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ABSTRACT

In this paper an improved mathematical model of melt/water detonations is described.
The model has been developed to study the escalation and propagation stages of a
vapour explosion. The modelling presented in this paper represents a significant ex-
tension of an earlier version of the CULDESAC code [1], also developed at Culham
Laboratory. After describing the physics of this problem, a complete description of the
conservation equations and constitutive relations which form the model is given. The
solution procedure is then described and some results from example simulations are
presented. These results demonstrate the improved performance of the new model and
illustrate the effect of the initial mixture void fraction on propagation. The réle played
by various solution parameters and constitutive physics assumptions is also examined.
Part IT of this paper [2] contains a detailed study of the escalation stage.
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Nomenclature

A

bo

4
Cfrag
Cy

€

Fe

Ny b

o]

area factor

coefficient in the artificial viscosity formula

drag coefficient

constant in the fragmentation model
specific heat at constant volume
internal energy

stagnation energy

heat transfer coefficient
stagnation enthalpy

momentum exchange function
length-scale

pressure

energy exchange function
temperature

time

velocity

axial coordinate

Greek Symbols

o volume fraction or void fraction
P density

e  artificial viscosity

T'y mass transfer rate

I'freg length-scale source term

Al  space step

Az time step

Subscripts

e effective fluid (water plus fragments)
f  1iragments

m  melt droplets

w water
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1 Introduction

If a hot liquid (melt) contacts a cooler volatile liquid, in some circumstances the energy
transfer rate can be so rapid and coherent that an explosion results. Such explosions are
a well-known hazard in the metal casting industry [3], in the transportation of liquefied
natural gas over water [4], in the paper industry where a molten salt (called smelt) may
contact water [5], and it is postulated that they may occur in submarine volcanisms
[6]. They are also studied in the nuclear industry, to assess the consequences of the
unlikely event that in a severe accident molten material contacts residual coolant and
such an explosion results (7).

It is postulated that explosions of this type progress through a number of distinct
phases [7]. Initially, the melt and water mix on a relatively slow timescale (~1 second).
During this stage the melt and water zones have a characteristic dimension of the order
of 10mm. Because of the high temperature of the melt a vapour blanket insulates the
melt from the water and there is relatively little heat transfer. If this vapour blanket
is collapsed in some small region of the mixture, high heat transfer rates result and
there is a rapid rise in the pressure locally. In some circumstances this pressure pulse
can cause further vapour film collapse, so that it escalates and propagates through
the mixture, causing coherent energy release. The propagating pressure pulse (which
steepens to form a shock wave) has two main effects. Firstly, it collapses the vapour
blanket, initiating rapid heat transfer. Secondly, it causes differential acceleration of
the melt and water, which in turn leads to relative velocity breakup of the melt and a
large increase in the melt surface area. As the energy of the melt is rapidly transferred
to the water high pressure steam is produced, which expands, with the potential to
cause damage to any surrounding structures.

The analogy between thermal detonations and classical chemical detonations was
first postulated in 1975 [8]. Since that time a number of steady-state and transient
models have been developed to study vapour explosions. These are all based on the.
analogy between chemical and thermal detonations. They have recently been reviewed
by Fletcher and Anderson [9], who concluded that the current generation of models are
not yet able to simulate many of the complex physical phenomena occurring in a thermal
detonation, but that they provide a useful tool capable of stimulating experimental
research.

This paper contains a description of the improvements which have been made to an
earlier version of a model, called CULDESAC, developed by Fletcher and Thyagaraja
(1, 10]. Results obtained with the early version of the model showed that:

(a) for very high heat transfer rates propagation occurs in highly voided mixtures
[1];

(b) the presence of a permanent gas does not affect the propagation behaviour sig-
nificantly for high heat input rates [10];

(c)  mixture inhomogeneities can lead to complicated propagation behaviour [11];

(d) for alower heat transfer rate a detonation may take a considerable time to develop
in a spherical geometry whereas it develops rapidly in a planar geometry [11].



This work highlighted the need to make the model sufficiently flexible that it could be
applied over a wide range of initial void fractions and to low heat input rates. This
was prevented in the earlier version of the model by the appearance of high frequency
oscillations at the shock front, in simulations where the compressibility of the material
behind the front was low.

The new version of the model presented in this paper achieves the aim stated above.
In addition, an extra velocity field has been included so that the melt particles formed
by the fragmentation process are no longer required to move with the water velocity, as
is the case in all previous models [9]. Section 2 of this paper contains a description of the
partial differential equations which make up the model and the constitutive relations
used to close it. The new solution procedure, developed to enable strong shocks to
be captured using artificial viscosity, is described in section 3. Section 4 contains the
results from some simulations which show that the new solution scheme does indeed
perform well. These results are used to illustrate how the model can be used to make
predictions in advance of experimental data. Section 5 contains the conclusions.

2 Description of the Model

In this section the partial differential equations and constitutive relations which con-
stitute the model are described. The model is transient and one-dimensional, although
this may be planar, cylindrical, spherical or any user-specified slowly varying shape.
(This is achieved by making suitable choices for the area factors, A4, in the equations
given below.) The mixture is assumed to consist of melt droplets, water and steam.
Behind the detonation front the droplets are fragmented by boundary layer stripping
and the water is heated by energy transfer from the fragments. This situation is shown
schematically in figure 1.

In the model this situation is represented using three different components, namely
melt droplets (m), melt fragments (f) and water (w). In order to restrict the number
of constitutive relations required to close the model, the simplifying assumption that
steam and water are always in mechanical and thermal equilibrium is made. This
assumption is justified once supercritical temperatures and pressures occur and provides
a first approximation for subcritical conditions. Each species is assumed to have its own
velocity field. The fragmentation process is assumed to be boundary layer stripping [12],
although the model is sufficiently general to apply to any hydrodynamic fragmentation
process. Heat is transferred from the fragments to all of the water at a finite rate.
Thus no allowance is made for local thermal disequilibrium, around the fragments, in
the water phase.

This problem has been formulated mathematically using the usual multiphase flow
equations [13], where the presence of each species is specified by a volume fraction and
all of the species are at a common pressure. The simplifying assumption that the melt
and fragments are incompressible is made, so that py = p,, = constant.



2.1 Conservation Equations

Conservation of mass applied to the water, melt and fragments gives

d 18
-é-i(awpw) + ZE(AQWPWV‘U) =0, (1)
a8 149
= m ey mPmVm) = —
and
8 190
'a_i(afpm) t Ea(Aﬂ’ijVf) =Ty. (3)

In equations (2) and (3) I'y is the mass transfer rate due to fragmentation and is
specified later.
Conservation of momentum for the water, melt and fragments gives

g’t‘(awaVw) + %%(Aawpwvj) =

w2 + 2 (auted Z(4V) + KmulVin - Vo) + Kpu(Vy = Va)y (4)
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The terms on the RHS of equations (4), (5) and (6) represent the effect of the pressure
gradient force, drag between the various species (the fragments and the melt droplets
are assumed to be surrounded by water so that they do not interact, i.e. X;, = 0), and
momentum transfer due to mass transfer. The fragments are assumed to be moving
with the melt droplet velocity at the instant they are formed. Real viscous forces have
been ignored, since they are always negligible in situations of interest to us. However,
one of the new features of this model is the inclusion of the artificial viscosity term in
the water species momentum equation.

There are also energy conservation equations for each species. It is convenient to
work in terms of the stagnation energy, defined by e, = e + 1/2V? and the stagnation
enthalpy defined by h, = e, + p/p. Conservation of energy for the water, melt and
fragments gives:

%(awpweaw) + %% (Aawvw (Pwhsw = Pa%‘l))
= _p%%m + me(Tm - Tw) “+ ij(Tf - Tw)
+Vw1{mw(vm - Vw) + I{mw(Vw - Vm)2
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In the above equations the terms involving Rm etc. represent thermal equilibration
and the terms containing K, etc. are the drag work. It has been assumed that all
of the irreversible drag work heats up the water. For completeness, the viscous work
due to the artificial viscosity term is included in the water energy equation, but this is
found to be insignificant in practice.

There is also an equation for the length-scale of the melt droplets, which is given
by

g
£y (amme )+ ——(AampmV bl = =Lyl =T frag. (10)

In the above equation the term involving I'; is due to mass transfer (it is a consequence
of writing the transport equation in conservation form) and the term —T.4, models
the chosen fragmentation process.

In addition to the above equations there is the constraint that

am + a5+ ay = 1. (11)

This completes the specification of the differential equations. The next subsections
contain a description of the constitutive relations used to close the model, the Equations
of State (EOS), the form of the artificial viscosity term used, and the boundary and
initial conditions.

2.2 Constitutive Relations
In this section the constitutive relations for drag, heat transfer and fragmentation
employed in the model are described.

2.2.1 Momentum Exchange

If the volume fraction of droplets is a,,, there are 6a,, /T L2, spherical droplets per unit
volume. The drag force on a single droplet may be written as

1 L2,
Fp = Ecd,mwpewTIVw — Vi |(Viw = Vi) (12)

where p. = (@wpuw + aypy)/(ay + ay) is the effective density of the fluid dragging the
melt drops. The effective density is used because there is assumed to be no direct
interaction between the fragments and the unfragmented drops; the presence of the



fragments is assumed to increase the inertia of the fluid surrounding the drops. Thus
the total drag force is

dChmw
Fr =222, 6|V = Vil (Vi = Vin) (13)
4 Lm

and comparison of equation (13) with equation (5) shows that
. 3
Koy = "Cd,mwam"pilvw = le- (14)
S Lm
In the present work a constant value of ¢ymw = 2.5 has been used. This value is
higher than the usual value of 0.4 to account for the increased drag when drops are

fragmenting [12].
Similarly, the drag between the melt fragments and the water is given by

3 Puw
Kpw= ch.fwaf'z}'Ww — Wl (1)

where ¢g 7, = 0.4. (The present model can be used to simulate the situation of no slip

between the water and fragments by setting cq 1, to a large value.)

2.2.2 Heat Transfer

If the heat transfer rate is specified as the product of a heat transfer coefficient and the
temperature difference, it is easily shown that

hmw
R—mw = GCL’m-L'—m— (16)
and "
R;y = Gaf—j—w (17)
Ly

where Ay, is the heat transfer coefficient between the melt and water, Ay, is the heat
transfer coefficient between the fragments and water and L; is the fragment size.

The heat transfer mechanisms between the melt and water are very complex and
clearly depend on the time-history of each particle. The only experimental data avail-
able is rather crude and consists of time-averaged heat transfer coefficients for the
duration of the fragmentation process [9]. Thus in the present model constant values
for the heat transfer coefficients have been used. A value of A,y = 102 Wm—2K-1!
was used for the melt when it was surrounded by a vapour film. This is a typical
value obtained from a combination of radiation and film boiling [9]. This value was
increased by typically two orders of magnitude when vapour film collapse was judged
to have occurred. This increase is somewhat less than that used in an earlier version
of CULDESAC [1], since it is thought to be closer to expected values than the upper
bound value used in the earlier work. However, there is considerable uncertainty as to
what values actually occur in real explosions. (The effect of varying this parameter is
examined in section 4.3.)

The treatment of vapour film collapse used here is simply to increase the heat
transfer coefficient when the pressure exceeds a certain value, since this models pressure



induced vapour film collapse. Because of the high initial temperature of the melt
(~ 3000K) in situations of interest to us, temperature controlled vapour film collapse
was not considered to be important [16]. Scoping calculations show that the model
predictions are insensitive to the choice of vapour film collapse pressure and melt droplet
to water heat transfer coefficient, provided that reasonable values are chosen [11].

The fragment size L; is not determined by the fragmentation model currently em-
ployed (see section 2.2.3) and was specified by reference to experimental data. A typical
value of L; = 100um was used [14].

2.2.3 Fragmentation Model

A boundary layer stripping model for fragmentation is used, as this is thought to be
the most appropriate for the study of vapour explosions [15]. The model proposed
by Carachalios et al [15] is used. This gives the following stripping rate from a single

fragment
dm

E = Cfrnglvm. - w[ﬂ'Lan PrmPes (18)

where the empirical constant cy,,, takes a value of approximately 1/6. Multiplying
equation (18) by the number of drops per unit volume and comparing the result with
equation (2) gives

I'y = amefrag|Vim = Vulv/Pepm/Lm (19)

where all of the constant terms have now been included in cy,qq, so that ¢ frag ~ L.
Thus the mass stripping rate is proportional to the relative velocity and the square
root of the effective density. As fragmentation occurs, the density of the surrounding
fluid is increased by the addition of fragments and thus the fluid has more inertia to
fragment the drops further.

The length-scale of the droplets is changed by the mass loss due to boundary layer
stripping. For spherical drops it is easily shown that the mass loss rate given in equation
(19) implies a length-scale source term of

1
Tfrag = gl‘fLm (20)
which is not surprising, as equation (20) implies that a droplet’s length-scale changes at
one third the rate of its volume. An empirical function has been added to ensure that
breakup only occurs for Weber numbers above a critical value (Wegrir = 12). Details
are given elsewhere [17].

2.3 Equations of State

The melt equation of state is very simple. The melt is assumed to be incompressible
so that p,, = ps = constant, and to have a simple caloric equation of state so that
Em = Cume and Ef = CumTf.

The EOS for water is more complicated and there is virtually no thermodynamic
data on the properties of water at high temperatures and pressures in a suitable form
for use in a model such as this one. In this study an approximate EOS, based on the
Griineisen approximation, has been used. The equation of state is fully described in



reference [1] and has been shown to agree well with steam table data in the region
where they can be compared [10].

2.4 Artificial Viscosity

In an earlier version of the CULDESAC code [1, 10] the conservation equations were
solved without the inclusion of an artificial viscosity term. This procedure was found
to work well, provided that the water density behind the front was not too great. For
example, a series of calculations performed to examine the effect of varying the void
fraction (the fraction of the water phase in vapour form) ahead of the front, showed the
increased presence of high frequency oscillations in the pressure at the front with falling
void fraction [1]. Simulations also showed that decreasing the heat transfer rate from
the fragments to the water led to these oscillations [10]. In some cases a solution could
not be obtained beyond a certain time because these oscillations caused unphysical
compression of the water (they led to densities outside the liquid region of the phase
plane).

In this version of the model an artificial viscosity term is included in the water
species momentum equation in order to remove this instability. The chosen form is
that advocated by von Neumann and Richtmyer [18] and discussed by Richtmyer and
Morton [19]. The artificial viscosity, ua, is assumed to be of the following form:

av, v
- 2 w . w
Ko = pu(boAz) o if =<0,
= 0  otherwise. (21)

This form for p, has the property that viscosity is only added in regions of flow com-
pression, i.e. it does not smear out expansion fans and it is only added where there are
large velocity gradients, i.e. at the shock front itself. It is consistent with the original
differential equation in that u, — 0 as Az — 0. However, as discussed elsewhere
[20], it is not sensible to insist on the requirement that the solution should converge as
Az — 0, since the original equations do not contain, for example, viscous terms.

In the original work of von Neumann and Richtmyer, it was shown that if the
constant by was chosen to be of order unity, then the shock would be spread over
approximately three grid cells. This conclusion was based on analysis for an ideal
gas equation of state. In this application values of by of order 5-15 were used, with
higher values required for the less compressible initial condition, i.e. for low initial void
fractions or low heat input rates. Higher values of by are required because the equation
of state of water is much ‘stiffer’ than that of an ideal gas.

2.5 Boundary and Initial Conditions

The above equations are solved in a solution domain which represents an initial mixture
contained in a closed vessel. Thus the only boundary condition needed is to set the
velocities to zero at the vessel walls.

Initially, the volume fractions, void fraction, velocity and particle size distribution
are specified. To simulate triggering a fraction of the melt is fragmented in a small
region of the solution domain. This causes a high heat transfer rate in these cells, the
pressure rises locally and a detonation wave may develop.



3 Solution Procedure

The partial differential equations are solved using a finite difference method which
employs the usual staggered grid arrangement. All convective terms are modelled using
upwind differencing for stability. An implicit scheme is used, with all physical terms,
except for the rates obtained from constitutive laws, being evaluated using mid-time
values. (Mid-time values are obtained by taking the average of the old time value and
the new time-value obtained from the previous iteration step.) The fragmentation,
heat transfer and drag rates are evaluated using old time values, once and for all, at
the beginning of each time-step. The artificial viscosity term in the water momentum
equation is treated fully implicitly for stability. The same basic strategy as described
in references [1, 21} is employed, except that iteration must now be carried out at
each time-step. Superscripts n and n + 1 are used to denote old and new time values
respectively. At any time during the calculation new time values of the field variables
are obtained using the following procedure:

1. determine the fragmentation, heat transfer and drag rates using old time values;

2. equations (1) — (3) are used to obtain (aypw)"t?, ait? and a’}’"‘l, respectively.

Equation (11) is then used to determine a*! and hence p*t! can be determined;

3. equations (4) — (6) are used to obtain the new velocity fields. A tri-diagonal
matrix is solved for each species, with the momentum flux, pressure gradient and
drag terms evaluated using the latest estimates of the mid-time values;

4. the new stagnation energies are found by time advancing the three energy equa-
tions (7) — (9). Using the stagnation form ensures that the Rankine- Hugoniot
equation can be built into the solution scheme to give it good shock-capturing
properties. The new velocity field is then used to determine the new internal
energies;

5. the caloric equations are used to determine the new melt and fragment temper-
ature. The water EOS is then used to determine the new pressure field and the
water temperature;

6. a check is made to determine the largest change in the pressure, in each cell,
from that calculated at the previous iteration step, normalised by the pressure in
that cell. If this is less than 10~3, equation (10) is solved to obtain the new melt
length-scale and the iteration cycle is finished. If it is not, new mid-time values
are calculated using the latest estimate of the values at the time level n + 1 and
the iteration process starts again at step 2.

This completes a brief description of the numerical scheme, which has proved to be very
robust and stable. Typically three iterations are required at each time-step. Because an
implicit method is being used, the time-step can exceed the value used in the previous
version of the code by about two orders of magnitude. The main restriction on the
time-step is that imposed by the need to model rate processes, such as fragmentation,
accurately.



Parameter Value unit
Time-step 10-° s
Space-step 0.005 m
Coefficient in artificial

viscosity term (bo) 15.0 -
Initial particle size 0.005 m
Initial pressure 0.1 MPa
Heat transfer rate:

vapour blanketed 103 | Wm—2K-!
Heat transfer rate:

liquid-liquid contact 105 | Wm—2K-!
Pressure required to collapse

vapour blanket 1.0 MPa
Initial melt temperature 3400 K
Melt density 8400 kgm™>
Melt heat capacity 500 | Jkg='K-!
Melt surface tension 0.4 Nm~!
Initial melt volume fraction 0.1 —
Initial void fraction 0.5 —
Length of triggered zone 0.02 m
Fraction of melt fragmented

as a trigger 0.9 —

Table 1: Parameters used in the detonation simulations

4 Example Simulations

The next three subsections contain results obtained for the case when the fragments
are assumed to move with the water species, i.e. obtained using a large value of i P
These results are then for the same physical model as used in previous simulations
[1]. In the first subsection the properties of the solution scheme are studied. The next
two subsections contain results obtained from a computational study of the effect of
varying the initial void fraction and the heat transfer rate between the fragments and
the water. Some results obtained from a study where the fragments are not assumed
to move with the water velocity are presented in section 4.4. Unless otherwise stated
the conditions shown in table 1 are used in the calculations. All of the simulations are
for a planar geometry, i.e. A = 1.

Figure 2 shows the results from a simulation of the development of the pressure
profile as a function of time for the conditions given in table 1. (Profiles are shown
every 0.5ms.) Also shown, as a dotted line, is the development of the pressure profile
for the case where no artificial viscosity was added. This latter calculation fails after
1.5ms because unphysical density values are produced (the liquid density exceeds values
obtainable for liquid water). This comparison shows that the instability at the front
has been cured.



4.1 Properties of the Numerical Scheme

As with all numerical work, it is important to understand the effect of solution param-
eters on the results obtained from the finite difference scheme. There are essentially
four parameters to consider: (i) the time-step At; (ii) the space-step Az; (iii) the arti-
ficial viscosity coefficient bp; and, (iv) the convergence criterion used to terminate the
iteration scheme.

By reducing the time-step and the convergence criterion it was found that the
solution was independent of these parameters for the values chosen. In fact the time-
step can be increased so that the Courant number exceeds unity without any problem.
This is because the scheme is fully implicit. However, the Courant numbers was ~0.4 in
most calculations, since the time-step is limited by the requirement that rate processes
be properly resolved.

The results of a space-step refinement study are shown in figure 3. In this calculation
the initial void fraction was 0.1 and the artificial viscosity coefficient was set to 15. The
figure shows the pressure profile for three different cases, Az = 2.5,5 and 10mm, 2.5ms
after triggering. The same trigger was used in each simulation. (The time-step was
also changed so that the Courant number is the same in each simulation.) It is evident
from the figure that the solution obtained with a 5mm grid is not significantly different
from that obtained from a 2.5mm grid. In fact the average velocity of the front varies
from 360ms~?! for the 10mm grid to 380ms~! for the 2.5mm grid, which would be well
within experimental error if such data were available. Further grid refinement is not
sensible, since the validity of the inviscid multiphase flow equations is questionable even
at this level of grid refinement [20]. Thus it was decided to use a 5mm grid in all future
calculations.

The effect of varying the artificial viscosity coefficient was examined for a case
where a solution could be obtained with zero artificial viscosity. In order to do this an
initial void fraction of 0.7 was chosen. Figure 4 shows the pressure profile 2.5ms after
triggering for values of by of 0, 6, 8 and 10. It is evident that there is not a significant
difference between the results obtained with the non-zero values of bg. Increasing bg
increases the shock speed but not significantly. The instability at the front, which is
significant when there is no artificial viscosity, is fully removed when by is set to a
value of 8. Thus it may be concluded that the choice of by does not affect the solution
to within experimental accuracy, provided a reasonable choice is made. Experience of
using the model shows when too small or too large a value of 5y has been used.

4.2 The Effect of Initial Void Fraction

It is apparent from the results already presented that the initial void fraction of the
mixture can affect the shape of the pressure profile and the speed of the detonation
front. This section contains a detailed study of this effect. It is important to know
how the initial void fraction affects the detonation behaviour because it is one of the
principal unknowns in the data used to validate this type of model [9] and it varies con-
siderably with melt temperature. For example, experiments using molten aluminium at
say 1000K poured into water lead to very different premixtures from molten uranium
dioxide at 3400K poured into water. In the first case high volume fractions of liquid
water can exist within the mixture, whereas at the higher melt temperature the liquid
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fraction is very low [22].

Figure 5 shows the predicted pressure profile 2ms after triggering for a range of
initial void fractions. It is evident that decreasing the initial void fraction leads to
flatter pressure profiles, with the heat being input over a much longer spatial distance.
This is because the fragmentation process is less efficient when the pressure at the shock
front is lower. The very flat pressure profiles predicted for low initial void fractions are
similar in shape to those predicted for tin-water detonations by Sharon and Bankoff
[23]. In the case of tin and water there is very little thermal energy in the tin and so
the water is not heated significantly if the heat is added to all of the water present [9).

It is also apparent from the figure that the speed of the detonation front varies
considerably with initial void fraction. Figure 6a shows the average speed of the front
over the first 2ms of the calculation. It is evident that the speed has a minimum value
for a void fraction of ~0.3. Figure 6b shows the experimental data of Miyazaki et al
[24] for the speed of pressure waves in air-water mixtures. The figure shows that the
present model predicts similar behaviour for detonation waves. The minimum speed
occurs at about the same void fraction in the two different cases. Also, the increase in
the speed away from this minimum is seen to be much faster in the low void fraction
region than in the high void fraction region, a feature which is, again, a prediction of
the present model. The speeds are very different in the two cases because of the heat
energy addition in the detonation case.

It is also of interest to examine the detailed variation of properties, such as the
volume fractions, water density, velocities and temperatures across the interaction zone.
Simulations were performed for three different void fractions, namely 0.1, 0.3 and 0.9,
these corresponding to the two ends and minimum point on the plot of detonation
velocity against void fraction (see figure 6a). The calculations were terminated when
the detonation front had travelled approximately 0.9m, this corresponded to times since
triggering of 2, 3 and 2.5ms, respectively.

Figures 7a—c show the three volume fractions for the three cases described above.
At the lowest void fraction it is evident that complete fragmentation of the melt does
not occur. At a void fraction of 0.3 the fragmentation zone is ~0.5m long and for a
void fraction of 0.9 the zone is 0.15m long. This is because a much stronger detonation
develops for high initial void fractions with the present modelling assumptions. The
behaviour of the fragments is also very different in the three cases. At low initial void
fractions the particles remain where they are formed but for a high initial void fraction
they tend to follow the detonation front, increasing the compression at the front. In the
calculations presented here the particles are assumed to move with the water species;
the effect of allowing for a finite drag rate is considered later.

The water density for the three different cases is shown in figures 8a—c. It is clear
that at low initial voids fractions there is far greater compression of the water at the
detonation front but that the density falls rapidly behind the front. The effect of
allowing for this density difference on the heat transfer rate is considered in part II
of this paper. In all cases there is an anomalous region close to the wall at which
triggering was assumed to occur, however, this behaviour is confined to the first 0.1m
of the solution domain.

Figures 9a~c show the velocity fields for the three different cases. Again it is evident
that there is very different behaviour in the three cases. At high initial void fractions
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the shock front is very steep and very strong. At low initial void fractions there is some
smearing of the shock front but the main feature is the much reduced fluid velocity and
the much longer flow zone in the low void fraction case.

Finally, figures 10a-c show the predicted temperature fields for the three different
cases. Heat transfer is seen to be more rapid at high void fraction but in all cases the
heat transfer zone is very long and heat transfer is far from complete in the low initial
void fraction cases. Thus a large system dimension would be required for a steady-state
detonation to develop.

4.3 The Effect of Varying the Heat Transfer Rate

The heat transfer rate from the fragments to the water is a very important param-
eter in the model. However, this quantity is not well-known because of the exper-
imental difficulties of measuring the transient heat transfer rate under these sort of
conditions, i.e. millisecond timescales and high temperatures and pressures. A recent
review of the available data [9] concluded that heat transfer coefficients in the range
105-10° Wm~—2K ! are appropriate when heat transfer is to a high density fluid. The
lower value corresponds to liquid-liquid conduction and the higher value corresponds
to enhanced boiling.

Figures 11 and 12 show the development of the pressure field with time for heat
transfer coefficients of 10° Wm~2K~! and 10® Wm~2K -1, respectively. The initial void
fraction was 0.5 and pressure traces are shown every 0.2ms. There is a considerable
difference between the two figures, showing the importance of knowing the heat transfer
rate. At the lower value of Ay, the pressure profiles show no evidence of a von Neumann
spike and are apparently far from reaching a steady-state even after a distance of 0.9m
has been travelled. At the higher heat transfer rate there is a well-developed von
Neumann spike and the pressure profile is much closer to reaching a steady-state. Also
the average velocity in the high heat transfer rate case is approximately double that in
the low heat transfer rate case. Thus although the model predictions are very sensitive
to the heat transfer rate, it should be possible to design experiments to determine which
value of the heat transfer rate produces pressure profiles the closest to those observed
experimentally.

Comparison of the shapes of the pressure profiles shown in figures 11 and 12 with
those shown in figure 5 leads one to the conclusion that reducing the heat transfer
rate is in some sense equivalent to reducing the initial void fraction. This is easy to
explain. If the heat transfer rate is high or the initial void fraction is high (recall that
in these simulations the heat transfer rate does not depend on the flow regime), then
supercritical conditions are reached a short distance behind the shock front and the
pressure rise is high. However, if the heat input rate is low or the initial void fraction
is low then the water phase is heated up more slowly and no pressure spike is formed.

4.4 The Effect of Allowing Slip Between the Water and Fragment
Phases

The effect of relaxing the assumption that the fragments and the water move with the
same velocity is examined briefly in this section. The case of a void fraction of 0.9
and a heat transfer coefficient of 10°Wm~2K~! is considered. This is a case, shown in
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figures 7-10, where there is a significant accumulation of particles behind the detonation
front. (All other conditions, except for bg=10, are the same as those shown in table 1.)
Figure 13 shows a comparison of the pressure profiles obtained 2ms after triggering
for cases where ¢y 7, = 0.4 and 75, the latter value giving fragment and water velocity
which were identical almost everywhere. It is clear from the figure that the two solutions
are not very different, apart from the fact that the sharp spike present in the no-slip
case is ‘rounded’ in the case where slip is allowed. The shock speed and steady-state
pressurization behind the front are almost identical.

Figure 14 shows a comparison of the velocity fields in the two different cases. It
is apparent from figure 14a that in the case of a large drag coefficient there is vir-
tually no slip between the fragments and the water. However, figure 14b shows that
when cg,f,, = 0.4 there is considerable slip between the fragments and the water phase
throughout the solution domain. (In both figures the melt velocity field in the first
0.8m is of no significance since the melt particle fraction is very small in this zone.)
This slip between the water and fragments leads to some ‘rounding’ of the fragment
void fraction profile near the shock front but the effect is not significant.

Thus it may be concluded that allowing for slip between with fragments and the
water phase is not an important feature of the model once a detonation has developed.
However, this may not be the case when the initial escalation stage is considered,
especially if the trigger is weak.

5 Conclusions

An improved model of melt/water detonations has been described. The model uses the
usual multiphase flow equations to simulate the passage of a detonation wave through
a mixture of melt and water. The model assumes that differential acceleration of
the melt and water, by the passage of a shock front, causes relative velocity induced
fragmentation of the melt. This fragmentation, together with the collapse of the vapour
blanket, leads to the development of a detonation wave. The paper describes a new
solution algorithm which allows strong shocks to be captured and extends the range of
applicability of an earlier model [1] considerably.

The model has been used to study the effect of the initial mixture void fraction on
the propagation behaviour and to examine the effect of varying the fragment to water
heat transfer rate. It is shown that a wide range of propagation velocities and pressure
profile shapes are predicted using the present model. The model predicts a dependence
of the detonation velocity on initial void fraction which is very similar to that observed
for pressure pulses in an air-water mixture. An extension of the model to allow for slip
between the fragments and water phases has been made. It is shown that this effect is
not important once a detonation develops.

In part IT of this paper [2] the initial escalation phase, following triggering, is studied
in more detail, and the effect of varying some of the constitutive physics assumptions
is examined.
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Figure 1: A schematic representation of physical picture underlying the model.
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Figure 2: A comparison of the development of the pressure profile for simulations with
and without artificial viscosity. The initial void fraction is 0.5 and pressure profiles are
shown every 0.5ms
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