CLM-P880

Curvature-Driven Smoothing
in Backpropagation Neural
Networks

C.M.Bishop

e SRy AEA rscuuowevl

This document is intended for publication in a journal or at a conference and
is made available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the
authors.

Enquiries about copyright and reproduction should be addressed to the
Librarian, UKAEA, Culham Laboratory, Abingdon, Oxon. 0X14 3DB,
England. :

Curvature-Driven Smoothing in
Backpropagation Neural Networks

Chris M Bishop
Theory and Computing Division
Culham Laboratory
AEA Technology
(Euratom/UKAEA Fusion Association)
Tel: 0235 - 21840 ext 3502
Fax: 0235 - 463682

Abstract

The standard backpropagation learning algorithm for feedforward networks aims to min-
imise the mean square error defined over a set of training data. This form of error mea-
sure can lead to the problem of over-fitting in which the network stores individual data
points from the training set, but fails to generalise satisfactorily for new data points. In
this paper we propose a modified error measure which can reduce the tendency to over-
fit and whose properties can be controlled by a single scalar parameter. The new error
measure depends both on the function generated by the network and on its derivatives.
A new learning algorithm is derived which can be used to minimise such error measures.

Keywords

Backpropagation, Curvature, Feed-Forward, Generalisation, Hidden unit, Learning al-
gorithm, Neural network, Smoothing.

Acknowledgements

The author would like to thank I F Croall, K D Horton and I G D Strachan for a number
of useful discussions relating to this work.

Running title: Curvature-Driven Smoothing

1 Introduction

Feed-forward neural networks, trained by error backpropagation, form one of the most
widely used neural network architectures. If the network has hidden neurons, and non-
linear activation functions, it can generate a large class of non-linear continuous map-
pings between multidimensional spaces (Funahashi, 1989; Hornik et al., 1989). The
standard learning algorithm (Rumelhart et al., 1986) minimises an error measure which
is the sum, over a set of training data, of the squares of errors for the output neurons.
This form of error measure can lead to the problem of over-fitting of the data (some-
times called over-generalisation), in which the network ‘stores’ individual data points,
but fails to generalise satisfactorily for inputs not included in the training set. An anal-
ogous problem arises when curve-fitting using high order polynomials (Tikhonov and
Arsenin, 1977; Denker et al, 1987). Again, this problem is related to the minimisation
of a mean-square error measure.

One approach for reducing this effect is to include a sufficiently large number of examples
in the training set. This may not always be practical, however, particularly for problems
with many degrees of freedom.

A closely related issue concerns the number of neurons in the network. The number
of input and output neurons is generally determined by the dimensionality of the data
itself. However, there exists no satisfactory theoretical basis for determining the number
of hidden units, which must often be decided by trial and error. If the network has too
few hidden neurons, the class of functions which it can generate is too restricted and it
is unable to achieve the desired accuracy. Increasing the number of hidden neurons can,
however, lead to the problem of over-fitting.

In this paper we propose the use of a modified error measure designed to reduce the
tendency to over-fit, even for a network with many hidden neurons. To minimise this
error measure a new learning algorthim is derived which generalises the standard back-
propagation procedure. The modified error measure is described in section 2, and the
learning algorithm is derived in section 3. Finally some conclusions are presented in
section 4.

2 Curvature-Driven Smoothing

To begin with, consider mappings of a single variable z to a single variable y, so that
the network has one input and one output neuron. The network has a feed-forward
architecture in which each neuron generates a non-linear function of the weighted sum

of its inputs:
zi = f(Q_wiiz;), (1)
2

where z; is the activation of the j*® neuron, w;; is the connection weight between neurons
¢ and 7, and the function f is taken to be the standard sigmoid:

1
14e2

f(z) = (2)
There also exists a threshold for each neuron. Since, however, these are equivalent to
weights from an extra neuron whose output is permanently set to +1, they are contained
in the formalism of Eq.(1) and we need consider them no further. By construction, the
function y(z) will be continuous, single-valued and differentiable.

Suppose we have a set of data points {z,,t,}, p = 1,..., P, where ¢, is the target value
for y corresponding to z = z,. The standard learning algorithm minimises the error
measure g

E° =) Z(yp - tp)z (3)

{r}

where y, = y(z,). The use of this error measure can result in the network function y(z)
over-fitting the data points, as shown schematically in Figure 1. We now seek to modify
the error measure so as to generate smoother functions y(z), as indicated in Figure 2.
To achieve this we add to the standard error measure a regularising term which depends
on the geometrical properties of the network function y(z):

E = ES + \E° (4)
1 rb
EF = 3 xk*dz - (5)

where & is the curvature of the line y = y(z), and the interval (e, b) spans the range of
values of {z,}. Smoother curves will have a small value of E® for a given internal (a,b).
Note the use of 2 in Eq.(5) rather than «, since & carries a sign. Similar regularising
functions have been discussed in the context of curve-fitting (Tikhonov and Arsenin,
1977; Denker et al., 1987). In terms of the network function y(z) we can write (Korn
and Korn, 1968)

B -1— b (yn)2 .
=1 mr ©

where primes denote d/dz. We now replace the integral in Eq.(6) by a sum over a
discrete set of points {z,}

1 rr)z

EC =

a mn (7)
=32 [T ()P A
where y, = y(z,), and Az, = z, — z,_,. It will often be convenient to choose the
points {z,} to coincide with the {z,} since this will make use of values for the neuron
activations which need to be calculated anyway for the minimisation of ES. If, however,
the data points are too sparse in some regions for sufficient accuracy to be obtained, it
is straightforward to include extra values of z. Equally, it may be acceptable to exclude
a proportion of the data points from {z,} and so reduce the training time.

For a network with NV input and M output neurons, the curvature term in the error
measure can be generalised as follows:

= -—ZZ/ nudz,, (8)

=1 j=1

where y;(z,,...,zn) is the activation of output neuron j. The curvature of y; with respect
to variations in the input z; is given by

2 (0%;/0z1)° ©
T [+ (/07

3 Learning Algorithm

The standard mean-square error measure ES is a function of the synaptic weights w;;
through the network function y(z). For a given training set {z,,y,} the error E® can be
minimised by gradient descent using the backpropagation training algorithm (Rumelhart
et al., 1986). The curvature term EC, however, contains derivatives of y(z) and so the
standard backpropagation procedure does not apply. We now derive a generalised form
of backpropagation which can be used to minimise error measures containing derivative
terms, and which therefore can be applied to the curvature function considered in the
previous section.

As usual, the network is trained by gradient descent so that

OES 4 AE°
aw;,- 6’w,'j

swglm) = =) + wtwi(m 1), (10)

where m denotes the training step number, 7 is the learning rate, and y is the momentum.
The derivative 0ES/dw; is calculated using the standard backpropagation algorithm.
We now seek a procedure for calculating dE®/dw;;.

From Eq.(7) we have

_ (vm) Oy _ 3n)y Oyl o,
):{ T }A ” (11)

aw,, + (y7.)°]° 0w (yn)?)* Oy

To calculate the partial derivatives in Eq.(11), we note that w;; and z, are independent
variables, and so we can interchange the order of the derivatives:

0 (dy\ _d [Oy
dwi; (35) dz (6w,-,-) ' =

We now introduce an ‘error’ term o; for each neuron:

a?vy,-,- — (13)
o; = 32:72;(1 - z), (14)
where we have used Eq.(1) together with the relation
f'=f1=1). (15)
From the chain rule for partial derivatives it follows that
oi = zi(l — z)) WkiOk. (16)
k

Using Eqgs.(12) and (13) we can write

oy do; dz;
17
aw,J = iz R dz)
where d p
O 25
- =41 Z wk. + (1 —22)—= 3 whios. (18)
k
For the output neuron we have
=y(1 - y), (19)
o:ia'0
7y = (1= 2y) (20)
The partial derivatives 2! can be calculated dunng the forward propagation phase using
dz,- de
E = Z,(l —Z,);w,JE, (21)

which follows from Eqs.(1) and (15). The quantities o;, do;/dz can then be found by
backpropagation using the recursive formulae of Egs.(16) and (18).

Analogous results for the second derivatives are easily obtained:

oy" d%c; do; ai’zJ d"’z_,

Ow;; - zjd_ﬂ:2 * 2d.r dz d dz?’ \22)
({20',; dzak
& T E“"ﬂ
+ 221 Zwkl
+ (1-2z)— diz' Zwkm
<
- 2 (%) Zk:wkio'h (23)
d""a',J dy\? '
d22; d22'
T = al-w) v
j

+ 2z(1—2z)(1-2%) (Z wij%) : (25)

We can now summarise the learning algorithm as follows:

(1) Apply inputs {z,} and forward propagate to generate, layer by layer, the neuron
activations zjn, y» using Eqs.(1) and (2), and the various derivatives dz;,/dz, etc.
using Eqgs.(21) and (25).

(2) Compute the error for the output neuron using Egs.(19), (20) and (24) and back-
propagate the errors using Eqs.(16), (18) and (23).

(3) Update the weights using Egs.(10), (11), (17), and (22).

This algorithm readily generalises to networks having several input and ouput neurons,
with a corresponding error measure given by Eq.(8), simply by keeping track of the
indices labelling each neuron. For each term in the sum in Eq.(8) we have to consider
the dependence of the ouput y; on the input z; with all other inputs held fixed. The
learning algorithm equations derived above can then be applied to the function yi(z:).
Many of the heuristic procedures which have been developed to speed up conventional
backpropagation can also be applied to this algorthim (Cater, 1987; Dahl, 1987; Hush
and Salas, 1988; Jacobs, 1988; Stornetta and Huberman, 1987).

4 Summary and Discussion

In this paper we have proposed a new error measure for feed-forward neural networks
which is intended to bias the network in favour of smooth solutions and thereby avoid
the problem of over-generalisation. A learning algorithm for the minimisation of this
error measure has also been described. This algorithm is also applicable to other error
measures which are expressible in terms of the (multivariate) network function and its
derivatives. For instance, the smoothing functional

E= [+)} (26)

has been found useful in other contexts (Tikhonov and Arsenin, 1977; Farhat and Bai,
1989). In this case the smoothing term contains only first derivatives of y(z), and so the
learning algorithm is simplified.

The greater complexity of the learning algorithm described here, compared with the
standard backpropagation procedure, will result in a significant increase in training
time which in some situations will make this procedure inappropriate. It should be
emphasised, however, that one of the great advantages of feed-forward networks, namely
their speed of operation once trained, is unaffected. Detailed results from software
simulations of networks using this new algorithm will be described in a subsequent

publication.

A major outstanding problem with feed-forward networks is the determination of the
number of hidden neurons. With the technique described in this paper it should be
possible to use a network with a fixed number of neurons and to control the properties
of the solution by varying a single scalar parameter A instead of having to change the
network architecture.

References

Cater J P (1987) Successfully Using Peak Learning Rate of 10 (and greater) in Back-
propagation Networks with the Heuristic Learning Algorithm. Proceedings of the IEEE
First International Conference on Neural Networks. San Diego, CA Vol II 645-651.

Dahl E D (1987) Accelerated Learning using the Generalised Delta Rule. Proceedz'ﬂ;gs of
the IEEE First International Conference on Neural Networks. San Diego, C A Vol II,
523-530.

Denker J, Schwarz D, Wittner B, Solla S, Howard R, Jackel L & Hopfield J (1987) Large
Automatic Learning, Rule Extraction and Generalisation Complez Systems 1 877-922.

Farhat N H, and Fai, B (1989) Echo Inversion and Target Shape Estimation by Neuro-
morphic Processing Neural Networks 2 No 2, 117-125.

Funahashi K (1989) On the Approximate Realisation of Continuous Mappings by Neural
Networks. Neural Networks 2 No 3, 183-192.

Hornik K, Stinchcombe M & White H (1989) Mulitlayer Feedforward Networks are
Universal Approxmations Neural Networks 2 No 5, 359-366. :

Hush D R & Salas J M (1988) Improving the Learning Rate of Backpropagation with
the Gradient Reuse Algorithm. Proceedings of the IEEE International Conference on
Neural Networks San Diego, CA Vol I, 441-446.

Jacobs R A (1988) Increased Rates of Convergence through Learning Rate Adaptation.
Neural Networks Vol 1, No 4 295-307.

Korn G A & Korn T M (1968) Mathematical Handbook for Scientists and Engineers 2nd
Ed 564.

Rumelhart D E & McClelland J L (1986) Parallel Distributed Processing: Ezplorations
in the Microstructure of Cognition Vol 1: Foundations. Cambridge, MA MIT Press.

Stornetta W S & Huberman B A (1987) An Improved Three-Layer, Backpropagation
Algorithm Proceedings of the IEEE First International Conference on Neural Networks.
San Diego, CA Vol I1, 637-643.

Tikhonov A N & Arsenin V'Y (1977) Solutions of Ill Posed Problems. New York, Wiley.

Nomenclature

E total error measure
EC curvature error term
E® sum-of-squares error term

f sigmoid activation function

M total number of output neurons

m training step number

N total number of input neurons

P total number of training data points

w5 synaptic weight from neuron j to neuron :
& network input variable

Ty input value for nth training pattern

Y network output variable

z; activation of neuron

Greek Symbols

Az, difference in z between training points n — 1 and n
learning rate

curvature of network function

coefficient of cuvature error term

momentum coeflicient

error for neuron 2

0, error for output neuron

Q' >=x 3

Figure 1. A schematic illustration of a set of data points {zp,1,}, together with an
mterpolating function y(z) which over-fits the data.

Figure 2. The same data points as in Figure 1, with an interpolating function y(z) which
gives a smooth representation of the underlying trend in the data.

e i o e L e

o —

