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ABSTRACT

A convective eddy imposed on an initially uniform magnetic
field in a highly conducting fluid distorts the lines of force
and amplifies the field. Flux is concentrated outside the eddy;
within it, the field grows and its scale of variation decreases
until resistive effects hedome important. Closed lines of force
are then formed by reconnexion. The central field decays and a
steady state is reached. Within a period small compared with
the characteristic time for resistive decay, magnetic flux is
almost entirely expelled from regions of rapid motion and con-
centrated at the edges of convection cells. This process is
demonstrated by numerical experiments. The results are applied
to the sun, where the concentrated fields are strong enough to

inhibit convection locally.
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1., INTRODUCTION

Magnetic fields are associated with convection in the
chromosphere, the photosphere and the hydrogen convection
zone of the sun; they are involved in the turbulent
motions of interstellar gas and, on a less grand scale,
similar effects are produced by instabilities in laboratory
plasmas. In all these circumstances, the medium is highly
conducting (the magnetic Reynolds number may vary from 10
in an experiment to 101? in the galaxy) and so the motions
distort and amplify the field. Keconnexion of the lines of
force then changes its configuration. In order to explain
this process it is necessary to attain some quantitative
understanding of the interaction (Weiss, 1964b),

It is therefore worth considéring a more straight-
forward problem in detail. The simplest relevant model 1is
an isolated eddy (corresponding to a convecticn cell)
imposed on an initially uniform magnetic field in a
magnetohydrodynamic fluid of small but finite resistivity,
The magnetic field is dragged round by the motion and the
field energy consequently rises. In time, the lines of
force relink - with the formation of X and O-type neutral
points - and a new configuration is established: mzagnetic
flux is almost entirely excluded from regions whefe rapid
motions prevail and is concentrated at the edges of the
cell (Weiss 1964a).

The actual time-dependent behaviour is followed in
detail in this paper, which demonstrates the formation of

closed lines of force by reconnexion. The process is



cdmpleﬁed in a time much less than the characteristic
resistive decay‘time for the system. Amélified magnetic
fields arelcreated, whose magnitude can be estimated in
terms of the magnetic Reynolds number.

This model assumes-an inexorable motion in an incom-
pressible fluid., Turbulent convection is less regular and
more complicated. Moreover, the enhanced hagnetic fields
are stfong enough to affect the motion which produces them,
Nevertheless, it is possible.to estimate the effects of
convection on magnetic fields in various circumstances.

In particular, it s eems likely that in the deep convective
~zone of the sun magnetic flux is concentrated iﬁto ropes
(Weiss 1964a, b). Simon and Leighton (1964) have observed
a similar concentration at the edges . of chromospheric
supergranules.

The problem of calculating the.induced field in a
conducting sphere rotating rapidly within an insulator is
fairly venerable (Thomson 1893). The.related case of a
- sphere :or cyljnder enclosed by a'copductor has bee=x
discussed by Bullard (1949) and others (Herzenberg and
Lowes 1957, Moffatt 1965). Sweet (1950) and Herzenberg
and Lowes (1957) considered the amplification of a magnetic
field By an isolated eddy. Lines of force that zun across
the motioh.are rapidly sheared and their dissipation is
enhanced; on the other hana, field components parallel to
the streamlines are unaficcted by the motion (Sweet 1949,
Cowling and Hare 1957). E.N. Parker (1963b) has found

analytical solutions for steady magnetic fields in the



présence of ce;tain fluid flows, showing that the lines of
force are concentrated into restricted regions where the
magnetic field and velocity vectors are nearly parallel,
More recently, R.L. Parker (1965) has obtained, analytically,
the time-dependent solution for a rotating sphere or

cylinder.

2. THE MODEL PROBLEM

All results in this paper are based on numerical com-
putations carried out on the I.B.M. 7030 (Stretch) computer
at ALW.R.E., Aldermaston. These calculations cover several
related problems: an isolated eddy in an initially uniform
field, a band of eddies (simulating a convective layer) in
both horizontal and vertical fields and a double band of
eddies (to indicate the effects of a smzll scale-height).
The treatment is purely kinematical; that is to say, the
velocity B;doas not vary with time, dynamics are ignored
and there is no reaction of the magnetic field‘% back upon
the motion. Thus the results are only wvalid if the
magnetic energy remains insignificant compared with the

kinetic energy of the motion, i.e, if

B—-«%pu2 . (1)
BT

For simplicity, the calculation is restricted to two-

dimensional incompressible Zilow. The streamlines are closed

and

divau=0 ., (2)



For a medium with a constant con&ucfivity’o, Maxwell's
equations reducé to

3B, _ -2 '
5¢ = curl (:14A2)+T]V B (3)
and
div B =20
4

where the resistivity

n = (4rpc)”!

Let both B and u be confined to the xy-plane. Then B can
A A “y
be described by a stream function (the z-component of the

vector potential) A such that

=5, -5 . (4)
Equation (3) then simplifies to
%% = - u.VA + TV°A (5)
or, from fZ), to
g% = - div (Q& + MVA)

(6)

This is the conservation equation for a scalar, such as

" mass, with a small diffusion term included.

In a system with a characteristic dimension L and a
characteristic speed U, the ratio of the first (convective)



to the second (diffusive) term on the right'hand side.of

(3) or (5) is given by the magnetic Reynolds number,

UL (7)

This parameter determines the behaviour of the field: when
R is large (small resistivity) diffusion is dominated by
convection.

The numerical methods required to solve (6) are dis-
cussed elsewhere (Roberts and Weiss 1965). In order to
achieve sufficient accuracy with a reasonable number of
mesh points it is necessary to adopt a finite difference
scheme with fourth order accuracy. This involves using a
mesh on which alternate points are staggered in time;
calculating a new value of A at one grid point then’
requires values at eight neighbouring points. It is con-
venient to impose rigorous boundary conditiocns at the
edges of a rectangular region (rather than at infinity as
one would in attémpting an analytical solution). The upper
and lower boundaries are therefore assumed to be perfectly
conducting, so that lines of force are tied to them, while
the system is assumed to be periodic¢ in the horizontal direc-
tion., Special treatment is required for points on the
boundary, or at a discontinuity in velocity (which may be
regarded as an internal boundary).

The machine time fequired to solve a problem varies
inversely as the cube of the mesh interval. The calculations

were done using a grid of 50 x 50 points (and some were



confirmed by runs on a 100 x 100 mesh) on.which.values of
R_in the range 20-1000 could be accurately treated. Each
such run generates about 106 numbers and some form of
graphic;l output iSQnecessafy for presenting the results,
Foftunately, it is easy'to plot the lines of force, which
are just contours of constant A. These are produced on
microfilm after each timestep of the calculation, with the
aid of a Stromberg-Carlsen 4020 recorder; the 35mm film can
then be converted to 16mm and run as a movie. This is
indeed the proper way to present such results, for the
reconnexion of lines of force, the production and the decay
of closed loops can all be followed visually as fhey occur,
In the absence of a film, the behaviour of the mag-
netic field is better described by drawing lines of force
than it is by any commentary. The following section pre-

sents a series of such diagrams, accompanied by brief
descriptions.

3. NUMERICAL RESULTS

The induction equation (6) is integrated over the

< 3L, |y| € 3L, within which u has a

square region |x| 3

maximum magnitude U. It is convenient to choose units of
length and time so as to make both L and U equal to unity.

Then the magnetic Reynolds number is just the reciprocal

of the resistivity:

Interpretation of Rm fhus depends on the velocity pattern,



"since L is defined by the size of the region rather than
the scale of the motion. There are two characteristic

times associated with this region, the turnover time

L
"o =T (8)
and the characteristic time for resistive decay

2
T = L o (9)

N 4W2n

The choice of units means that time is measured in terms
of To. Just as %ais defined by A in (4), so the wvelocity
u is defined in terms of a stream function ¥ which has to

be chosen appropriately for each problem.

(a) Isolated eddy
Characteristic phenomena are clearly displayed with a
single isolated eddy, bounded by a discontinuity in velo-

city, whose stream function is given by

)

=

¥ = < %E cos 27X cos 2%y (]x| < %: [Y[ <

=0 : (les IY' >%)

Velocity streamlines and lines of force of the initial
field are shown in figure 1(a) and (b) respectively,

If the magnetic Reynolds number is low, the field is
distorted by the motion but a steady state is soon reached
in which matter streams past the lines of force and con-

vection is balanced by diffusion. When Rm = 20, the field



settles down by the time t = 1.0; with R = 50, the final
state is not reached till t = 1.8, Theée steady configura-
tions are shown in figure 1(c) and (d); the central field
is slightly diminished but-no reconnexion takés élace.
With Rm'= 1000, tﬁe Behaviour of the magnetic field
is quite different, as appears in figure 2. The lines of
force are abruptly sheared and a strong field is built up
at the edge of the eddy. Reconnexion takes prlace, the
closed field lines decay'aﬁd disappear; by t = 2.0 a
steady state has been achieved in'which almost all the
flux has been ejected from the eddy and éoncentrated out~
side it., (The characteristic time for resistive decay,
Tn ='6,25,)

(b) Single eddy

An eddy in which the velocity drops continuously to

zero at the boundaries forms a better model of a convection

cell. DBecause of the boundary conditions at y = t 3 it is

necessary to choose a pattern of motion that falls off

rapidly at top and bottom. The streamlines corresponding

to

¥ = - (1 - 4y2)4 cas 7x (10)

I
T
are shown in figure 3(a),

Successive stages in the distortion of the field

appear in figures 3 and 4 for Rm = 1000, A strong fielc

is built up near x = * %+ and the lines of force relink

where there is the greatest shear in Y. This process 1is
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completed by t = 4.0; the resistive decay time Tn ~ 25,
The final configuration of figure 4(d) may be compared
with (e) and (f), obtained with Rm = 200 and Rm = 40

respectively.

{c) Band of eddies

A convection layer concentrates a vertical field into

the regions between the cells. The stream function

¥oo - (1 - ay®)? sin 4nx (11)

1
47

gives a band of eddies rotating in alternate senses, whose
streamlines are depicted in figure 5(a). Successive stages
in the distortion and reconnexion of the field are s hown

in figure 5(b) - (f).

(d) Double band of eddies

The depth of the solar convection zone is greater
than the scale of convective eddies. That the flux will
be concentrated into regions of rising and falling material

is indicated in figure 6, which shows the final configura-

tion achieved with R = 1000 and a stream function
¥ = % sin 2%x sin 47Wy (Iyl < %)
=0 (yl > %) .

(e) Band of eddies in a horizontal field

An initially horizontal field is expelled from a con-
vecting layer and concentrated at its limits. This is

illustrated in figure 7 for the pattern of eddies defined
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by (11). When R = 1000 the steady state is reached by *

4, PHYSICAL‘INTERPRETATION

The behaviour of the field is clear from figures 1-7:
the flux is initiaily céncentrated at the edges of the
cell and amplified within the eady; subsequently the
lines of force reconnect, the central field decays and the
configuration relaxes to a steady state. It is conveﬁient
to follow this process‘bf plétting the average magnetic
energy density, <B2>, as a function of time. Curveé for
the single éddy defined by (10) are shown‘in figure 8.
_ The numerical results are confined to two-dimenéional
probléms; three-dimensional motions will be mentioned
later.

Initially thére is a uniform field with magnetic
- energy Boz. Any.distorﬁion must increase <32>. For small_
values of the magnetic Reynolds numbe:; {BZ> rises onlf
slightly and rapidly sett}es to a steady value (see curves
a and b of figure 8)., For large R , the energy increases
fo a maximum value Blz; then reconnexion occurs and (B2>
falls to a steady value of B22:‘ the flux is expelled from
the eddy and concentrated into restricted regions with a

sfrong field B3. Then

2 2 2 - 2
B,” < B, < B,” < By . f12)

Simple physical arguments provide estimates of these

fields in terms of the magnetic Reynolds number.
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The convective and resistive terms in the induction
equation (3) may be considered separately. The eddy builds
up the component B” °f,§ parallel té the motion by the
interaction of u and the perpendicular component BL'

Therefore the convective term ié of order

UB
o

L

and does not increase with time. Thus B“ o« t. Simultaneously,
the scale of variation for B” decreases. For a simple eddy,

this scale changes after a time t from L to

B 2 T
o) L o
L vy s L ow = = Ti o

nB , m_ ( B_ )3 B (13)
52 LZ BO

Amplification of the field continues until resistive
effects are comparable with convection. Reconnexion then

becomes important. This occurs when

| curl (u ~

2

u
AR

) I~ I nv’g . (14)

Then

or, from (7) and (13),

1
B~FR*B ,
_ m "o
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Thus the maximum value of <B2>,
‘ 2
B2~ R 3B ° . (15)

The central field theﬁ diminishes through diffusion
‘until (B2> settles to a steady-vglue. (The curves of
- figure 8 indicate that <B2> falls and then rises slightly
as the field adjusts itself to the new configuration;
thié is a physical and not a.numériéal effect.) Two
further points need emphasis. Firét, it is clear from
symmetry that one line of force must a lways pass through
the centre, so not all the flux is eliminated from the
- eddy. Secondly, the CEnfral field may continue to
fluctuate long after <B2>‘has‘reached its final wvalue. 1In
~figure 9 the line of force through the centre is plotted
for R = 200, first when t = 2.5 (aﬁd <B2> has just |
reached a steady value) and then for t = 6.0, During this
interval, the central field is still changing and thié
line continues to reconnecf itself; after t = 6.0 the
configuration remains fixed. Meanwhile, the field at the
centre has fallen from 30% to 5% of its initial value,
Yet the total effect of this residual field is negligible,

for (BZ> does not vary perceptibly after t = 2.5 (see

curve c of figure 8).

2 ; ;
QOf course, the time required for (B ) to achieve its

maximum and then to settle down, as well as the time taken

for the field to reach a steady state, depend on the

nature of the shear in .. The physical arguments adduced



‘above really apply to a simple model in which the angular
velocity fails off linearly with radius. This does not
hold near the origin for the velocity defined by (10),
hence the time taken to reach the final steady field. In
the model treated by R.L. Parkef, the velocity shear is
restricted to a discontinuity. -Then the outer field is
almost immediately disconnected, in a time of order Ty

- while di ffusion can only affect the central field after a
period Tn. Thus the time scales in Parker's problem
cannot be related to those discussed here.

The field is rapidly swept aside to the edges of the.
eddy, where flux is concentrated into regions of width d
centred on rising or falling currents., Within these
magne tic boundary layers, convection is balanced by
diffusion. The transverse velocity u_ increases linearly

with x:

u_ = - %E U (x « L) . (16)

Then, from (14)

B wnpm®, (17)

-n fact, a field with a y-component only in the presence

of the velocity (16) has a steady state with a Gaussian

profile:
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1 L :
- 2 - :
By = (ZRm) B exp .2 . | (18).

Almost all the magnetic energy is concentrated into the

region with x < d. Thus the final value of (BZ> can be

estimated as
i 2 .
B,“~R 2B (19)

The curves in figure 8 show runs made with five
different values of Rm in the rangé 40-1000. The corres-
ponding values of Blz, Bz2 and B32 are plotted logarithmi-
cally against Rm in figure 10. The points lie on the
lines labelled a, b, ¢ with slopes 0.59, 0.42, 1,00
respectively. These values agree well enough with the
predictions of (15), (19) and (17).

Finally, the results indicate that the time 1t taken

for <B2> to reach a steady value is of order
i ‘
T~R 3% ¢g . (20)

For large magnetic Reynolds numbers this is much less than

the resistive decay time

2
3

T ~R T ~ R *1% |,
m O m

Y
Thus flux is expelled from the eddy in a time short com-

pared with the time scale for resistive decay over a region

of dimension L.

Ir three dimensions, simple convection cells can be
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constructed from two-dimensional motions confined to vertical,
distorted sheets; reconnexion then proceeds as described
above. For less special motions, the amplified field varies
inversely as the sguare of the cﬁaracteristic distance £.

Consequently

B (21)

G

instead of being proportional to Rm . The superfidally
identical argument employed by E.N. Parker (1963a) applies
to turbulent rather than to persistent motions and yields

an r.m.s, field

oy

B~R*B .
m (o]

At the vertices of the cell the flux is rapidly con-

centrated into a column whose radius is proportional to
1

pofre

Rm-i. Thus the field now varies as Rm rather than Rm and
the energy density,
B2sm ¥p ¥, (22)

Near the corners of a square cell, the velocity can be

written

L L 2mU
Ay L m

and for Rm » 1 a steady vertical field has the Gaussian

distribution:

= - F m b
B =R B exp {=—=— ) =
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5. TURBULENT CONVECTION

In the last three sections the precise behaviour of a
simple model has been analysed. Convection is generally
far more complicated: to what extent can the conclﬁsions
reached above be applied to real problems? The insight
gained helps in predicting the nature of turbulent magnetic
fields whose detailed behaviour is difficult to describe.

The turbulent velocity is a function of time and the
pattern of motions loséslits_identity after a period of
order Ty An eddy does not persist for long enough to
eliminate the field from its centre. Op the other hand,
.. the presence of eddies on a smaller scale accelerates the
annihilation of sheared magne tic fieids: a band of eddies
. ‘ = 0 will eliminate a

with diameter L centred on the line y =

sheared field of the form

sz dy

over the range - iL < y < 3L by the timerthey have turned
over once. Moreover, resisfive instabilities may facili-
tate the development of such eddies.

Nevertheless, mégnetic fluxlwill still be swept into
restricted regions, with strongfieids. This process is
véry rapid, though not instantaneous. Consider, for the
moment, an eddy in a perfectly conducting fluid: after it
has turned over once, the concentrated field will have

risen from Bo to Bt’ say; The value of Bt depends on the

nature of the motion. However, for a typical three-

dimensional eddy
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B, ~ 10° - 10% . B | (23)

(see Appendix ), Thus Bt > B3 and the concentration of the

field to its final value is effectively immediate for all

Rm < 103.

The foregoing discussion has assumed that

2 2
B « 47:pu

everywhere, throughout the process. There is certainly no
reason to suppose that equipartition must be established
for every initial field BO$. However, the amplified fields
B, and BB frequently violate the condition (23). Clearly,
convection cannot compress magnetic flux after the magnetic
and kinetic energy densities becéme comparable. Thus

there is an upper limit B_ to the fields that cam be pro-

duced by eddies, i.e.
2 2 2
~ T
B” < B_ 47xpU" . (24)

Once this limit is reached, the electromagnetic forces will
react upon the motions and the velocity pattern may change
in consequence. For example, threé—dimensional convection
would tend to concentrate the field round the perimeter of

1
2 -
a cell (B3 P Rm ) rather than at the corners (B3 & Rm).

ata
=

Nor will‘g necessarily behave like the vorticity‘g: for
magnetic flux is liable to be concentrated into just those

regions where |w| is least.
o
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To sum up, it seems probable that turbuleﬁt convection
concentrates the field into restricted regions, or ropes of
flux, until it is checked either by finite resistivity or
by the finite lifetime of the eddy, or until fields are
strong enough to prevent any motion across thgmselves.
Whichever of the fields B3, Bt and Be defined by (22), (23}
and (24) is least thus imposes an upper limit on the field
that is produced. Magnetic fields will not be utterly
éliminated from intervening regions but it seems likely
that the large scale fieid is concentrated into robeé.

Once established, these strong fields may change position
as the convection pattern alters but they will remain at

. the boundaries of convéction cells.
6. APPLICATIONS

(a) Laboratory experiments

Unfor tunately, these predictions are not easy jo test
experimentally. -In some toroidal z-pinches, instabilities
arise with motion in rolls about the helical field lines.
These only occur at values of the radius for.which the
totational transform is a multiple of 2x. Ware (private
communication) has explained the measured variation of the
transverse field (Ware, Forsen and Schupp 1962) on the
hypothesis that it is expelled from the rolls and concen-
trated in between them,

An analogous situation arises with a rotating
magnetic field. Under certain conditions the ions remain
fixed while the electrons are tied to the field lines.

The behaviour of the field is similar to the model discussed
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in § 3(a) and the weakened field has been detected
experimentally (Blevin and Thonemann 1962, Thonemann and

Kolb 1964, Kolb, Thonemann and Hintz 1965).

(b) Sclar magnétic fields

The discussion of single eddies in § 4 was confirmed
by numerical experiments with Rm € 1000. These results
must be extrapolated to cover turbulent convection with

6

Rm ~ 107 = 1010 in order to estimate the amplification and
concentration of magnetic fields in the sun. The éuestions
to be answered are: what field strengths will be produced
and under what circumstances will the fields interfere

with the convective motions?

Convective zone

In the deep convective zone the maghetic Reynolds
number is around 6.1010. An initial field of 1 gauss
would be amplified to the strengfhs shown in table 1 (the
two values for B3 depend on whether the field is concen-
trated in the corners or merely along the edges of convec-
tion cells). Under these conditions the fields B_ and Bt
are comparable and it appears that flux will be concentirated
into sheets or ropes with fields of about 5000 gauss, strong
enough to inhibit convection. This would explain the
occurrence of discrete magnetic regions in the photosnhere
(Weiss 1964b). ‘

Chromosphere

It has been demonstrated (Simon and Leighton 1964,
Leighto~ 1959, Leighton, Noyes and Simon 1961, Leighton 1963)

that magnetic fields are concentrated at the boundaries of
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supergranules and that the field structure is related to
the chromospheric network., The origin of these large-
scale motions is uncertain; however, table 1 shows that

B, » B2 and the field shouldrtherefore be concentrated

3
until it interferes with the convection. Thecbserved

fields of order 10 gauss agree with this prediction.

Photosphere

'Eddy motions in granules should amplify any fields
that may be present in undisfurbed fegions of the sun but
not enough.to affect convection. On the other.hand, the
concentration of magnetic fields in activé regions ought
to have detectable effects. Yet no change in thé lifetime
or structure of the granules has been observed. At the
level s where fields can be méasured the velocity must be
confined to vertical oscillatory motions (Leighton 1963),
for concentrated f ields have not been found.

Sunspots

Danielson (1961) has convincingly explained penumbral
filaments but the apparent cellular structure of the umbra
(Danielson 1964, Bray and Loughhead 1964) is difficult to
understand. Recent estimates of the umbral temperature

10

suggest a conductivity of only 10 e.s.u. The magnetic

Reynolds number in umbral granules may thus be as low as

20, io which case matter could stream past lines of force

without producing much distortion.
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APPE&DIX. TURNOVER TIMES AND CONCENTRATION OF FLUX .

The procéss'of concentration is rapidly accompliéhed;
when Rm = 1000 the field between eddies achieves its final
value almost immediately (see figure 3). Nevertheless, the
time required does become significant when R.m > 104, as was
menticned in g 5, This time scale has been studied for
a simple upwelling (Parker 1963b, Clark 1965). In a typical
convection cell it is necessary to calculate the turnover
time before the lifetime of the eddy and the rate of concen-

tration of flux can be estimated.

(a) Turnover times for two and three dimensional eddies

Consider first the two-dimensional eddy defined by

the stream function

Y = - cos X cos z l(lz] < w/2) (25)
whose streamlines are given by the family.of curves

CoB X COB Z = CcOoS £ (1 > CQS2 x = coS2 E),

Then the parameter £ labels the streamlipe‘passing through
the points (0, * £) and (* £, 0). The turnover time, T, is
a function of . It is convenient to calculate the

quarter-period,

| g g
£(g) = 1u(E) =/ = =f — I
: (cos 4

and to make the substitution

sin x = sin £ sin Ww.



Then

)2 dv
t(E) =/"J'C ‘; 2 ]

- (1 - sin"g sin w)

o)

the complete elliptic iﬁtegral of the first kind., If
6 =x/2 - E «=®m/2 ,

then

t(&g) % én (4/sin &) and o = 4e“t .

. The central region rotateé as a solid bodf and t(0) = w2
but the turnover time becomes infinite at the edge of the
eddy. The ratio t(E)/t(0) is tabulated as a function of £
in the second column of table 2. The lifetime of a turbu-
lent eddy is_related to some appropriately weighted mean
turnover time Tge A reasonable estimate is T, W 21; by
this time the bulk of the fluid has turned over while the
central region has completed an entire rotation.

In three dimensions, the simplest incompressible eddy

corresponds to a square convection cell with velocity

u = (cos x cos i_ - sin x sin i ) sin 2z
5=t Y ax Y &y

- sin x cos y cos 2z i, , (26)

where i_, i and i_ are unit vectors in the x, y and =z
MXT M [2¥:1
directions. The motion lies on the vertical surfaces

defined by

sin y sec x = sin 1 = ¢ (1 > ¢7 2> sin“y)
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and on each surface the streamlines are given by the

family of curves

coszx cos 2z = coszg = k (1 2 cos"™x 2 k7).

The quarter-period is

cos x dx

fEm = [ :
m) = | T = 3
Z Yy l [(1 - 62 coszx)(cos4x - k4)]é

The substitution

2
tan w = Gl 3
2k sin x

1+ 3 ru - k%) I‘J
reduces this to

" _.L*.[ﬂ/z dw
Tk 2 .2 .3
1 L (1 - k2 sin”w)

where

' 2
k12 = (1 + k2J(1 - kzez) and kz2 = (1 - kz)(l + kza )/klz.

-The minimum value of t 1is
t(0,0) = 3%3

Table 2 shows t(E, m)/t(0,0) as a function of g for

£ 0y %, %ﬂ . The differences between the values are not

great. Once again, let & = ®/2 - E « ®/2; then

2 -t

b o %6n [8/(1 - 62] 62] and & = [8/(1 - £

(X115
®

1]
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When £ = 711 = %—, the turnover time 1 = 6.0. This serves

as a rdugh estimate of the turnover time"{:o for the eddy

as a whole and therefore of its lifetime.

(b) Concentration of flux

In the two dimensional eddy defined by (25), the
initial flux through the range 0 < x < ®/2 is concentrated
into the range £ € x < ®/2 after a time t{E). So the

field is amplified by a factor p where

o B 2 LF X
p(t) =5z sg5e ifo«s .

With the estimated lifetime of the eddy

p(TO) ~ 200.

The flow defined by (26) concentrates the field in
two dimensions. Thus the amplification factor ought to be
the square of thaf dériVed above. It is possible to make
a rather better estimate: when & « w/2, the streamlines

- with € < 60 = sin Ny < 1 concentrate the flux into a

region of area

: ¥ c . -2t ; 1
Alt) = {x - y/e)) dy = 4e "".¢n tan (x/4 + in)).

]
So the field is amplified by a factor p and
I
o 2%

B # e’ ‘
166n tan (%/4 + %ﬂo)

With m = x/3 and t = T, this yields an amplification

4
P(To) ~ 2,107,
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4
Thus a maximum concentration of order 103-10‘ may be a

reasonable estimate even in the sun.

I am grateful to Professor W.B. Thompson for convin-
cing me that it was necessary to consider the fime scale
for the concentration of flux and to him and Mr., R.T.P. Whipple

for discussions on this problem.
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TABLE 1.
Convect
zone
6.10%
5
1 3
(R * B ) 4,10
m o
(R B ) 6.101
m (@]
1 5
(R 2 B ) 2.10
m (o]
1
(axpu?)z  5.10°

2

MAGNETIC FIELDS IN THE SUN

ive

0

Chromospheric
supergranules

10°

1
25 10
10
3.10

10

Photosphere
Undisturbed Active
lO6

0.1 10
10 103
10° 10"
102 104

6.10%

(magnetic fields in gauss)

TABLE 2. TURNOVER TIMES FOR EDDIES

t(Z)/£(0)  t(£,0)/t(0,0) t(£,5)/t(0,0) t(&,3%)/t(0,0)

1.00

1.18

1.00

B 15

2.00

2 .57

2.26
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Isolated eddy. (a) Velocity streamlines; (b) Initial magnetic field;

20 and 40 respectively

(c) and (d) Final states (t = 2.0) for Ry,
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(a) t
(e) t=13.0

Isolated eddy. Rp, = 1000

O t=4.0
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Fig. 3 (CLM-PB9)
Single eddy. Ry = 1000: (a) Velocity streamlines; (b) t=0.5;
(c)t=1.0; (dt=1.5 (e) t=2.0; (Ht=2.5
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Single eddy. Ry = 1000 (continued): (a) t=3.0; (b) t=3.5; (c) t=4.0;
(d) t=5.0; (e) and (D final states (t=4.0) for Rm =200 and 40 respectively
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20

T

Fig.8 (CLM- P B9)
Magnetic energy as a function of time. Curves labelled a-e

have Ry, = 40, 100, 200, 400, 1000 respectively

4.0
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Fig. 10 (CLM-P89)
Magnetic energy as a function of Ry;. The lines a, b, ¢
refer to B%, B% and B% respectively









