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ABSTRACT

A model of a B =1 axisymmetric plasma in which the equilibrium
quantities are assumed to vary slowly in the axial direction is set up.

The energy principle is used to investigate stability and it is shown

that the theta-pinch configuration is stable to the m = 1 mode.
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INTRODUCTION

Recent experiments on the Culham Laboratory Theta—pinch(i), using the parallel field
configuration, have revealed the presence of a low amplitude m—1 instability. It is
unlikely that this is a flow instability since the flow of plasma along the pinch will be
subsonic and as the kinetic pressure in the pinch cannot be greater than the external
magnetic pressure it follows that the flow energy density % p v? < %E < g; , the energy

density of the external field.

The growth rate of the observed instability is of the same order as that predicted
for the flute instability assuming an analogy with the Rayleigh-Taylor instability. In
this case w® ~ gk = (Vﬁ/RC)/R where VK is the Alfven speed, R, is the radius of
curvature of the magnetic field at the surface of the plasma and R is the radius of the
plasma cylinder. It seems worthwhile to investigate the stability of the Theta-pinch more
precisely, first because the radius of curvature is a function of position along the pinch,
taking both positive and negative values, and secondly to check the validity of the gravita-

tional analogy.

In what follows we shall obtain an equilibrium configuration by an expansion procedure
using as a small parameter the ratio of the plasma radius to the distance along the pinch
over which quantities vary. The field and plasma are taken to be completely separated.

The characteristic lengths of the linear perturbations along the pinch are assumed to be of
the same order as in the equilibrium. The energy principle is applied to this system and
the potential energy is expressed in terms of an integral involving the displacement of the
surface of the plasma and the magnetic field curvature, both being functions of the dis-
tance along the pinch. It is shown that for a Theta-pinch there is a stabilising effect
It seems possible that

for low m-numbers which completely stabilises the m=1 mode.

certain configurations may be completely stabilised by a combination of this effect at
low m and that of finite ion Larmor radius at high m(2),

It is further shown that perturbations which leave the magnetic field unchanged are
stable for all m and the equation governing the normal modes of a f-1 axisymmetric
plasma is derived.

THE EQUILIBRIUM

We consider a perfectly conducting plasma in which there is no internal field to be

in axisymmetric equilibrium as shown in Fig.1. The radius of the plasma is R(z) and

the external field has r and 2z components.



Inside the plasma the pressure p is constant and in the vacuum V .B=0 and
VxB = 0. The variation in z is taken to be slow and the variables are expanded in

powers of & ~ R_éi as follows:-
Z

B=Bo + By + Bs ...

1§

p Pg * P1 + P2 ...

where the suffix n denotes that the quantity is of order &N .
The equation ¥V.B=0 gives

r(z)
B = .
ro T

At the interface between the plasma and the vacuum the pressure balance condition
is p=B%/8x . The pressure p is a constant to all orders and we therefore choose
Ph = 0 for n >0,

Thus Pg = BZO(R)Q/Bw

and P; = 2B,4(R) B,,(R)/Br =0,

so that BZO(R) is independent of 2z and 321(R) = 0. Thus since ¥ xB = 0 gives

EEQ = aBZ__i =0
or or
we have By, = constant and By, = O. The equation ¥V.B =0 now gives
- glz
By, = E.l(:_)_

where g(z) 1is determined by the chosen equilibrium. Summarizing, the relevant parts of
the magnetic field are given by
B=B (By,, 0, By, + Bzg) .

In what follows we shall describe the equilibrium by specifying R as a function
of z . This procedure implies that both the magnitude and direction of B are given on
the surface of the plasma. The question arises as to whether these conditions could always
be established by an appropriate conducting wall. This amounts to sqlving the Cauchy
problem for Laplace's equation for the magnetic scalar potential when the value and normal
gradient of the potential are given on the same boundary. 1In fact it is found that the
singularities which arise are at infinity and therefore the sélution will be well behaved

provided that the wall is placed at a finite distance from the plasma.

APPLICATION OF THE ENERGY PRINCIPLE TO THE THETA-PINCH

We take the general shape of the Theta-pinch to be as illustrated in Fig.2., It is
assumed that the energy of the whole system is conserved so that the energy principle is

applicable, The system may be divided into two regions; (1) an inner region (between

z, and z2) in which the ordering R éL ~ g is valid and (2) the outer regions where the
z

= 2w



magnetic field diverges too strongly for this assumption to hold. In the outer regions

d? .
a9k > 0 and also dR <0 for z%z, and dr 0 for z2zz. We may write the
dz? dz dz

potential ehergy of the perturbations in the form

oW = BWJ-_ + oWe ,

where the subscripts i and e refer to the inner and outer regions respectively. Since
the magnetic field lines at the plasma surface are convex towards the plasma in the outer
regions it is reasonable to assume that these regions will not be destabilising. In con-
sequence we shall assume that &W, Z0.

For the inner region we have { 2)

W, = SWg + OW, + OWp

where the surface energy

OWg =% f (n.2)°n.¥ B as ,
8m

surface
the vacuum energy
N 2
6WV = / B_’ dv y
871
vacuum

and the fluid energy
]

o = / Y P(YV.E)? dv ,
fluid

E being the fluid displacement, B’ the perturbed magnetic field and n the unit

vector normal to the surface. Considering first the surface energy we have

2
R L

Using the equations

and
Br, (R(z)) dR
Bzo Tdz

and the fact that for any variable y(r,z)

dyR(z))  (r,z) dR(z) g (r,z) ,
Eﬁ > Yaz g%

we obtain

2 2 2
E'EB :2Bzo%v
dz

- F =



so that

BZo 2 d°R
Wy = . E)" 2% ds ,
8m "
The appropriate ordering for the perturbations is given by R ﬁi ~ &, that is the
X z

same as for the equilibrium quantities. A larger value of R é% leads to stable Alfven
waves, Using VxB' =0, and curling the equation of motion to give VxE& = (Ex Vp)/p,

we obtain the ordering

By ~ & B, ~ € By
and

€z ~ € Ep ~ € Eg |

With this ordering the surface energy becomes

BZo | . d°R
5Ws:_'_/R gzdz,

8 dz”
2
where & = Ep(R). The factor %—% is the local curvature of the magnetic field lines
z
at the plasma surface.
Since B’ = - Y4 the vacuum energy may be written
r
oWy = L ‘/ (98) % av
8m
and the integral is minimised by Vg = 0. With the chosen ordering this gives
13 o, m°
r‘ér‘(ra:)_rzﬁ_o’
where we have taken the 6 variation of the perturbed quantities to be eimé , only

m > O modes being considered. If the walls are at a distance &5 R from the plasma
where 0 < S <1, so0 that this distance is large compared to the plasma radius but small

compared to characteristic lengths along 2z , then the appropriate solution is

4 =c(z) rm
so that B;..: B’r (R)Z)} (_E)—(m+l) ,
and I8¢l = I8yl .

Using this result we obtain -
aw\,:é'E] (R BA(R))Z dz .

It is now necessary to relate B}(R) to E through the interface condition that the
magnetic field remains tangential to the surface of the plasma. This is expressed by(4)
n.B'=n.Yx (§xB),

a derivation of which is given in an appendix. This equation gives

Bp(R) = Bzo d (g g)*,
R dz

* This result can be obtained from the more usual form for the interface condition,

namely nxA=- (n.E)B, where A is the perturbed vector potential.



Substituting this result into the above expression for &W, gives

. 3
5w, = Bzo / 4 2
p S (dz (R E))® dz .

Collecting terms we have

sw; = Bzo j R 4R 2 4, 4 Bz0 ] (A (RE))? dz+k ¥ P / (V. £)% dv
8 dz? 8m dz = 1

In this equation £ and V. § are independent variables and &W; is minimised with

respect to V & by setting V., % = 0. Thus we obtain

sw. _ Bzo / dR z2 4, B20 [ (4 2 (1)
i = — R £° dz +-=22 / = (RE))" dz soe {1
%) 8 dz*® 8m dz ’
which may be re-written in the form
B2 3 2 Zy
6wi=£[/ {(m_1)Rﬂg2+(Rdj¢)2}dz+R@g3I ] vue (2)
am dz® dz dz zq

DISCUSSION OF STABILITY

2
It is seen from equation (1) that an equilibrium with g—% < O anywhere will be
Zz

unstable for sufficiently large values of m since an appropriate trial function will
make &W < O . However, noticing that the boundary term in equation (2) is positive, we
see that for m= 1, 5Wi >0 and thus &W > O . The system is therefore stable againét
the m =1 mode. We shall now consider the physical explanation of these results. The
instability at large m arises through a decrease in the magnetic field energy resulting
from a displacement of the plasma surface in a region where the magnetic field decreases
away from the plasma, that is %S% < 0 . - These displacements of the plasma involve some
line bending and this is an effect which tends to stabilise the system. The energy
required for this bending is greater for lower m-numbers because the perturbed magnetic
potential falls off as r™™ , and consequently the volume in which the magnetic energy
is effectively changed increases with decreasing m. Thus this effect may stabilise
lower m-number modes and in particular it is sufficiently large to completely stabilise

m = 1 as shown above. For sufficiently large m-numbers stability will probably be
brought about through the effect of finite ion Larmor radius(z). It may be possible that
certain configurations are completely stable to large scale instabilities through a
combination of this effect at large m and the line bending effect at small m .

In view of the result that the Theta-pinch is predicted to be stable to the m = 1

mode it is difficult to interpret the experimentally observed m = 1 instability(i).
One possibility is that it is due to the combined effect of flow and field curvature.
Another possibility is that the predicted stability arises from either the assumption of

a sharp plasma boundary or of the high value of p/(B®/8n), neither of which is completely



accurate for the relevant experiment. Further work is being carried out to invesligatc

these possibilities.

We will now show that perturbations which leave the magnetic lield unchanged are
stable for all m . If B’ =0 then BL(R) = 0, and therefore éL (RE)=0. TIt rfollows
Z
from equation (1) that

B
oW; =

" ;
z0 / R g_% £2 gy
8 dz~
o z —
B”" 2 -
_ Pzo dR .2 dg, =
= — | (R —= R
Slegenl, + [ ®d dzJ.

Since the boundary term is positive we have 6Wi > 0, and therefore ©&W > 0, and thus

the system is stable.
This is at first sight a rather surprising recsult since the stabilising oWy  term

has been put to zero. However, the explanation is, that in order to leave the magnetic
field unchanged, the plasma displacement has to be such that the positive contribution
to 8W5 arising in the stabilising recgions (9:% > 0) is greater than that in the

d

5 VA
destabilising regions (9_5 < 0).
az”

It is of interest to note that for an infinitely long periodic system the modes

m 2 2 are unstable. This may be demonstrated by choosing as a trial function

£ = constant, then we have from equation (2),

B2 "
B . DzE g 2] dRs2
A (m-1) & (EE) dz ,

where we have integrated the first term by parts and used the periodicity to remove the
boundary terms. Thus & <O for m 2 2 and the system is unstable to these modes.
This result does not apply to the Theta-pinch because of the extra stabilisation provided
by the outer region.

THE NORMAL MODE EQUATION

It is of interest to derive the equation describing the motion of a system for
which R é% ~ ¢ everywhere, that is &W = 8W; . We shall do this by minimising the
Lagrangian of the system with respect to E(z,t). For this we need the kinetic energy of
the plasma, On the assumption that the density is constant in the plasma we have
VxE =0, and therefore g = - ¥V} . Since we have shown incompressible perturbations to

be the worst, we take V.E = 0, so that V® = 0. The bounded solution of this

equation is
D(z) ™ |

=
1l

so that

gt
=
|

=g,



and
legl = lge| .
Substituting these results into the kinetic energy equation
og
% /1 g (—)% ay
ot
gives °

frude} 2 (0Ey2
T 2m] R (a_t) dz .

We wish to minimise L = T - &W, that is

= 2
b= / F(E) dz = / [%(R%JQ—E?R%}?—%(f;(kg)ﬁ]dz.

T

1}

The Euler equation for this integral is

F -2 (2F, o (&F__,
0F  dt ‘3r/ag ot QE/ot b

and this gives

2
% _ VA { 9 (p= 9E d°r
ata Rz aZ {R aZ) (m—I) Rdz_gg —Og
where V; = Bzo/ﬁﬂp. Assuming E o el®l we obtain the normal mode equation

d d 2, 2 2
d-;(de—E‘)qu‘; - m-1) RAR) £ _ o

A dz

It is seen from this equation that the simple result given by the gravitational analogy,
2

namely w? =m Vi 3_%/R, may be obtained by neglecting those terms arising from changes
z

in the magnetic field. It is also seen that this analogy is incorrect for small m ,and
in particular, completely invalid for m= 1.
It is of interest to note that it is not possible in general to have a normal mode

for which the magnetic field is unchanged. The requirement for B’ =0 is

w?R? d®R
e RR %) E=D,
A

which cannot be satisfied by an acceptable & since R is a function of =z .

CONCLUSIONS

The energy principle has been applied to a £ = 1 axisymmetric plasma and used to
show that the Theta-pinch is stable to the m = 1 mode. This stability is due to the
bending of the magnetic field lines to conform to the displaced plasma surface. This
necessitates a larger change in the magnetic field energy than is available from the desta-
bilising magnetic field gradient. The change in the magnetic energy is proportional to
% so that it is largest for small m . The high m-number modes will probably be stabi-
lized by the effect of finite ion Larmor radius. It seems possible therefore that certain

configurations may be completely stabilised against large scale instabilities by a combina-

tion of these two effects.



It has also been shown that perturbations which leave the magnetic field unchanged

are stable for all m , and the equation governing the normal modes of a P =1 axisym-

metric plasma has been derived for incompressible perturbations.
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APPENDIX

We will derive below the boundary condition

n,.B'=n Y x(ExB) .

Consider a surface S outside the plasma which is parallel to, and a small distance
§E from, the plasma surface, and which moves so that its displacement Eg 1s the same
as that of the nearest point on the plasma surface, that is &, (c+8r) = £ (r). As

65 2 0 the normal component of B on the surface S must approach zero since the plasma

is a perfect conductor. Therefore in a frame moving with the surface S ,
ﬂ._VxE=0.

In the laboratory frame this becomes

Vv
ﬂ- _V_X(E'l':xEJ = O P}

]

and linearising, this gives

n.¥x(gxB) .

[}=]
[f==)
1}
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Fig. 1 (CLM-P 99)
Diagram of assumed equilibrium
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Fig. 2 (CLM-P99)
Diagram of Thetapinch configuration












