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Abstract

In this paper the necessary and sufficient conditions required for the existence of a non-
linearly saturated m = 1 tearing mode in tokamaks with go < 1 are considered in cylindrical
tokamak ordering using the asymptotic techniques developed by one of the authors in an
earlier paper (A. Thyagaraja, Phys. Fluids, 24, 1981). The outer equations for the helical
perturbation amplitude t;(r) are solved exactly, in closed form for an arbitrary mean profile
to(r) in leading order. This is shown to result in a “no disturbance” theorem: the m = 1
perturbation must be confined to within the radius r; such that ¢(r;) = 1. The bifurcation
relation for the non-dimensional perturbation amplitude is then constructed by solving the
non-linear inner critical layer equations using an ordered iterative technique. For monoton-
ically increasing g-profiles, the equation has a solution if and only if the toroidal current

density of the unperturbed equilibrium has a maximum within r; and the parameter j;—g’é%

(where, 7(r) is the resistivity profile consistent with the q-profile of the unperturbed equilib-
rium) is sufficiently small at r;. The considerations are extended to non-monotonic profiles
as well. When the conditions are met, a non-linearly saturated m = 1 tearing mode is shown
to exist with a novel island structure, quite different to those obtained from the usual A’
analysis, which is shown to be inappropriate to the present problem. The relevance of the
results of the present theory to sawtooth phenomena reported in JET and other tokamaks
is briefly discussed. The solution constitutes an analytically solved test case for numerical

simulation codes to leading orders in a/R and the shear parameter %g—g.
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1 Introduction

Sawtooth activity in tokamaks has been very widely reported, under both ohmic and aux-
iliary heated conditions. In the case of JET, this and associated phenomena have been
extensively described by Campbell et al’. Stabilisation of sawteeth has been achieved either
by the direct application of lower-hybrid, or spontaneously (in JET) by the use of sufficiently
high powers of additional heating. The mechanisms underlying these phenomena are very
poorly understood - there being no general consensus as to the underlying theoretical basis.
It is generally believed that the value of the safety factor on axis is intimately connected with
these phenomena. Again, however, there is no consensus - measurements of this quantity
leading to differing results, depending on the method used and the particular experiment.

In this paper, we consider the problem of determining the sufficient conditions for the
existence of a non-linearly saturated m = 1 tearing mode in the cylindrical tokamak order-
ing. The work complements the results of a companion paper?, in which we find general
sufficient conditions for the g-profile to be monotonically increasing both with and without
auxiliary heating. The conditions needed for gy to be less than unity for given ¢, and power
level are also derived. These conditions are mainly determined by the thermal diffusivity (x)
and result in the existence of a unique r; such that, ¢(r;) = 1, ¢/(r;) > 0. The m = 1 tearing
instability of such a profile leading to a non-linearly saturated, bifurcated, helical equilib-
rium state requires, in its most general formulation, the complete thermal diffusivity tensor
(including the correct parallel thermal diffusivity in the experimentally relevant collisionality
regime®?) and the anomalous resistivity tensor as discussed in the companion paper?. This
problem is analytically intractable. To gain insight into the nature of the m = 1 mode, we
have followed the spirit and techniques of an earlier asymptotic approach®.

Thus we consider the single-fluid, incompressible, resistive MHD equations in cylindrical
tokamak ordering. It is assumed that there is an equilibrium solution to the equations leading
to a g-profile with go < 1 and monotonically increasing. At present, there is a substantial
body of experimental work® which suggests that the g-profiles in sawtoothing discharges are
of this type. On the other hand, numerical work” suggests that immediately after the crash
the g-profile may be non-monotonic. Such non-monotonic profiles will be discussed at the end
more briefly. The problem of saturation of a helical perturbation with m = 1 is then solved
to a certain degree of approximation. In obtaining this bifurcating solution, we first consider
a simple model in which the resistivity profile is assumed to be a specified positive function
n(r) consistent with the unperturbed equilibrium flux function 4,(r) and the resultant g-
profile. This assumption is the same as that of the previous analysis®, where it was shown

to produce results in agreement with comparable numerical and experimental work. In most



numerical work’, it is customary to solve an energy equation for the electron temperature
with some prescribed anomalous themal diffusivity tensor and use the temperature profile
and the Spitzer form (sometimes with Neo-classical corrections) to estimate the toroidal
resistivity 5. For numerical resolution reasons, it has not yet been possible to use realistic
values for resistivity (typically the codes use a value some hundred to thousand times larger
than those compatible with measured plasma resistance). The uncertainties involved in the
radial variation of the perpendicular (anomalous) thermal diffusivity and that in the parallel
co-efficient mentioned earlier, as well as the effects due to impurity profiles, are such that
in practice, a reliable estimate of resistivity is not available in the relevant conditions. It is
also important to note that the resistivity in the perturbed state is not in general known a
priori as a function of the helical flux function ¢ (especially in the interior of the island). On
the Spitzer model, 7 might be expected to be constant on flux surfaces; however, it cannot be
known explicitly within the island zone without solving a thermal transport problem there.
Hence, short of solving the full problem alluded to earlier, we follow earlier work, keeping
n(r) a fixed function throughout the analysis. However, as will be noted later, parts of our
analysis are rather general and do not need any explicit assumption about the resistivity. It
is therefore possible to make qualitative deductions about the saturation criteria which will
continue to be valid even if a transport calculation is used to obtain the resistivity within
the the island structures predicted by the theory in a self-consistent manner. A discussion of
these results of a more general nature will also be given and a comparison with experiment
made where appropriate.

The problem formulated in the preceding paragraph concerns the existence or otherwise
of neighbouring equilibria- in other words, the hydromagnetic stability of configurations with
go < 1. Using asymptotic analysis we show that a neighbouring equilibrium with ¢(0) < 1

is indeed possible, provided the resistivity n(r) has a minimum within r; and the parameter

dloEq!r;!
dlogn(ri)

a maximum near 7; and the corresponding minimum in the slope of the g-profile is within

is sufficiently small. Physically, saturation occurs if the toroidal current density has

the inversion radius. The solution obtained exhibits several novel features and important
differences from the previously published non-linear tearing mode analyses®®®°. The paper
ends with a discussion of these differences and a consideration of the relation between the

results obtained and an eventual theory of sawteeth and their saturation.



2 The Mathematical Formulation of the Helical m = 1 Bifurca-
tion Problem

For the gy < 1 situation discussed in the previous section, the equilibrium profiles are linearly
unstable to ideal and resistive MHD. We have explored the possibility that this is simply an
indication of the existence of a bifurcated neighbouring equilibrium with an m = 1 helical
perturbation in addition to the mean profile. The complete determination of the time-
evolution of such a perturbation on the mean profiles discussed in the companion paper?,
would entail a numerical solution of at least the resistive MHD equations supplemented by the
energy equation. We restrict ourselves in this section to the simpler problem of analytically
determining neighbouring equilibria along the lines of Thyagaraja®. This simple model,
which we describe below, should provide guidance regarding a possible future computation
of the full problem. The set of equations used is identical with the steady-state forms of
those used by previous workers apart from trivial notational differences (see for example,
Hazeltine et. al®). As is well-known, these equations are derived under the assumptions
B, — 00, £ — 0, keeping ¢(r) = };%8 fixed.
Thus, we define a helical variable u
Z
u=0-— i (1)
Let the corresponding helical flux function, ¥(r,u) be defined such that the magnetic
field components are given by
RET e

Assuming the density to be uniform and constant, the divergence free velocity components

are given by (we set toroidal flows to zero; the stream function @ is proportional to the

electrostatic potential)

109 oo
vy = ~ 3 and vy = 5 (3)

In tokamak ordering, as is well-known, the functions ¥ and ® satisfy the equations (also

known as RMHD- reduced mhd equations)

10(¢,7:)
r d(r,u) 0 ()
where, the toroidal current density j, is given by
2B
.= =V 4 —= 5
J v+ (5)

and



Ez - U(T)Jz(d)) = %taa((f:f)) ' (6)

In this model we neglect inertia in the momentum equation. In order to avoid the use of

the energy equation, we assume as in Thyagaraja®, that the scalar resistivity 7 is a fixed
function of » consistent with the equilibrium profiles. Taking E, constant, the equations (ie,
(4),(5) and (6)) are exactly the helical versions of the neighbouring equilibrium equations
solved in Thyagaraja® for slab geometry. The relevance or otherwise of these assumptions

will be discussed later.

3 Outer solution: “no disturbance theorem?”

We now consider the perturbative solution of equations (4-6). In general, the conditions are
such that the above equations admit an “unperturbed equilibrium”, 1(r), ®o = 0, where
o can be considered to be evolving on the resistive time scale if required. For general
profiles 1, if one assumes a perturbation of the form ¢;(r,t) cosu for the m = 1 mode, with
11| < |#al, it is well-known from the analysis of FKR!? (see also the more recent calculation
of Hazeltine et. al.®) that ¢, grows exponentially for small times due to resistive tearing
at the point r = r;, where ¥;(r;) = 0. From equation (4) it is clear that 1), satisfies the

ordinary differential equation (away from r = r;),

1d, diy, ¥y djo ,dvbo _
rdr( dr)_ﬁ-i—(dr )d)l U (7)
where
B,
=~V + % (8)

We now observe a remarkable property of equation(7). For arbitrary to(r) satisfying the

requirements =2 d"" =0 at r = r; (see equation (2) form =1) and r =0,

— c%o
=03, ()

where C is constant, is a solution of equation (7) which is “small” at 7 = 0 and r = r;. This

is proved as follows. Calling £ = W (r), equation (7) can obviously be written as
P g dr 4

W] 1 1 8
w1+ %) - F=rwg (o)

un’
= T -3

W r r2
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which obviously implies equation (9).

It is important to recognise that the above result is specific to the m = 1 mode and
regulates the nature of this mode in cylindrical tokamak ordering. For general 1(r) and
m? # 1, the analogue of Equation(7) has no closed form solutions analoguous to eq.(9).
More importantly, a solution which vanishes for r = r; is in general not “small” at r = 0 for
m? # 1, and conversely the solution which is small at r = 0 does not vanish at r = . B
also controls the character of the outer solution to the non-linear equations (4) and (6). We
observe that the solution Eq.(9) is actually valid in the entire interval 0 < r < a. In general,
however, this solution vanishes only at r = 0 and r = r; and not at r = a. The second
linearly independent solution to Eq.(7) can now be written down by the usual quadrature
process'!. Thus we put Z(r) = W(r)((r), where ((r) = D [’ Tw‘%ﬁf’ and D is an arbitrary
constant. Restricting attention to ¢o(r) which are analytic in » and real in 0 < 7 < g, it is
clear that Z(r) is finite at r = r; but has a logarithmic singularity in its first derivative (as
required by Eq.(7)) and a regular singular point at 7 = r;. In this respect Eq.(7) behaves
exactly in the same manner for every value of m. However, it can be shown from the explicit
form of Z(r), and also from Eq.(7), that Z(r) must behave like 1 near the second regular
singular point at r = 0. This property is crucially important in distinguishing the nature
of the outer solution (and also the subsequent inner solution) from those constructed in
Thyagaraja®. Thus the most general solution of Eq.(7) in the interval 0 < r < 7;, is a linear
combination of W(r) and Z(r). However, the physical requirement that the solution must
be bounded at r = 0 prevents any admixture of Z(r) and determines the solution to be W in
this interval uniquely, apart from the normalisation constant C. Turning now to the interval
ri <7 < a, again the most general solution of Eq.(7) is an appropriate linear combination
of W(r) and Z(r). Since continuity of the solution at r = r; requires the vanishing of the
solution in the right hand interval at r = r;, and Z does not vanish at r = ri, it 1s clear that
the right hand solution must be purely a multiple of W. However, since W does not vanish
at 7 = a, the solution must be identically zero for r; < r < a.

The above considerations spring directly from the linearised form of Eq.(4) and the
boundary conditions at r = 0,r = 7; and r = ¢. In particular, they are independent of
resistivity and its spatial and temporal variations. More importantly, they are valid for
arbitrary ,(r), subject only to the provisos, % =0 at r =0 and r = r;, but non-zero at
r = a. Thus even if t)o varies with time, provided it does so on a time scale long enough for
Eq.(4) to be valid, all the above results continue to hold. This outer solution, which has been
derived from the resistive MHD equations here, is of course identical with the well-known

“top hat” displacement of ideal MHD theory, as pointed out for example by Hazeltine et



al.® (their Eq.(1)). In the present context however, it is more important to focus on the
fact that this solution implies an island structure in the inner region, quite different to any
solution in that zone of the ideal equations in the limit  — 0. It should be observed that
according to the non-linear critical layer theory of tearing modes® for any m, it is the outer
solution in its inner limit which determines the topology, whilst the inner solution determines
the saturation conditions for a symmetry-breaking bifurcated state. Finally, we note that
as in Thyagaraja’s earlier work®, the present outer solution is continuous at r = r; by
construction, but its derivative has a finite jump proportional to the normalisation constant
C; this constant can only be determined by matching with a suitable inner solution. It is
clear that the present outer solution does not have a determinate A’ and cannot be obtained
from the usual A’ analysis as presented in this context in previous non-linearly saturated

tearing mode theory®.

4 Inner Solution: preliminary profile considerations

In the preceding section we considered solutions of the governing equations of the form
Yo(r) + ¥1(r) cosu + ... A solution so constructed is valid generally in the “outer” region,
dyg

away from r = r;, where 2 = 0. The amplitude of the perturbation cannot be determined

and we can only write in general

Yu(r) = Ari—— (11)

where the non-dimensional small parameter A is yet to be determined. Following the proce-
dure worked out in Thyagaraja’s paper®, we shall construct an approximation to the inner
solution of the equations in the non-linear critical layer and obtain the bifurcation relation
which determines A in terms of the profile parameter ‘—;;—z:—f’%’;—%. Before we carry out the
relevant asymptotic analysis in detail, the reader should be alerted to certain important
differences between the present problem and the earlier analysis® which is generally valid for
m > 1.

The helical geometry of the present problem implies that —V?i is not actually the current
density j, (as it would be in a sheet pinch with B, = 0). As will be seen later, this fact has
interesting implications. Secondly, as pointed out earlier, for g-profiles with a single resonant
point, ¥;(r) = 0, for r > r;. Thus the m = 1 inner region is inherently unsymmetrical about
the resonant point. The third major difference concerns the fact that for the m = 1, the

asymptotic matching leads to the bifurcation relation in leading order of the perturbation,

unlike the small A’-theory for higher m-modes.



First we establish some essential notation: for definiteness we assume that the equilibrium
o profile implies a monotonic g-profile with ¢o < 1 and a single resonant point 0 < r; <
a. Quite generally, we may expand the unperturbed equilibrium flux function in a Taylor

expansion about the resonant point r = r;. Thus,

r—r)? r—r)3
tho(r) = tho(ri) + LT)" o(ri) + (_6_) o (ri) + ... (12)
Clearly the function v, (r) satisfies the equation,
1d  dio

(13)

- (r

()=
rdr' dr R = Jos(r) = 7(r)
where E; is the (applied) electric field and 7(r) is the resistivity function characterizing the

unperturbed equilibrium. From the definition, ¢(r) = };g , and Eq.(2) we get the relation,

B, | 1 1 di)g
[ —— 1] = e 14
R [q(r) } r dr ud)
We recall that the outer solution (for r < r;) takes the general form
d
'lL‘-T’lj)U(T)"f-AT‘,'%COSU-"..., (15)
where A is a small parameter to be determined. Plainly, the correct scaling in the inner
region requires that io(r) >~ Ar; d:;“
Setting
r—=r;
= 16
Y )\'r",' ( )
and,
Yo(r) = o(r:) — Mrivg(ri) ¥5(Y), (17)

We then get the expansion

(18)

Y3 /\2}74

Y? A
w;(y)s_[z b B o B

where the non-dimensional expansion co-efficients Hi, H,,.. are related to the co-efficients

in the expansion Eq.(12) through the relations,

_ () #(r)
Hisamy + Tt gp s (19)

We assume explicitly that 4g(r;) # 0. This is equivalent to the generic assumption, ¢'(r;) # 0.
Substituting Eq.(17) in Eq.(14) we get

1| _ RA() 4%, -
a7, %) B, dv

-1



from which it readily follows that,

do __ B P
dYy — H; dY?

with ¢(Y = 0) = 1. Without loss of generality we may assume that X is positive. It follows

(21)

that the g-profile is monotonic in the neighbourhood of Y=0 and increasing if g (r:) is
positive. Furthermore, the slope of the g-profile in this neighbourhood can only change sign
if the second derivative of ¥§ with respect to Y does and conversely. From Eq.(20) we have
the general relation
Ripg (i)
B,

We now relate U} to the resistivity profile. The inner limiting form of Ohm’s law may be

(22)

rig'(ri) =

written as,

AV B 2B,
R 0 _ z _ z 9
O(r!) d}/g n(y’)‘) R ("‘3)

Assuming the Taylor expansion,

_ ! r; " T i
n(Y,A) =n(r;) + "g! )r,-/\Y+-"2(—!)r,?A2} ot e (24)
we may define non-dimensional function H (Y, A) and the co-efficients A, hy, .. through rela-
tions,
n(Y: ) .
H Y,)\ — 29
() n(r:) (25)
7':'"'7’(7':) TZ??H(T‘)

= hy = = 2

& n(ri) ? (26)

These co-efficients will be generally assumed to be O(1) but are not entirely unrestricted. For
the purposes of the present paper, only the first three terms in Eq.(24) will be considered.
Since we require n(r) to be non-negative, within the quadratic approximation, we must have

n(0) > 0 and h; > %’2- We now re-write Eq.(23) in the equivalent form,

- 2B, _ E.
#U_ |\ F e _0[1_;, (27)
dy? o(ri) H(Y,))
where, the normalization of ¥§5(Y) clearly implies the equations,
2B E.
1][)" ;) = (__i A _‘) 28
1
a = -(TB;n_ © ]_1) (29)
RE.



Making use of Eq.(22), we find that the parameter a is related to the slope of the g-profile
at resonance through,
2 —rig'(r;
- 7’" q'(ri) (30)
rig'(r;)
It is also apparent that the co-efficients Hy, Hy, .. in the expansion Eq.(18) can be simply

«

obtained in terms of Ay, h,,.. and o from Eq.(27). For example, H; = ah;. The restrictions
required to be put on hy, k; so that the g-profile is monotonic in the neighbourhood of ¥ = 0
may also be deduced from Eq.(27). It turns out that %ﬂi and hence & (via Eq.(21)) do
not change sign if h; > ah?, a more restrictive condition than that derived earlier for the
positivity of the toroidal equilibrium current density. This condition can also be derived
directly by considering ¢'(r) in the vicinity of ¢(r;) = 1 and is equivalent to (¢"(r;))? <
2q'(ri)q"(r:). It might be useful at this point to give an example of the type of g-profile which
can, on the basis of the theory presented in the next section, lead to saturated m=1 islands.
Letting y = 7;» we wish to show that ¢(y) exists with the following properties: 0 < ¢(0) < 1,
¢(1) =1, ¢'(y) 2 0, ;’—:,((% < 1, ¢(y) is an entire, analytic, real function of y. Consider ¢, an
arbitrary, small positive number. The function F(y,¢) = £ [1 — exp (—M)] is clearly
a suitable candidate for ¢'(y). It is easily seen by integrating the equation, ¢ (y) = F(y,e€)
with the condition, ¢(1) = 1, that we have indeed obtained a function of the type required.
Clearly, the example shows that that a class of functions of this type do exist. In Fig.2a, a
function of this kind is plotted, showing that the slope of q is small at the resonance and
that it has a minimum (corresponding to a minimum of 7) in the vicinity of the resonance

within the ¢ = 1 radius.

5 Inner Solution: matching theory and bifurcation relation

We have established the non-dimensional form for the unperturbed flux function Ua(Y, A)
and related it to physical parameters such as ¢'(r;), B,/R etc. This function satisfies Eq.(27)
where a and H(Y,)) are defined by Egs.(25- 29). It is convenient for what follows to write
Eq.(27) in the form,

d?v;

The inner limit of the outer solution t,,,., takes the form,
Wouter (Y, u5 A) = TG(Y, M) + T3(Y; A) cos u (32)

Corresponding to W(Y, A) we may write (for Y < 0)

* 72 3
= |y mp Xl

= = > =+ (33)

vI(Y; A)



For Y > 0 ie r > r;, ¥; = 0. The outer solution for ¥ < 0 may be written in terms of the

inner variables Y, u as

. Y? HAY? BN
\I’outer(}fa ’Lt) = l? + 6 + 24 +...
¥
—|:Y+H1A7+...]cosu+... (34)
Corresponding to equation (34) we will require the form for a—i,a}aiﬂf-(}’,u). Thus,
a\I’:uter - Hl’\ 2 /\2};3 -
T—-—-Y'l'—?:—y +H2 6 +...--—[1+H1AY+...]COSU (35)
for Y <0, and,
oy, [ ry® L ]
outer __ __ H . 36
T -Y+H1 5 + Hy 5 + | (36)
for Y > 0.

The problem of finding bifurcating solutions to the governing equations can be stated
thus: we are required to find a function ¥*(Y,u) which satisfies the inner limiting forms of
the equations, has the correct boundary conditions imposed at ¥ = 0 and which matches

with ¥~

" er 38 Y — —oo0 in the usual sense of asymptotic matching theory.

We first determine the proper forms for the boundary conditions at Y=0. Since ¢;(r) =0

for r > r;, we must have,

(0, u) =0 (37)
and,

v

577 (0,u) =0 (38)

The functions ¥*(Y,u), ®*(Y, u) must satisfy the non-linear partial differential equations

(inner limiting forms of Egs.(4-6))

v —
572 (Yu) = -1 —a[l = J(¥")] (39)
1— H(Y,\)J (¥ = 19%,% (40)

For a given resistivity profile function H(Y, ), the current density J*(¥~) must satisfy
certain requirements. Firstly, in the absence of any perturbation, Eq.(39) must reduce to
Eq.(31), so that ¥ = ¥j and J*(¥") = J5(¥,A). In the general case, J*(¥") must be
determined by imposing a solubility condition on Eq.(40). This entails an expression of the

form,

10



<1 >g-
T < HY (T, u) >e- (41)

where the average < F' >y. is defined by the equation,

J(0)

< F(Y (9", u)) >g.= _: (58@}:-) F(Y (U, u))du (42)

It is very important to note that J*(U*) cannot be determined as a function of ¥*
explicitly until ¥* itself has been determined as a function of Y and u and the inverse
formulae Y'(¥*, u) have been obtained. This is clearly the case, since the averages in Eq.(41)
can be evaluated only if Y/(¥*,u) is known. However, ¥* cannot be calculated (except in
the unperturbed case) as a function of Y and u until Eq.(39) has been solved. To proceed
further, we must apply the ordered iterative technique introduced by Thyagaraja®. This is
best understood by transforming Eq.(39) into an equivalent integro-differential equation.

Since ¥* must be periodic in u, we may, without loss of generality expand U*(Y,u) in a

Fourier series,
U*(Y,u) = Y Ga(Y)cosnu (43)
n=0

In view of Eq.(32), the function G;(Y) is of particular importance. From Eq.(43), it is

given by the inverse formula,

GI(Y) = ! /r U*(Y, u) cos udu (44)
T J=x
From Eqs.(35-38), the boundary conditions satisfied by G} are readily obtained:
dG;
— = 5
[ d}, ]Y:O 0 (4 )
and,
dG;
~ — Hi) .
[dYL_,_oo 1+ H MY +0(X?)] (46)

The integro-differential equation satisfied by Gj(Y) may be deduced from Eq.(39). We
have therefore, '

Gy a o
dy’21 == _FJ (U*(Y, u)) cos udu (47)

This equation is actually exact. However, as pointed out earlier, it cannot be solved for

G1(Y') since the right-hand side is not known a priori. The situation is identical with that
encountered in Thyagaraja®, and is handled similarly. Thus, we set Gi(Y)=0forY > 0.
In the domain —oo < Y < 0, we proceed as follows:

From Eq.(32), to the leading (formal) order in A, the island structure is given by the

function

11



o"(Y,u) = — [y?? + Y cos u] +0(}) (48)
We proceed to evaluate the integral on the right of Eq.(47) using the approximate flux
function o*(Y,u) defined by Eq.(48). First, we must evaluate the averages in Eq.(41) and
determine the current density J*(¥~). In Fig. 1, we plot the contours of the function *(Y,u)
in the Y,u plane. This exhibits the various regions and the approximate island structure
implied by Eq.(48). Thus the island separatrices are approximately ¥ = 0 and Y = —2 cos u.

In the exterior of the island, for ¥ < 0,¥* < 0, the approximate flux surfaces are readily

seen to be
Y = —cosu—+Vcos?u— 20~
("< 0,—-r<u<m) (49)
The expression for the current density J~ takes the form,
T By g
F0) = g
Iz 9= [H(Y (Y7, u), )] du
(¥ <0,Y <0) (50)

The expression for J(¥*) within the island is obtained similarly. It is evident that within

the island we must have 0 < ¥* < 1/2,Y < 0. The approximate flux lines are in this case

given by
V(U™ u) = —cosu £ Veos?u — 20, (1 > cos®u > 207) (51)
It is clear, that in this case,
2, =2
J () sin? v—sin? u (52)

g O (0,0, 0) £ H (Y (v, 0), M)

where v is an angle defined by sinv =1 — 20" and —v < u < v. The expressions derived

for the current density show that it may generally be uniquely decomposed in the form,
JT(PT) = JL(¥7) + JZ(¥7), (53)

where J7 (¥~) is the current density in the interior of the island(cf. Eq.(52)) and vanishes
for U* < 0. Similarly JZ(¥*) is defined by Eq.(50) in the exterior of the island, but vanishes
identically for 0 < ¥* < 1. We now return to Eq.(47) and show how the matching is
performed. Details of the calculations can be found in the appendix.

Following the spirit of the ordered iterative process discussed earlier, we use Eq.(47)
with the aproximate expressions for J*(¥*) as given by Eqs.(50 and 52). Thus we integrate
Eq.(47) with respect to Y between the limits ¥ =0 and ¥ = — | Y | with | ¥ | large. Using
the boundary condition at ¥ = 0 we then get

12
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dG;
dy

a [-IYI .
- ;]0 dy _Tr-] (¢™(y,u)) cosudu. (54)

y____lyl
From the decomposition of J*(¥*) (Eq.(53)), where we have taken ¥* to be given by,

Y?
U= — ?-_{-Ycosu], (55)

together with the substitution, y = —p, we get the result,

dG3 Wlee, (7. o
_TY-'-Y=_|Y| = ./0 ;dp-/_‘Jr [J (—-2—+pcosu)—1 cosu«?u

= LAY D+I(Y]) (56)

where the integrals I, and J_ are functions of | Y |. In obtaining this relation from Eq.(54),
we have made use of the fact that cosu integrated over [, 7] vanishes. Thus the integrand
of the double integral defining I, (| Y |) is J’_T_(—«”z—2 +pcosu)—1, and it vanishes whenever the
argument of the J} function is negative. A similar rule applies to I_(| ¥ |). The matching
theory and the resultant bifurcation equation depend on the asymptotic behaviour of these
integrals. It is shown in detail in the appendix that in the limit as ¥ — —oo two fundamental
theorems control the asymptotic behaviour. These will now be stated.

First, consider the behaviour of I, (| Y |). Since J_j_(-——ﬁ,; + p cos u) vanishes for sufficiently

large p, the integral defining I,
— [Yl (24 i * p2 7
I+(|}"|)=/0 ;'/-wcosudu [JJF(—?—{-pcosu)-—l] dp (57)
is actually independent of | Y |. In fact, it is easily shown that,
1
. 7 _ ) 2 =
Jm LY )= zajo [72(0) - 1] do (58)

a constant independent of | Y |, but of course a function (via H(Y,A)) of A, a, hy, ks, .. etc.
The integral I_(| Y |) is necessarily unbounded as | Y | tends to infinity and must be handled
carefully. We first note an important simplification which occurs in this case. Since U* must
match with ¥3,,., ~ 0*(Y,u) as | Y |— oo, it follows that (from Egs.(31) and (39)) J=(¥)

must take the following limiting form:
J2(") & T2 (U%) = T3 (—(-20%), \). (59)

Physically, JZ(¥~) is defined everywhere in the island exterior (ie. for ¥* < 0: we set
JZ = 0 for U* > 0) as the equilibrium current density Jz(Y, ) with ¥* = —%. It is
shown in the appendix that as | ¥ |— oo, J* (¥*) approaches J*(¥*) in the sense that the
following limit holds.
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2 2
cos udu lJ:m(—% + pcosu) — J:(—% + pcosu)| = 0. (60)

4

_ Yig fr
lim —dp
T

[¥Y[—oco Jo -

The result shows that the asymptotic behaviour of I_(| Y |) is entirely derivable from the
function J*__(¥*) which is of course very much simpler to deal with analytically than J=.
It is proved in the appendix that the asymptotic behaviour of I.(| Y |) is given by the limit

formula,

2

Y| T
lim I_(|Y|) ~ %/ dp [J:w(—% + pcosu) — 1] cos udu
1]

[¥|—oo -
A
= ,\H1Y+O(,\2)+O(ﬁ) (61)
upon making use of ¥ = — | Y | and ak; = H;. It is very important to note that in Eq.(61)

there are no O(1) or O(A) terms independent of | Y |. These results imply that within the
present scheme of approximations, we must have the limit formula,
dGj}
dY

= 2a jj [J:;(a) - 1] do + HiAY 4+ O()\?) + O(|—;\,—|). (62)

Comparison of Eq.(62) with Eq.(46) yields the bifurcation relation. Firstly, we note the

asY ——oco

interesting fact that J=_, leads to an automatic match (ie. the match occurs irrespective
of the value of A and H;) of the O(| Y |) term and serves to verify the consistency of the
procedure. However, it does not fix the value of A and makes no contribution to the term
independent of Y in the present order of approximation. We see from Eq.(62) that it is J}
which can conceivably lead to a possible bifurcation equation for A in terms of a, h; and hs.

Quite generally, the bifurcation equation implied by matching takes the form
2af 73052, by ha) = 1) do = 1, (63)
0

where we have emphasized the fact J} is functionally dependent on A, hy etc.(via H(Y, ))).
This equation shows immediately that for a saturated m = 1 mode to occur, the resistivity
profile function H(Y, A) must satisfy some necessary conditions. In particular, in the inner
region, it must have a minimum for some ¥ < 0 so that the current density function J3
is sufficiently greater than unity for the integral on the left of Eq.(63) to be positive. In
particular, if J}(¢) =1 (ie resistivity is uniform within the island) no saturation is possible.

We next move on to the consequences of Eq.(63) for the present model in which JJ is
evaluated using Eq.(52). The calculations are straightforward and are given in the appendix.

We merely quote the final result which leads to the following version of Eq.(63).
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1 |#s]

01—[2—’;\%]

=4 (64)

where K (z) is the elliptic integral defined by,

3 dw
= 0 g (65)
We note that Eq.(64) can have a solution only if the necessary condition hy > 0 is satisfied.
This implies that the the function () has a minimum at some radius within ;. Furthermore,
by assumption, this minimum corresponds to a positive minimum value for ¢'(r;). It is easily
seen that Eq.(64) always has a root A > 0, which can be calculated in terms of o (which is
by assumption positive) and h;. For the theory to be well-ordered, it is sufficient to assume
that @ > 1, ie. that r;¢'(r;) < 1. Provided this is the case, we obtain from Eq.(64) the

result,

g = B

Cth]

-

o
H,

_ a*dlogq(ry)

- 2 dlogn(r;) (65)

where we have made use of Egs.(26,30) and the relation, H; = ahy. It is assumed for

2

i The numerical constant a* is
1] 1]

consistency that o may be approximated by, a ~

defined by the expression,

It 1s readily verified that 1 < a* < 2. Thus for h; > 0, the island width is small compared to
r;if hya > a*. Equivalently, a saturated solution can be found for this case if the conditions,
hs > ah?, h; > 0 and :—:fg%%;—:% < % hold simultaneously.

We now discuss some of the implications of the bifurcation theory derived in this sec-
tion. Note that Eq.(66) is exactly analogous to the bifurcation relation, equation (66) in
Thyagaraja’s paper® with u!/2log £=/2 playing the role of ), and -—fL playing the role of
Q‘Ft’;‘%%l It is of considerable interest to note some important dlﬁerences between the two
problems at this point. When m # 1, the bifurcation to a saturated state involves the small-
ness of A’. Since this quantity depends upon the global properties of the equilibrium, it is
not in general possible to write down a priori sufficient conditions for saturation involving
the behaviour of the g-profile at resonance. This is in sharp contrast to the unsymmetrical

m = 1 mode which can be non-linearly saturated according to Eq.(66) provided the shear at
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resonance is small enough and the current density in the island region is sufficiently large.
Ultimately, it is the special nature of the m = 1 outer solution and the particularly simple
form of the bifurcation equation Eq.(63) which are responsible for this. The result suggests
that if this theory is indeed applicable to tokamaks, the m = 1 mode may be more readily
stabilizable by local current drive or heating near the ¢ = 1 surface than higher m tearing
modes.

Clearly, our model can be further generalized to include the possibility that J; (¥*) (or
rather the resistivity within the island) is actually determined by solving an appropriate
energy equation within the island. It is of interest to discuss the implications of the present
theory in this more general setting. We remark that the outer solution derived earlier is valid
quite generally. The equilibrium relation, Eq.(39), is also generally valid. Using the complete
outer solution to define the “first iterate” of the island structure, both the decomposition of
the current density (Eq.(53)) and the relation Eq.(57) continue to be correct even though
Eqs.(52,58) are modified. Assuming Eq.(48) to be a good approximation, we arrive at Eq.(63)
formally, where J} is now to be regarded as some function of & and A, not necessarily related
to the exterior equilibrium resistivity profile H(Y,)). Since ¢ = 1 is an O-point, for a
saturated island to exist, it is clearly necessary for J} to have a maximum there, greater
than unity. Very generally, it is reasonable to assume that Ji(o) = 1+ AX(},0), where
L is a positive function, increasing with ¢ and having its maximum at the O-point. It is
important to stress that within the island, the current density need not depend analytically
on either of its arguments in general, although it must be continuous with the exterior values
on the separatrix. There now arise essentially two cases: firstly, the integral in Eq.(63) is
a strictly increasing function of A. In this event, a saturated island always exists uniquely,
provided a is large enough. In the second case, the integral, considered as a function of A
has a unique maximum value, I,,,, in the X interval [0,1]. In this case, if 2al,q; > 1, there
exist two solutions; otherwise, there are no solutions. Of course, if there are more relative
maxima, more than two solutions can exist. This situation is very similar to that found
in Thyagaraja’s paper® in the m > 1 sheet pinch problem. On general grounds, it would
appear that in the second case of the present problem, the possibility exists of a failure of
equilibrium leading to a fast evolution on an Alfvenic time-scale.

Returning to the calculation reported here in the case of the simple model of resistivity,
we note that they are carried out to first order in the relevant small parameter A. In
leading order a solution for the topology of the magnetic island is assumed. This is taken
to be that imposed by the outer solution in the limit of small islands- ie smaller than the

size corresponding to the bifurcation. Though this is an entirely reasonable starting point,
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ultimately its success can only be assessed by comparison with a complete, exact solution
of Eqs.(39,40). Furthermore, since the non-linear inner equations cannot be solved exactly,
the iterative scheme is also restricted to the first formal order in A. To be more precise,
it is important to note the following points: the exact flux surfaces in the inner region are
determined by the equations Eqs.(39,40). To derive a bifurcation relation connecting a, A
and the co-efficients of the resistivity profile H (Y, ) from Eq.(47) (also exact), it is necessary
to have an approximation to the flux function valid in the inner region. Plainly, the function
o defined by Eq.(48) is a solution of Eq.(39) in the limit A — 0 keeping Y fixed as well
as all other parameters (ie the formal ‘inner’ limit) which matches the leading terms of the
outer expansion (Eq.(34) and also satisfies one of the boundary conditions at ¥ = 0. It
is therefore a candidate for an approximant to the exact solution of the integral equation
Eq.(47). If an improved approximation taking consistent account of O(A?) terms in the
resistivity profile is required, asymptotic consistency demands that G3(Y,A) and G;(Y, ))
obtained by solving Eq.(39) using the previous iterate for J*(¥") be used for constructing
the next approximant to the flux function. This must be substituted in Eq.(47) to obtain
an improved bifurcation relation; the process can obviously be continued indefinitely. For
the reasons discussed in the appendix, such higher approximations may not be meaningful
within the limits of resistive MHD due to the formation of “stochastic” zones. The equations
may in fact need to be regularized in a physically correct way before reliable results can be
obtained in higher orders of perturbation theory. This means in practice the inclusion of
fine-scale physics and possibly anomalous transport co-efficients appropriate to such scales.
It should be noted that the approximate solution method was originally developed to handle
the higher m non-linear tearing layers®, and found to be successful in the sense that the
results agreed with numerical and real experiments. It remains to be established that in the
case of m = 1 mode considered in the present work, it is equally effective in a quantitative
sense.

We have presented the theory for the case of monotonic g-profiles with a single ¢ = 1
resonant point. It is of interest to consider other cases to which the analysis applies almost
word-for-word. Thus, consider a g-profile (see Fig.2b) which is always concave upwards (ie.
¢"(r) > 0) and which cuts the ¢ = 1 line in two points, 0 < r, < r, < a. Clearly, ¢'(ry) > 0
and the slope of the g-profile actually vanishes at some point between r; and r,. Provided
the parameter %ﬁ—g—:} is sufficiently small, the present theory guarantees the existence of
a saturated m = 1 mode with an unsymmetric island structure at r = ro. It is clear that
such a structure cannot exist at » = r,. However, due to the global nature of the outer

solution, the solution constructed at r = r, is actually valid through the resonance at r,
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and forms a “chain” of islands there. This is true since the solution given by Eq.(9) is
analytic at 7 = r and is valid on either side of this “interior” resonance. In this case of
“double resonance”, the slope of the g-profile does not merely have a minimum as in the
monotonic case but actually vanishes at some radius. It is important to note that it is the
inner matching at any resonant point which determines the amplitude of the outer solution.
At the point r = ry, the matching does not permit a discontinuity in the slope of the outer
solution. This precludes a stationary “double top hat” solution with different amplitudes
on either side of r; from being realized, although such a solution is permissible within ideal
MHD constraints. Obviously, the discussion can be extended to more complicated g-profiles
if experiment demonstrates that they occur. This completes the determination of the m =1

bifurcated neighbouring equilibrium state for our assumptions.

6 Discussion

The purpose of this section is to discuss the significance and limitations and possible rel-
evance to experiment of the analytical model presented in the previous sections. We have
constructed a steady-state neighbouring equilibrium solution with an m = 1 helical symme-
try for the standard resistive MHD equations. As in earlier work the simplifying assumption
is generally made that the resistivity profile is a fixed function of r. This avoids the com-
plications of the energy equation in the model. Unlike earlier work on non-linear tearing
modes, the results of the present analysis are almost entirely determined by the properties of
the m = 1 outer solutions of the linearised pressure balance equation. As shown in section 3,
the physically relevant outer solutions of this equation can be obtained exactly to within an
amplitude factor ) for abitrary 1 profiles with a finite ¢ = 1 radius. Once such a solution
has been found, the analytic techniques developed earlier can be applied directly in order to
determine the quantitative functional relationship prevailing between the amplitude and the
derivatives of the g-profile. The topology of the solution is, however, totally determined by
the exact outer solution to the order of the perturbation considered. This solution reveals

two essential features:

1. The perturbation due to the m = 1 non-linear tearing mode is confined entirely within

the g=1 surface (0 <7 < ry).

2. There is an island interior to this, but different in character from the “symmetrical”
islands for higher values of m in non-linear tearing mode theory. The saturation of the
island depends upon the properties of the mean g¢-profile at the resonant point, rather

than globally, as is the case for higher - m tearing modes.
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The results summarised above can be viewed in at least three distinct ways. Firstly,
under certain assumptions, they constitute a “proof of principle” model and demonstrate
the conditions necessary for an m = 1 neighbouring equilibrium solution of the resistive
MHD equations. This in itself appears to be a novel solution quite different from earlier
numerical (eg Kleva et al”; Vlad and Bondeson'?) or analytical (eg Kadomtsev®, Avinash
et al'®) models of the g-profile and m = 1 non-linear neighbouring equilibria. The work of
Hazeltine et al.® will now be considered in the light of the present paper. These authors
consider the time-dependent versions of the same resistive MHD model of m = 1 tearing
modes in the helically symmetric case of tokamak ordering. They first consider the linear
mode structure and derive the linear theory version of a local form of the “no disturbance”
theorem (cf. their equations (25) and (26)). They also show that the linear growth rate
is proportional to (¢'(r;))in? (their Eq.(20)). As pointed out earlier, these authors have
derived the leading order outer solutions to the equations. However, in contrast to the
present work, they do not consider the limit ¢ — oo,7 finite directly. They work with
arbitrary q-profiles (ie without requiring small shear at resonance) and obtain growth of the
islands at a non-linear rate reduced from the linear growth rate, but no saturation. Our work
shows that under appropriate conditions to ensure the existence of non-linearly saturated
neighbouring equilibrium states, it is entirely possible to by-pass the time-dependent problem
by considering the steady bifurcation theory of the resistive MHD equations. The work of
Waelbroeck'® considers the m = 1 mode from a different standpoint. As with Hazeltine
et al. general g-profiles are considered including toroidal effects and the author obtains
growth of islands for the conditions discussed by him. Plainly, it is a formidable task to solve
correctly, either the time-dependent or even the steady-state bifurcation forms of the resistive
MHD equations using existing numerical techniques'®¢17, The difficulty is to ensure that
numerical simulation errors do not overwhelm or “wash out” the topological fine-structure
predicted by the exact equations, especially at large amplitudes and small length scales in the
“inner” region. Indeed, from this point of view, the non-linear critical layer theory using the
method of matched asymptotic expansions as described in the present work would seem to
be the only practical way of obtaining reliable leading order approximations to the problem
of determining the structure and saturation characteristics of the non-linear m = 1 tearing
mode.

Secondly, the model described could be used as an analytically solved test case for numer-
ical code work relating to the sawtooth phenomena. Comparison with our theory requires
care however, as the analytical calculations in the inner region are only carried out to a

certain iterative approximation. Thus time evolution codes making the same assumptions as
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those of the present paper should be expected to be able to reproduce, at least qualitatively,
the m = 1 neighbouring equilibrium for the types of g-profile considered in our model. As
far as we are aware, numerical work™21%1617 pyblished upto the present time does not seem
to have been carried out for conditions comparable to those considered here.

Thirdly, there arises the question concerning the relevance of our model to the whole
gamut of sawtooth phenomena observed in Tokamaks. It should be noted in this context
that the neighbouring equilibria found in this paper could be relevant both to sawtooth-iree
discharges (eg. “monsters” in JET'®) with go < 1, and for the ramp phase of sawteeth
when go is known to be less than unity (see for example, Levinton et al.?). It is obvious
that in order to make progress with a purely analytic calculation like the present ome, a
number of simplifying assumptions have to be made. In spite of the fact that some or all
of them might be questionable under experimental conditions, it is of interest to note that
our theory reflects several of the observed features of sawteeth. Several experiments have
been reported!® which appear to show that generic g-profiles of the type assumed by us in
this paper do exist, and more remarkably, do not undergo complete reconnection, ie their
changes with time are small and sometimes within limits of measurement error'® throughout
the sawtooth process. In particular, the measurements of Gill et al.'® appear to suggest that
the shear near the ¢ = 1 resonance is indeed rather small. Again, it follows in our theory, from
the perturbed pressure balance alone, that the main m = 1 disturbance to the equilibrium is
always confined to within the ¢ = 1 radius. This analytic fact is apparently very similar to
observations under sawtoothing conditions (Campbell et al') in several tokamaks provided
one accepts the effect of linear toroidal coupling due to finite a/R as a correction. It is also
consistent with the experimental observation (Gervais, F et. al*’) that while sawtoothing
may trigger threshold phenomena elsewhere in the discharge, the confinement processes are
not directly affected outside the ¢ = 1 surface. We also note that our island structure gives a
simple description of the “snake” seen in JET'®. It is of interest to remark that in our theory
of the saturation of the m = 1 tearing mode, we find quite generally from the inner equations
(ie without necessarily adopting the n(r) model) that an increased current density within the
island aids in saturation at lower island widths. This result is in qualitative agreement with
the experimental results summarized by Soldner?! on the lower hybrid stabilization of both
sawteeth and the m = 1 and also with theoretical results on radio-frequency stabilisation of
m=1 islands?®. Thus experiments suggest that only currents driven in the same sense as the
Ohmic current lead to stabilization when g(0) < 1 and a fixed ¢ = 1 resonant surface exists

in the plasma.
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Finally, it should be clear that although in principle the slow growth of the m = 1 is-
land can give the threshold condition for the period of the sawtooth, the later stages of this
growth, and the crash itself, can only be obtained numerically, and cannot be obtained from
the present analysis. The cause of the crash could possibly be the ideal MHD instability of
a finite amplitude island. We remark that Dubois and Samain??® were the first to suggest
that the sawtooth crash could be due to an ideal instability. This idea was developed fur-
ther by Bussac et al.?* and Lee et al.?>, These calculations were carried out for somewhat
different island structures and q-profiles than those envisaged here. Bearing in mind that we
have constructed a solution bifurcating from the original unperturbed but linearly unstable
equilibrium to(r), the results of bifurcation theory guarantee the ideal stability of the neigh-
bouring equilibrium for sufficiently small amplitudes. As we have seen, a sufficient condition
for the smallness of the amplitude is that s-;%g-g or equivalently the shear at the resonant
point should be small enough, together with the fact that the resistivity should have a min-
imum within the resonant radius. Provided these condition can be met, our theory shows
that stable equilibria can exist with g, significantly less than one. Pellet observations in
JET suggest''® that these theoretical requirements could indeed be met in realistic tokamak
conditions. It also remains to be established numerically, that the crash occurs on a fast
timescale and that the g-profile recovers. Alternatively, we speculate that the cause of the
crash could be due to the failure of equilibrium at finite (large) amplitudes as suggested by

Thyagaraja®.
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Appendix

Inner solution: matching theory

The purpose of this appendix is to give the mathematical derivations of several important
results referred to and used in the text of the paper. We first derive Eq.(58) which gives the

asymptotic behaviour of I, (| Y |). From Eq.(57) we have

I}’IllmooI+(| ¥{)= jmf?]_: [J_';(-%2+pcosu)-—ll cos udu (A.1)
This limit exists since J} vanishes identically when its argument is negative (ie when p — c0).
Thus, we have the equation,

lim 1,(YD=of [ lJ;(—£i+pcosu) _1] o (A.2)

[Y]— Ry 2 s
where, in the (p,u) plane, R, is the region (island) included between p = 0 and p =
2cosu (—m/2 < u < m/2). This double integral is evaluated as follows. Thus, setting,

2

92 r7/2 2cosu ) p
If:;jo COSudufo J+(—?+pcosu)—1 dp.

Putting p = t + cosu, then
2cosu . cosu . tz C052 U
—/0 [J+ F—l] dp = V/—(:osu [J+ {_—2-+ 2 }_1.| dt
42
. zf [ {ms ke }—1]&.
2

Putting, 20 = cos?u — t2,tdt = —do,t = + {cos® u — 20}1/2. Thus,

2cosu . 9 * —dO’
[0 = 2 [ 1o -1)

2

wfe [J3(0) = 1] do

= & 0 {cos?u — 20}1/2 (A-3)
It follows that
o = o) — 1] do
i — cos udu Teost o — Ba " (A.4)

Now we define (as before) sin?v = 1 — 20. The order of integration in Eq.(A.4) may be

inverted and we get

o 4 cos udu
r== /D [73(0) -1 do / P (A.5)

m v —sin® u}1/2

The integral over u is elementary and evaluates (for any v) to /2. Hence we obtain the

result
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=2 fo v [3(0) = 1] do. (A.6)

This completes the derivation of Eq.(58). We move on to prove the limit relation Eq.(60).
We have the definition,

2

20 (¥ x
(Y= ?a'/(‘) dp./o [J:(—% + pcosu) — 1| cos udu. (A.7)

Now consider

fﬂr du
=7 [cos? u—2@*]1/?

L= - (A.8)
S g L+ kY + ]
where, ¥ < 0,Y < 0and, Y = —cosu — [cos® u — 2@.]1/2. Setting,
1 = du .
27 Jor {cos?u — 2W*}1/2 = Lo(T7) (A.9)
we also have,
27 J_r {cos?u — 2U~}1/2 Al=4do— M )
Thus we obtain,
I hiA 5
JI(UT) =14+ —=+0(0?) (A11)
0
It is therefore useful to define the function J= _ (¥*) by the series
J2 o (U7) = !
T T I A28 B (20 4
ie
1
JI(UT) = (A1)

H(= (=207, )
for all ¥* < 0. Physically JZ (¥*) is the current density (to leading order) in the unper-

turbed equilibrium. More exactly, J* _ can be parametrically defined thus:

1
JILY) = LY, A) = -
where Y is to be calculated from (A.13)
Y? ¥? A2y
= - — A—
v 5 + H;y 5 + H, 2 +

These equations define for each negative value of ¥* a unique value (—ve) of ¥ and hence
of J o
We now establish that
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im 2 (M ap [ (=2 + P } cos udu = 0 A.14)
|Y|1£~noo;./(; p/o{ _(—2 peosu) — J= —?+pcosu) cos udu = (A.

The integral is extended over the region (exterior to the region over which I$° was evaluated).

2
—oo<‘1":—:—%+pcosu50,p>0.

Since the integral is easily shown to be absolutely convergent upon making use of the

definitions of J* and J*_, we may change the variables from p,u to ¥*,u and get

-j dp/ {J7(¥") = JZ . (¥")} cos udu

_ * * * L a(piu) *
= ;/ {JZ(¥™) = J= (¥ )}cosua(\ll_,u)d'u,t:i\lI A
cos udu

= _/O*W{J;(q:-) - J:m(qr*)}dq,-_z?; /ofr e (A.15)

By making the substitution u = 7/2+wv, it is readily seen that the integral over u is identically

zero. This proves Eq.(60).
We now establish Eq.(61). Consider I7)(| ¥ |) defined by,

/2
M _
Vi (|Y|)_7r./o cosudufz

‘e have (from Eq.(A.12)),

2

Jroo( =5 + peosu) = 1 = +hiM(p? — 2pcos u)/? + 0(X?).

2

[J:m(-—f;— + pcosu) — 1] dp. (A.16)

Y

cosu

Hence,

2 (/2 ¥
M= hl,\—/ cos udu/ (p* — 2p cos u)dp.
7 Jo 2

cos u

Consider the indefinite integral

/(p? — 2pcosu)?dp :
Put p — cosu = | cos u| coshv. Hence,

cos® u sinh 2v

](p — 2pcosu)/?dp = cos u./sinh2 vdv = 5 [ 5 — v
Thus,
2
f(p2 — 2pcosu)/?dp = o u[sinhvcosh v — v (A.17)

Now, ﬁ‘ﬂ = coshv; for 0 <u < 7/2, p > 2cosu,coshv > 1 and

v > 0= sinhv= +\/(p— cosu)?/ cos?u — 1.
Thus,
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cos u
v = log {m— + \/(p— cosu)?/cos?u — 1} ,
and

N = 2hy A /R/zcosudu cos?u | [p—cosu (,o——cosu)z_1 1/2
7 Jo 2 | cos u| cos? u

sl

It is plain that when p = 2cosu the expression from Eq.(A.17) vanishes. We therefore

obtain the result,

J- ZhIA/ﬂﬂcosudu cos’u | (|Y|=cosu) [ [|V]| - cosu)? i i
I S /) 2 | cos u| cos u

“o(Y],u)}] (A18)

We obtain similarly,

™ Y|
9 = L ) cosudu/ {R1A(p* = 2p cos u)/?dp}
T Jr/f2 0

% 2 o _ 2 1/2
2h1)\/ cos udu [cos u {(|}| cos u) ((|Yl cos u) _1)

| cos u| cos? u

- Y |,w)}] (A.19)

This is because the indefinite integral vanishes at p = 0 when 7/2 < u < 7.

We may now write,

T 2 _ A 2 1/2
W@ = 2h1:\/‘ cos udu lcos u {(IYI cos u) ((l}l cos u) _—1)
0

T 2 | cos u| cos® u

~o(|¥u) ] (4.20)

The limit of the right hand side as |Y'| — oo is easily seen to be —hyA|[Y[ + O(p’ ). Thus,

there are no 0(1)A terms. Clearly, Eq.(61) follows from these results ( and the relations,

= —IY' C\fhl = H])
Finally, we turn to the derivation of Eq.(64). Consider =2 ]/2{.] (o) = 1}do.
Upon making the substitutions, 2¢ = cos? v, de = — sin v cos vdv, we obviously get (mak-

ing use of Eqs.(51) and(52)),
0
{y = -—2// {J5(v) — 1} sin v cos vdv
w/2

2
Ji(v) — 1} sinv cos vdv

Il
Sl
—_—

where
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. v du v2du[l — Ay cosu + O(A?
J+(v)52/0 : _ // = — )]
\/smE v — smi U 0 \/sm v —sin‘u
Hence, we must have,
hidm
[2K(sin v)]
hydr ’

1 - |2K(sin v)]

J-

T(v)—1= (A.21)

In deriving Eq.(A.21) the following elementary results have been used: [y cosudu/(sin®v —

sin?u)!/? = n/2 (for all v > 0). We may simplify [} du/(sin?v — sin?u)'/? as follows:

2 12 cosudu = sin v cos wdw,

dw Thus,

du —
? (sin® v—sin® u)1/2 T (1-sin® vsin® w)!/2

Setting, sinu = sinvsinw, we get, cosu = (1 — sinvsin® w)

(sin? v — sin? u)/? = sin v cos w. It follows that

v du /2
vfcn (sin? v — sin® u)1/2 = /o (1- sin:'::u;in2 w)l/? = Ki{sin"s)

Equation (64) is an immediate consequence.

The derivation of the results required to determine the conditions under which a helically
symmetric finite (but small) amplitude m = 1 perturbation can bifurcate from the symmetric
equilibrium state described by y(r) is now completed to leading order inA in the sense
explained in the text. The co-efficient h;, must be O(1) and positive. As noted earlier,

hy > ah? is required for the local monotonic behaviour of the g-profile. If the shear parameter

% is sufficiently small, the present approximate theory of the inner equations (39,40)
leads to a layer “width” (really island width) of O(r;%ﬁ—(g(:—‘;%). The saturation occurs if the

resistivity has a minimum within 0 < r < r;. At this point, ¢'(r) has a positive minimum in
the “generic” case of a monotonic, increasing g-profile. Equivalently, the longitudinal current
density has a maximum. Note that current “sheets” (ie delta functions in the current density)
are neither required in this model, nor indeed allowed by the resistive MHD equations. By
construction, the current density is everywhere continuous.

A note of caution to the mathematically inclined reader is in order. In this paper we
have constructed a finite amplitude asymptotic solution to the basic equations, Eqs.(4),(5)
and (6). This solution is carried out to a certain formal order in the perturbation expansion
and also involves an iterative process discussed fully in the text, provided the unperturbed
equilibrium %o(r) has certain specific properties described above. Whilst the outer solution
is exact to the order concerned, the non-linear inner solution is only carried out to the first
iterate. No claim is made as to the convergence of the solutions. Indeed, as many other well-
known examples indicate, these asymptotic/iterative expansions may be divergent. It should
also be noted that higher approximations (be it to the outer expansion or in the iteration
scheme) to the island structure will inevitably generate “stochastic zones” as pointed out

by Thyagaraja®. In such an event, the validity of the resistive MHD equations on the
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scales of resolution required to describe such zones is certainly questionable, and hence the

determination of higher order corrections to the present theory should not be carried out

without a proper re-examination of the physics.
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U*= Sy Y>0

-T -T2 0 u=Tl/7 T

Fig.1 The leading order island structure determined by the inner limit of
. r.

the outer solution to Eq.(30): Y= %, u=0§-z/R, where r; is defined by

dia(r: i

%")= 0,0<r;<a; A\ is the non-dimentional perturbation parameter;

u is the periodic helical angle (- r=<u=<m).
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Fig.2a Schematic sketch of a monotonic g-profile with small shear at the

g =1 radius and a minimum slope near the resonance. The corresponding

toroidal current density (not shown) must be non-monotonic and have a
relative maximum at the minimum slope point.

qA S
l«e—"No disturbance’'—

I
I

Symmetric Island Unsymmetric m=1 Island.

“chain”

Fig.2b A non-monotonic g-profile with small shearatr = r, and minimum
between r, and r,. The unsymmetric islands occur at r,. The solution is ana-
lytic at r, but leads to an ‘island’ chain of size fixed by the conditions at r,.
Note that the nature of the g-profile elsewhere does not enter the discussion.
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