+nm ¥

3
B o= w &%Ei /.E_E%_ EEE ZEj J (a12) Im [ETE—_%_—W_IEﬁT] o (54)
- = (2m)% i3 n S22%z2"1
n

In these formulas we have extended the theoryto include two

species of particles, The index a refers to the species 0, with

charge €q? Mass m, and; cyclotron frequency ﬂa, and distribution

F The Fokker=Planck coefficients agree with those given by

a,ﬂ
Rostoker(‘”n The diffusion coefficients are the same as those

given in reference 1, with the exception of the non-resonant.terms

K amd M of Equations 48 and 50, These terms did not appear there,
5. DISCUSSION

The dominant part of the diffusion coefficient given by
Equations 43 and 45 is gotten by taking only the contribution for
0 and integrating over the axial velocity of field

n-=-m-=

particles:

17,



3 2 2

y _ Cy2 . 2
Di(dom1nant) = (B) TEZET "
2

(55)
Ie(']fszl kzz w1 ) Ia

k |V
2 2 2 (L2 L2 :
X /d ¥is Z eq FalV, o0 W) I =) .
a

This integral is logarithmetrically divergent as k > =+ 0, since
the dielectric coeffient is finite at zero frequency, Otherwise
it is fairly respectable, It is proportional to an and with any
reasonable cut off for long wavelengths will yield a diffusion
coefficient close to the standard result, It is also divergent
for short wavelengths, due to the singular nature of the Coulomb
force,

One point worth noting is that the diffusion is due to field
particles of both species, If one takes into account only the
Coulomb collisions of pairs of particles one finds that the
diffusion due to particles of the same species is very small and

does not lead to a diffusion equation of the standard form(m)°

(11)

According to Kadomtsev plasma oscillations which are
principally the result of electron motion cannot lead to electron
diffusion, He does not give the full argument, which is based

on the WKB approximation, but states that this electron-electron
interaction leads to a diffusion of separate particles, rather than
a diffusion of the plasma as a whole,

The velocity &iffusion coefficients BL and E of Equations 46
and 48 are also divergent in the same way., If cylindrical
coordinates are used for the velocity variables the divergent
coefficients contribute only if the test particle distribution fo(l}
is a function of the azimuthal angle ¢1¢

The conclusion of this paper is that the diffusion coefficient

of Equation 45 and reference 1 has a firm basic in the standard

18,



kinetic theory, and its faults cannot be blamed on the patchwork
nature of the original theory. The disturbing divergence remains
unexplained, so that the theory cannot be considered valid in its
present form, There seem to be two possibilities for further study:
(1) One may treat the modes with small Landau damping by a
separate plasma ordering scheme, with the motivation that
correlations for these wavelengths do not develop before collisional
effects becomes important., (2) One may look for physical
mechanisms for diffusion that are not treated correctly by the
present plasma parameterization, One such effect was suggested

by E.G. Harris,tr] In the absence of interaction with other
particles an electron-ion pair will drifit steadily across a
magnetic field, driven by their mutual electric field, This
particular mechanism could not explain the divergence in electron-
electron diffusion, but it does suggest that the present model of

a fluid plasma with only occasional collisions may be inadequate,

19,
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