CLM-PDN 1/74

PRELIMINARY GCL USER MANUAL

by

R J Dakin

ABSTRACT

GCL (General Control Language) has been designed to provide

a common job control interface to a variety of computing
systems. This manual is intended to serve both as a general
introduction to GCL and as a guide to its use on the

ICL 4-70 at Culham. GCL provides a convenient means of
accessing the facilities of the Multi job operating system,
together with enhanced facilities such as file substitution.
The manual is "preliminary" since it is hoped that increasing
usage of GCL will give rise to improvements and extensions to

GCL facilities,

U.K.A.E.A. Research Group
Culham Laboratory
Abingdon

Berkshire

February 1974

CONTENTS

1 INTRODUCTION

1.1 The Satellite Environment .

1.2 On the Rest of this Manual

2 GCL STRUCTURE

2.1 Main Features

2.2 Integers, Identifiers, Strings and
Refer-back '

2.3 Layout and Commenting

2.4 ++ Statements

3 INPUT AND OUTPUT

3.1 Conceptual Framework

3.2 In-Line Text

3.3 Target System Files

4 INTRODUCTION TO GCL FACILITIES

4.1 Simple Compile-and-Go

4.2 Text Substitution

4.3 Multi-Module Programs

4.4 Running an Existing Program

4.5 Overlay Programs with Tree Segmentation

4.6 Overlay Region Specification

4.7 Separate Compilation and Link Editing

4.8 Use of Private Subroutine Libraries

4.9 .Transparent Insertion of JCL

4.10 Notes on the Multijob Implementation

5 - FUNCTION DETAILS |

5.1 Job Definition (JOB,ENDJOB,LINECOUNT)

5.2 Device Definition Functions
(SOURCEFILE, OBJECTFILE, PROGFILE,
DATAFILE, SYSMFLE, SYSUFLE,SCRATCH, TEXT)

5.3 Device Manipulation Functions
(PRINT,DELETE, DISPLAY,COPY)

5.4 Running Programs (RUN,RUNJOB,RUNB) i

5.5 Separate Compilation and Link Editing
(LINK,COMPILE)

5.6 Private Subroutine Library Facilities
(LIBRARY, CATALOGUE)

5.7 List Manipulation (APPLY,JOIN)

5.8 Transparent Insertion of JCL
(TRANSPARENT ,RTP, NOWTRIALS)

6 MULTIJOB OPTICONS, AVAILABLE SETTINGS AND
SYSTEM DEFAULTS

7 .HOW TO USE THE MULTIJOB VERSION OF JOLT

7.1 Operation from a Terminal

7.2 Failure Messages

7.3 Keeping Up to Date

7.4 How to Scream

PAGE

11
12
13
14
14
15
16
16
17
17

19
20
22

23
26

27
28

29

32

37
37
38
39

CONTENTS PAGE

APPENDIX - HOW TO WRITE GCL FUNCTIONS

Al.1l The Form of a Function 40
Al.2 Reference to Call Parameters 40
Al.3 Assignment Scope 41

Al.,4 Other Facilities 41

CHAPTER 1
INTRODUCTION

GCL is a General Control Language which is being developed

to provide a common user interface to the facilities of a
variety of large computer systems. This manual is intended

to provide a guide to GCL in general [and, in particular, to
the version implemented on and for the Multijob operating
system for ICL System 4 computers]. [To help distinguish these
two aims, anything specific to tﬁe Multijob version is .enclosed
in square brackets]. It will be necessary to use some terms

in a fairly specific way; to assist the reader, each term is

underlined when it is first introduced.

GCL has been designed with a view to its use in satellite
computers and this imposes some discipline in the way things

are organised. While this should not prevenﬁ'the application

of GCL in other environments, an understanding of the satellite

environment does shed some light on the rest of the manual.

1.1 The Satellite Environment

.Relevant features of a typical satellite environment for

GCL are shown in Fig. 1.

local
$iles

GCLW@ﬂ ,,ﬂi;,f::
_____ i B | _w-T

Satellite (.l.oc.o..l)

Sj ot Tow SQJ’: S‘j‘-ﬁ‘&m |

Fig. 1 Satellite and Target Systems

GCL comes into the satellite via an input stream (which
may be, say, from.a card reader, paper tape reader or local
file) and is translated by a Job Language Translator program
(JOLT) into the job control language (JCL) of the target main
frame system which is to perform the required processing. Tt
is then transmitted to the target system via a remote job entry
link. 1In due course the JCL will be obeyed by the target system,
‘causing activity by the target filing system and I/0 devices

and the transmission of results back ‘to the satellite.

Note the functional distinction between local and target
files : only local files are accessible during translation from
GCL to JCL, while only target files are accessible when obeying
JCL on the target system. The distinction between local and
target files is maintained in the rest of the manual, although
it disappears if JOLT is run on the target system [as in the

Multijob implementation].

1.2 On the ReSt of This Manual
GCL is based on a simple regular structure. It will save

a lot of repetition when describing particular GCL facilities
if we consider the structure separately, which we do in
Chapter 2.

Further essential groundwork is provided in Chapter 3

which describes how GCL deals with input and output devices.

The main facilities currently implementeé for GCL are
introduced in Chapter 4 via a series of examples. This is
intended simply to convey an imbression of how actions are
expressed in GCL and may leave some questions unanswered; it shoul
however, throw light on Chapters5 and 6 which present the

facilities in a more complete and systematic fashion.

(Finally, Chapter 7 describes how to use the Multijob
version of JOLT.]

A major design aim of GCL has been to make.it open ended and
easy'to change. This is a preliminary manual and is not intended
to be definitive as far as the GCL user image is concerned.

Any suggestions for improving it will be most welcome.

CHAPTER 2
GCL STRUCTURE

2.1 Main Features

The GCL unit corresponding to a program in normal
programming languages is a job which specifies a sequence of
actions to be performed by the target system on behalf of a

single user. A session is comprised of a number of "statements,

possibly interspersed with source program or data text.

A typical GCL statement looks like this:

RUN(P,<I>,<PRINTER>,STORE:lOO,LANGUAGE:ALGOL);

which means apply the function RUN to the parameters P, <I>
and <PRINTER> with the options STORE and LANGUAGE set to 100 and

ALGOL respectively.

The significance of a parameter depends on its position; thus
the first parameter of RUN specifies the program to be run, the
second - <I> - specifies inputs to the program and the third -
<PRINTER> - specifies outputs. A function normally requires a
fixed number of parameters which must be provided in any call on

the function.

Option settings, on tﬁe other hand, can be written in any
order or left out altogether. They must come after the parameters
and can, optionally, be separated from them by a colon instead
of a comma to highlight the transition. Thus the example could

-

be written:

RUN(P,<I>,<PRINTER>: STORE=100, LANGUAGE=ALGOL) ;

With - no option settings it would reduce to:
RUN(P,<I>,<PRINTER>);

When option settings are omitted, default values apply. The
system provides defaults, but if these don't fit your requirements

you can set your own by writing statements like

LANGUAGE:ALGOL;)
which sets the LANGUAGE default to ALGOL for the rest of the job

(or until a similar statement sets it to some other value). If
you habitually use defaults which differ from the system ones
then you can arrange for your defaults to be automatically set

up whenever you start a job by putting default setting statements
in a local file. [In the Multijob version this is normally the
file UTPROG.SETGCL(S) under your own username,]

Some functions require no parameters, but the parameter
brackets must always be present : RUN refers to the function
itself - it will only do anything if it is applied to a parameter
list. A call on a parameterless function may, however, include

option settings. Examples of parameterless functions are:

'RUNJOB() ;

TEXTfTERM:'END');

The symbols <> are simply an alternative form of the bracket
pair () and mean exactly the same thing. Thus, our second
example could equally well be written

RUN (P,(I), (PRINTER));

The original version is a little more readable, which is why
GCL allows alternative brackets. Anything enclosed in brackets
is called a list. Thus <I> is a list with the single element
I while (P,<I>, <PRINTER>)is also a list with three elements
P, <I> and <PRINTER>.

RUNJOB () and TEXT (TERM='END')

(in fact, most of the above examples with the semicolon terminator

removed) are function calls. A function call usually specifies

some action and returns a value. The point of this is that it

allows us to define an eXpression which is

i) an integer)
ii) an identifier

discussed in the following
section

1ii) a string

)
)
)
iv) the refer-back symbol*)

v) a list, or
vi) a function call
(This definition can be extended, but the extensions are not

applicable to most users.) The apex of this pyramid is that

‘any expression is a valid form of parameter, option setting

or list element. Thus a considerable nesting of brackets

in statements is possible, though excessive nesting can be
(and should be) avoided.

2.2 Integers, Identifiers, Strings and Refer-Back

Let us now consider some of the more elementary GCL
constructs, most of which appeared in the previous section.
2.2.1 An integer is written as an unsigned sequence of digits
terminated by anything that is not a digit and has its normal
numerical significance.
2.,2.2°RUN, P, I, PRINTER, STORE, ALGOL etc. are all identifiers

which take the usual alphanumeric form (initial letter). You
will sometimes need to introduce your own identifiers to represent
items to which you make repeated reference. Your own identifiers
should either be a single letter or contain the ampersand
character (&) (which is treated as a letter) to distinguish them
from system identifiers. Thus P and I in the previous examples
were both user identifiers. A new identifier does not need 3
separate declaration statement but must be preceded by an
exclamétion mark (!) the first time it occurs. An identifier

can be of any length but the first 12 characters must be distinct;
as each occurrence of an identifier longer than this generates

a warning message it is best to keep to 12 or less characters.

An identifier is terminated by any character other than a letter,
digit or ampersand.

You can use identifiers to effectively shortep function names.

For example:

:C= COMPILE:/ASSIGN COMPILE FUNCTION TO C

C(X); /EQUIVALENT TO COMPILE (X)
Other examples of identifier usage will arise in later sections.
2.2.3 'XYZ' is a string, which is a sequence of characters
enclosed between primes. Any printable character can appear
in a string, but the characters /*'; must be represented by

character pairs as follows:

¥/ represents /

® . n "
? 7
%k 1 . 1" '

* ¥ " W

®N " new line

2.2.4 The refer-back symbol asterisk (*) is used in a statement

to access the value (if any) generated by the preceding statement.
For example

RUN(LINK<A,B>,<I>, <PRINTERS);

is equivalent to

LINK(A,B); RUN (*, <I>,<PRINTER>);

2.3 Layout and Commenting

Our original statement example, which was
RUN(P,<I>,<PRINTER>:STORE=100,T.ANGUAGE=ALGOL) ;
could equally well be written:
RUN(P, / (PROGRAM TO CALCULATE REGRESSION COEFFTS)
<I>, / FROM EXPERIMENT NO.18
<PRINTER>:/
STORE=100,
LANGUAGE=ALGOL) ;
This obeys the GCL format rules, which are:-
i) extra spaces are ignored,
ii) end of line is ignored, and
iii) slash (/) and anything that follows it, is ignored.
The use of "extra'" in rule (i) needs some explanation: a space
character will terminate an identifier or integer; also spaces
are meaningful inside strings - but any other spaces are "extra"
and can be used freely to improve layout.
Note that slash terminates a line even inside a string

unless preceded by an asterisk. Thus

'"THE RAIN IN / ' -
SPAIN'

is equivalent to

'THE RATIN IN SPAIN'

2.4 ++ Statements
Tt is usually obvious both to JCLT and to the user which

lines contain GCL statements and which ones contain program or
data text. We shall, however, encounter circumstances where we
wish to obey a GCL statement in the middle of text - for example
we may wish to specify insertion of the contents of a local

file at some point in the text. To cater for this, GCL uses

the two characters ++, which must occur at the beginning of a
line, as a Spécial marker. When JOLT encounters a line marked

in this way, it

i) suspends whatever it was doing when it read in the line,
ii) reads and obeys one GCL statement following the ++
(like any other GCL statement, this one can span more than
one line),
iii) throws away the rest of the line on which the statement
" terminates, and '

iv) continues with the activity suspended in (i).

Only one statement is read and obeyed as the result of
a ++ marker. If you wanted to obey several statements in the
middle of texXt you would have to precede each of them by a

++ marker.

If a genuine line of text starts with ++ then you must
modify it to +++ (the first + being discarded) to prevent it
being treated as a ++ marker. This last facility is not
implemented at the time of writing, so 1t would be as well to

check availability before using it.

CHAPTER 3
INPUT AND CUTPUT

3.1 Conceptual Framework

Activities on the target system send and receive information
to and from a variety of places, many of which need to be
specified explicitly by GCL. The situation for a given target
system may be complicated by intermediate buffering (spooling)
between a slow I/0 device and a running program; this buffering

may be more or less explicitly specified by the target JCL,

In GCL the specification of all sources and sinks of

information is treated within a single conceptual framework

Q Devices

Oemfe,,cﬁh@ws

AWK ‘ /wi...fm-
PROGAAM

Fig. 2. How GCL Pictures T/0

illustrated in Fig.?2.

An information source or sink (which we call a device) may
be connected to a program run by connecting it to a socket which
is an identifiable connection point. In different target
systems sockets correspond to symbolic filenames, channel numbers,
DD names etc. As well as specifying connections between devices
and sockets we may specify other I/O operations such as listing
information read from a device. GCI. always pictures connections
as being direct : any complications in the target JCL arising
from intermediate buffering are automatically generated by JCLT

and need not concern the user.

- 8 -

The simplest device category is physical devices such as
card readers and line printers on the targef system extending
naturally to include, say, a printer on the local satellite system.
We regard the target .filing system as simulating a large number
of GCL devices (variously known as files, documents or data
sets) on a small number of physical devices such as disc drives.
We shall call these GCL devices files. Bodies of program or data
text, supplied in the GCL stream constitute a third and final

device category.

Physical devices are represented in GCL by suitable
identifiers. The only one available at the time of writing

is PRINTER, which refers to the normal output printer.

Text and file devices must be defined by the user himself
by calling a suitable function. Once defined the device can
be conveniéntly assigned to a user's identifier for later

reference. We will now look at device definitions in detail.

3.2 In-Line Text .
A -body of text is defined by calling the parameterless
function TEXT, which:

i) throws away the rest of the current input line, and
ii) accepts, as part of the defined text body, subsequent
lines up to, but not including, a line starting
with terminator specified b& the TERM option (default

is the string '*/**' specifying a-/* terminator).

After obeying TEXT, JOLT will continue input just after

the terminator on the same line.

Example:
¢A=TEXT(); /ASSIGN FCLLCWING TEXT TO A

/*!B= TEXT(TERM='=END');/END A'S TEXT-B's FCLLOWS

=END / TERMINATES TEXT ASSIGNED TO B

3.3 Target System Files

A file device is defined by one of four functions,
dependlng on the nature of the information it contains.
Each function requires a 51ngle parameter which is either
the identifier NONAME, for unnamed temporary files, or a
string of alphanumeric characters for a named file. In the
latter case the string forms part of the fuil target system
file ddenbifier; fér maximum generality it should start with
a letter and be no longer than five characters, although not
all target systems are so restrictive. Other components of
the target system identifier and any other information
affecting format, access, choice of physical device etc. are
provided by option settings when the file is defined. Such
options and their settings inevitably reflect target system
characteristics which need not, hbwever, concern the user

who keeps to defaults.

A named file is always permanent and must be explicitly
deleted if required. Unnamed files are always temporary

and disappear on completion of the .job.

Note that the same file should not be defined more than
once within a job - otherwise invalid target JCL can, in
some circumstances, result. Repeated file definitions with the
NONAME parameter always define distinct files, A file
definition does not specify any action by the target system -
in particular, it does not cause the file to be created.
The four file definition functions are:
SOURCEFILE for files containing program source text,
OBJECTFILE for files containing object code - i.e. compile
code which needs to be combined with other
~modules and subroutine libraries to produce
a program,
PROGFILE for files containing loadable program, and
DATAFILE for files with unspecified content.
Examples:

!&TABLE=DATAFILE ('TABLE');NAMED DATA FILE
!S=SOURCEFILE('SETUP') ;/NAMED SOURCE FILE
!P=PRCGFILE(NONAME) ; UNNAMED PROGRAM FILE

CHAPTER 4

INTRODUCTION TO GCL FACILITIES

This chapter provides an informal introduction to the
facilities of GCL. The intention is to illustrate rather

than specify, the latter being reserved for later chapters.

4,1 Simple Compile—andnGo
++JOB(SMITH); /START JOB FOR SMITH
RUNJOB(); /COMPILE AND GO

S ; source prcgram

/*
ENDJOB() ; /END OF JOB

The effect of the above is to compile- and execute the source

. program, using the supplied data as input and sending its
oﬁtput o the PRINTER, on behalf of a user whose GCL user name
is SMITH. (The target system user name and any other accessing

information are automatically generated by, JCLT,)
The start and end of the job are defined by the JOB and

END. statements. It is not strictly necessary that JOB be

a ++ statement; this is simply a safety measure to prevent
any error in a preceding job from swallowing SMITH's job as
data or causing other consequential errors.

The RUNJOB function invokes two calls on the TEXT function
to read the program and data. The language in which the
program is written is specified by the LANGUAGE option
(default FORTRAN).

"Normal" input and output sockets are assumed for data and
PRINTER., [For the Multijob version using Fortran, these
would be the symbolic filenames DSET9? and DSET99 respectively.]

= LE e

4,2 Text Substitution
The job:

++ JOB(SMITH) ;

RUNJOB () 3

++ SUBST('PART1');
F=X%¥]1,7

++SUBST(' PART2") ;

/*

L ; data
/* ENDJOB();

is equivalent to:

++JOB(SMITH)
RUNJOB() ;

)

=== contents of local file PARTI1

E=XM*l, ¥

~) adata

/* ENDJOB();
In this way the Fortran statement F=X**1.,7 has been imbedded
in @ program which might, for example, graph F as a function
of X. [In the Multijob version the "local" file PART1 is
the file PART1(S) under the user and group names specified by
the options USER and GROUP.]

Substitution can be nested to a depth of three levels (an
implementation restriction which can easily be relaxed).

A frequent use of two level substitution is the insertion of
Fortran COMMON blocks - especially convenient in programs
with a large number of modules. For example, suppose the
local file COMM1 contains COMMON declarations and the local
file PROG contains the 1line

++SUBST ('COMM1');

then this line will be replaced by the COMMON declarations
if PROG is substituted as in the following example:
++JOB(SMITH) ;

RUNJOB() ; -
— PROG
++SUBST ('PROG ') ; o
/¥ o
_— | ++SUBST ('COMM1 ') ;
) data g

/* ENDJOB();
- 12 -

The use of an identifier as a SUBST parameter can be very
powerful; for example:
++JOB(SMITH),

!C='COMM] ' ;
. RUNJCB(),
#+SUBST('PROG') ™~

¢ T S e PROG

—— — . ERoc

£ T, T

——— N“\AA —_————

____ (data) ; Foa ::f?BST(C);

/*ENDJOB () _ iy P

is equivalent to the previous eXample, but can easily be
made to select a different COMMON block — contained in the
local file COMM2, say - by changing the second GCL statement
to

:C:lCOMMz';

4.3 Multi Module Programs
A call on the RUNJOB function introduced above is

equivalent to the following call on the RUN function:

'RUN(<TEXT()>, <TEXT()>, <PRINTER>);

A more general use of RUN is illustrated below.

. ++ JOB(JONES) ;
«&TABLE=DATAFILE('TABLE');/FILE ALREADY SET UP
!&MOD1=OBJECTFILE ('MODLl');/COMPILED 3/12/73
! &DATA=TEXT() ;

/*
:X:TEXT();/PROGRAM MODULE

/*

RUN(<X,&MOD1>,<&DATA, &TABLE>, <PRINTER>) ;

ENDJOB() ;

This will give rise to the following actions by the target

system:

-

i) the module X will be compiled and linked with
the previously compiled module &MOD1l to form a
program;

ii) This program will be run with its first and second input
sockets connection to &DATA and &TABLE respectively
and 1ts first output socket connected to PRINTER.

We assume that there is some natural ordering of input

and output sockets pertaining to a particular source
language and target system. [Thus for the Multijob version
using Fortran the first and second input sockets are
assumed to be DSET97 and DSETS.)

4,4 Running an Existing Program

Example:

++JOB(DAKIN) ;
!P=PROGFILE('ANAL"');/(ALREADY EXISTS)
1&DATA=TEXT() ;

/*

RUN(P,<&DATA>,<PRINTER,PRINTER>) ;

ENDJOB() ;
Note that in this case the first parameter is not in
brackets. The use of <P> would imply that P is a component
of the program to be run rather than a complete loadable

program.

The connection of PRINTER to two output sockets is allowed;

the two lots of output come out separately.

The assumed ordering of sockets in the previous section still
applies. One can change this order wvia the INLIST and
OUTLIST options. For more general sockets you will need to

use the RUNB function described in Chapter 5.

4,5 Overlay Programs With Tree Segmentation

In this example we will suppose that A,B,C —- F are

already defined as source or object files or text. The
statement:

- 14 -

RUN(<A,2,B,C,2,D,5,E,5,F>, ——— |
specifies the formation and execution of an overlayed program

with a tree overlay structure as follows

A
wodg 2 D
' E‘l hode S

Thus integers as program components represent nodes in the
overlay tree. 1In the absence of node numbers modules are
placed end-to-end. The first occurrence of a particular node
number effectively labels the current store position as

the start of an overlay area. Each set of modules to be
overlayed in this area is preceded by the node number. Node

numbers for tree segmentation must not exceed 99.

Any modules extracted from subroutine libraries are inserted

in the root segment.

4.6 Overlay Region Specification

" The statement:
RUN (<A, 101,8,C, 101,70, 102, B, 102, Fs, ~wu=

specifies a program with the following overlay structure

e o ew wwyam

—— e mm . -

E] Tp: tegion &
Thus, each integer greater than 100 (100+N,say) defines a
new overlay region number N which follows all preceding

regions in store. Again N should not exceed 99.

Some target systems will allow only one ~ type of overlay

structure; if the target system allows both you are free to
mix them, but all node numbers and region numbers must be ‘
distinct (for example, you should not include both 6 and 106

in the program component list). [Multijob does allow both

A

= 15 =

types of overlay.]

4,7 Separate Compilation and TLink Editing

The LINK function allows you to specify the link
editing of a program (with prior compilation if necessary)
without subsequent program execution. Its .parameter list
is of the same form as the program component 1list which
is the first parameter of the RUN function. Thus the
progrém specified in the example in section 4.6 will be formed

by the statement:
LINK(A,101,B,C,101,D,102,E,102,F);

Similarly the COMPILE function is used to specify
separate compilation of a module. If you wish to retain
a compiled module in an object file on the target system
then COMPILE must be used; LINK automatically discards

any object files which it forms.

4.8 Usé of Private Subroutine Libraries

Two functions are available in connection with
subroutine libraries: LIBRARY, which simply defines a
library and CATALOGUE which creates a new library or
updates an existing one. The LIBLIST option is used
to specify which private libraries are to be used when link
editing. The CATALOGUE function requires two parameters: the
first specifying object modules to be deleted from the library

and the second specifying modules to be inserted. .

Examples:

/(&SQORT, &NSQRT, &EXP, A,B AND C ARE ASSUMED
/TO BE ALREADY SET UP AS OBJECT FILES)

- 16 -

/(1) LIBRARY UPDATE:

CATALOGUE (<&SQRT>,/ (DELETED FROM LIBRARY)
<&NSQRT,&EXP>); /(ADDED TO LIBRARY)

/(2) LIBRARY DEFINITION

! L' LIBRARY (&NSQRT,&EXP, 'LOG', 'SIN'); /PARAMETERS

/ SPECIFY ENTRY NAMES

/(3) USE OF LIBRARY IN LINK EDIT

!P=LINK(A,B,C : LIBLIST = <L>);

4.9 Transparent Insertion of JCL

Occasionally you may encounter requirements which
are not catered for by GCL; in such cases it is possible
to use GCL for everything which GCL can handle and directly
insert JCL only where absolutely necessary. The parameterless
function TRANSPARENT is used to define sections of inserted
JCL in much the same way as the TEXT function. [The Multijob
version has the additional functions RTP and NOWTRIALS for
insertion of run time parameters and Trials statements

respectively at appropriate insertion points .]

[4.10 Notes on the Multijob Tmplementation]
The Culham Multijob version includes the option
"SYSTEM which allows you to specify the particular

Culham stream configuration (A,B or C) on which the job is

to run. The setting of SYSTEM should remain constant
throughout the job; its effect is to tailor generated JCL
to the configuration and ensure that stream store limits etc.

are not violated. <

In most circumstances all print output for a job is queued
at the end of the job and so should be contiguous. The
JOURNAL option allows you to control whether or not. journal

files are printed and/or deleted.

When two or more JOLT jobsunder the same user name are
concurrent there are likely to be clashes in journal and
other file names. Clashes can be avoided if each job
initialises the option defaults for TRNO, CBRUN, LSDRUNNQ and
PRUN to a different integer, reasonably well separated (by

- 17 =

10 or so) from all others. Thus one job might use the default

values of 0 while another might include the statements

TRNO=10; CBRUN=10; LSDRUNNO=10; PRUN=10;
after the ++ JOB statement.

Each use of the PRINTER device causes output to be buffered
in a file called PRINT(S) with run number PRUN, which is
incremented on each occasion to make the file

identifiers distinct.

1B =

CHAPTER 5

FUNCTION DETAILS

This chapter describes each of the available GCL functions.
Since one option may apply to several functions with much
the same effects, details of options, settings and defaults

are dealt with separately.in Chapter 6.

5.1 Job Definition
5.1.1 JOB
Purpose: to initiate a job.

Value Returned: none.

Parameters: one parameter which is an identifier allotted

to you as your GCL user name. [If none has been allotted then
a string comprising the Multi job usérname can be used instead,]
Action: the job is initialised. If the user has a GCL
initialisation file this is automatically inserted in the
input stream following the line containing the JOB statement;
this file can contain your own option default settings, file
definitions etc. [This is an S file in your own file space
whose name depends on the GROUP and SETGCL options -
UTPROG.SETGCL(S) if you use defaults.] If this file does not
exist no harm will result, but a warning message will be
generated.

Options: SETGCL[,GROUP]

Note: JOB should-be a ++ statement.

Examgles:'

/(1) USING GCL USER NAME

++JOB(SMITH) ;

/L(2) NO GCL USERNAME ALLOCATED:

++JOB(' JRSCLU' : GROUP=" FIELD") ;

RUN (P ,<&DATA>, <PRINTER>; /DEFINITION OF
/P AND &DATA IN JRSCLU:FIELD.SETGCL(S))

5.1l.2 ENDJOB
Purpose: to terminate a job.
Value returned: not applicable,

Parameters: none.
Action: if no failures were detected then generated JCL is

submitted for execution. If failures were detected the

- 19 -

JCL is diverted to the error stream with all text bodies
contracted to the single line
symrsrmeys TEXT oo v
[In the Multijob version JCL goes to the file UTPROG.JCLOUT(S)
(modifiable by the JCLOUT option) and the error stream to the
file UTPROG.GCLERR(S). Both files replace any previous file
of the same name.]
 Options: [JCLoUT)
Examples:

ENDJOB ();/[JCL TO UTPROG.JCLOUT(S)]

ENDJOB (JCLOUT='MYJCL');/[JCL TO UTPROG.MYJCL(S)]

5.1.3 LINECOUNT

Purpose: to reset the line number count used in failure
messages. This is of value when a GCL setup file is used.
and is known to be error free.

Parameters: a single integer parameter which is to be the

new line number corresponding to the line on which the
LINECOUNT statement terminates.
Value Returned: the old line count.

Options: none.
Example: if the last line of a setup file (invoked by JOB)

18

LINECOUNT(1) ; /RESET LINE COUNT
then this has the effect of excluding lines in the setup file
from line numbers given in failure messages which will, then,

correspond to the actual numbers in the GCL file.

5.2 Device Definition Functions
5241 SOURCEFILE, OBJECTFILE, PROGFILE and DATAFILE

Purposé: to define a file cohntalning source program, a compiled
module, a loadable program or unspecified content respectively.

Value returned: the file so defined.

Actiofi: no action on the target system is speeified by these
functions.

Parameters: a single parameter which is NONAME for an unnamed

temporary file cr a string containing an alphanumeric identifier

- 20 -

of up to 5 characters [6 are allowed in the Multijob version])

for a named permanent file. Unnamed files disappear at the

end of the job.

[Options: for all functions: GROUP,USER,RUNNO, VSPEC and VOL

for DATAFILE only: FTYPE,TRSPEC and TRCYL. Note: TYPEZ files

must be named in the present implementation.]

Note: the same named file should not be defined more than

once in a job.

Examples: *

/(1) SYSTEM INDEPENDENT EXAMPLES
+P=PROGFILE('DOIT');

! &WORK=DATAFILE (NONAME) ;

/[(2)-EXAMPLES SPECIFIC TO MULTIJOB
1&MOD1=OBJECTFILE('MOD1':RUNNO:lOO,GROUP:'XYZ');
1F=SOURCEFILE('ANALYS');/(GCHAR.FILE NAME)

/]

5.242 SCRATCH

Purpose: to define a scratch (unnamed temporary) file.

SCRATCH() is exactly equivalent to DATAFILE (NONAME).

Parameters: none.

[5.2.3 SYSMFLE and SYSUFLE]

Purpose: to concisely define Multijob system program files.

Value returned: the file so defined.

Parameters: one string parameter giving the name of the file.

Action: both define program
files with no run number; SYSUFLE define a
file under SYSTEM:UTPROG and SYSMFLE defines
a file under SYSTEM:MJPROG.
Examples:
«N=SYSUFLE ('NDFHK') ; /DEFINES SYSTEM:UTPROG.NDFHK (P)
1T=SYSMFLE('TRIALS');/DEFINES SYSTEM: MJPROG.TRIALS(P)

5.2.4 TEXT ,
Purpose: to define a body of text in the GCL input stream,
Value returned: the text so defined.

Parameters: none.

Options: TERM

N iy =2

Example:
1&DIST=TEXT();

FUNCTION DIST(X,Y)

DIST=SQRT(X*X + Y*Y)

RETURN

END
£* / (TEXT TERMINATOR)
COMPILE (&DIST) ; /SUBSEQUENT REFERENCE TO TEXT
5.3 Device Manipulation Functions
5.3.1 PRINT

Purpose: to print the information read from a device.

Parameters: one parameter, which is a device.

Value returned: if the device is a target file — the device

itself; if the parameter is text - an unnamed target file
containing the text.

Options: NUMBERED, BIGFILE, [PRINTQ]

Examples:

!F=SOURCEFILE('F'); PRINT(F);/FILE LISTING
!T=PRINT(TEXT<>); /LIST TEXT =>T

/*

[Multijob Sequencing Limitation: at execution time printin
J p g

will always follow previously specified activities but will
not necessarily precede subsequent ones (but PRINT followed
by DELETE is always correctly sequenced). Thus
PRINT(F)}; /PRINT OLD F

RUN(P,<I>,<F>);/RUN REPLACES FILE F

may result in printing the new version of F rather than the
old version as specified. Such situations rarely occur in

practice.])

Be3.2 DELETE
Purpose: to delete a file on the target system.

Parameters: a single parameter which is the file on the target

system.
Value returned: the file which is deleted.

= 92 o

Options: None

[Multijob Restriction: Dedicated files cannot be -deleted

at present.].

Examgle:
DELETE (&F1),
5.3.3 DISPLAY

Purpose: to print and then delete a file.,
Example:

DISPLAY(F); /EQUIVALENT TO:

/ DELETE(PRINT<F>);, OR

/ PRINT(F); DELETE(F); ,OR
/ PRINT(F); DELETE(*);
5s3.4 COPY

Purpose: to copy information from an input device to an

output device.
-Parameters: two parameters, which are the input and output

- devices.

A Action: copying takes place until the end of the information
is reached. Since the only currently available input devices
are text or files, "end of information" is either end of text
or end of file.

Value returned: none.

Options: none,

Note: if the output device is a target file it must not exist
already; if it does exist it should be DELETE'd first.
Example:

+A=DATAFILE('DATA'); !B=DATAFILE('FRED');
' COPY(TEXT<>,A); /TEXT TO TARGET FILE

——— text copied

/* COPY(A,B); /MAKE A FURTHER COPY

5.4 Running Programs
5.4.1 RUN 7
Purpose: To run a program written in a higher level language, with

or without prior compilation and link editing.

—_ P =

Parameters: Three parameters, specifying the program to be run,

input devices and output devices respectively.
lst Parameter: either a program file, or a list of source
files and/or object files and/or node numbers for segmentation.
An element of this list can be:
i) an object file for inclusion in the program,

ii) a source file for inclusion in the program,

iii) a body of source text for inclusion in the program,

iv) an integer N in the range O&N£99 which is

interpreted as a node number for a segmentation tree, or
v) an integer 100+N in the range Og& Ng 99 which is
interpreted as a region number N for segmentation.

Program components are assumed to be laid end-to-end until
a node number is reached; the first occurrence of a node number
defines a position in the code storage area which immediately
follows the preceding component in the case of (iv) or the end
of the longest segment in the previous overlay area in the
case of (v).
' 2nd Parameter: a list of input devices which are connected to)
corresponding entries in a list of input sockets appropriate
to the target system and the source language. [See specifications
of the FORTRANIN, ALGOLIN etc. options for details.]
3rd Parameter: a list of output devices which are connected
to the output sockets appropriate to the target system and
source language. [See FORTRANOUT, ALGOLOUT, etc options.]
Value returned: none. ;
Options: LANGUAGE, CLTIME, CLSTORE, SOURCELIST, OBJECTLIST,

DEBUG, REFERENCES, PROGMAP, MAPLEVEL, LET, LIBLIST,RUNTIME
STCRE, INTERACTIVE, [JOURNAL,SYSTEM,STREAM], plus-options
peculiar to the source languages. Note that the JOURNAL
option allows one to print,; discard, or retain job journals.])

Examples:
i) Run a previously compiled program using in-line text
input plus data held on the target filing system, retaining

the output on the target system:

{P=PROGFILE('ADDUP'); !I=DATAFILE('TABLE');
1&OUT=DATAFILE (' OUTPUT') ;

IT=TEXT();

/l-

RUN(P, <T,I>, <&OUT>):
- 24 -

Ed.)

5.4.2

Purpose:

Form a segmented program and run it, printing the
output.

/ DEVICE DEFINITIONS: |
!&M1=OBJECTFILE('MOD1'); I&MAIN=SOURCEFILE('MAIN');
+&SUB2=0BJECTFILE('SUB2"'); J&SUBS:SOURCEFI@E('SUB3');
! &FUNCTION=TEXT () ;

/*
RUN (<&MAIN, 1,&M1,&SUB2,1,&SUB3, 104, &FUNCTION>,
<&DATA>, <PRINTER>);

This forms a segmented program with overlay structure

AP

noda, |
S

&suee

RUNJOB

To compile and run a single module program supplied

as source text, with one input device supplied as text and

a single output device which is the printer.

Parameters: None. '

Action: RUNJOB(); is precisely equivalent to

Example:

RUN(<TEXT()>, <TEXT()>, <PRINTER>);

)

RUNJOB() ;

/#

/*

(source program text)

(data text)

5.4.3 RUNB
Purpose: to run a program with devices connected to sockets
specified in a general (system dependent) manner.

Value returned: none.

Parameters: there are three parameters:

lst parameter is a program file
2nd parameter is a list of sockets. [In the
Multijob version a socket takes the fofm
of a string which constitutes a'Multijob
symbolic filename.] .
3rd parameter is a list of devices to be
~ connected to corresponding sockets in the

socket list.

Example:

RUNB (P, / PROGRAM P
<'READ', '"WRITE'>, /SFN'S READ AND WRITE
<&DATA, / (CONNECTED TO READ)

PRINTER>); /(CONNECTED TO WRITE)

5.5 Separate Compilation and Link Editing

5.5.1 LINK
Purpose: to form a program from source and/or object modules

without executing it.

Value returned: a program file containing the program; this
file is defined by the PROGSAVE option (default is an unnamed
file).

Parameters: source files, object files, text and node numbers

as described for the first parameter of RUN. Any object files
formed by compilation of components are temporary files.
Options: LANGUAGE, CLTIME, CLSTORE, SOURCELIST, OBJECTLIST,
DEBUG, REFERENCES, PROGMAP, MAPLEVEL, LET, PROGSAVE, LIBLIST,
plus options peculiar to the source language. '
Example: to form the program which is specified in the second
RUN example in Section 5.4.1:

! P=LINK(&MAIN,1,&M1,&SUB2,1,&SUB3, 104,&FUNCTION); *

5.5.2 COMPILE
Purpose: Separate compilation of source code modules, allowing

retention of compiled code in permanent files.

- P E -

Parameters: One parameter which is a device from which source

code is to be read.
Value returned: an object file containing the compiled code.

'This file is a named (permanent) file if the parameter is a
named file - otherwise it is an unnamed (temporary) file.
Options: LANGUAGE, CLTIME, CLSTORE, SOURCELIST, OBJECTFILE,
DEBUG, REFERENCES, plus source language options.

Examgles:
:A:COMPILE(TEXT<>);/RESULT IS UNNAMED FILE

/*
!B=SOURCEFILE('JIM');
!C=COMPILE(B)}3;/RESULT IS OBJECTFILE('JIM')

5.6 Private Subroutine Library Facilities

In their present form these facilities are probably
unduly influenced by the form of Multijob library facilities
and may need to be revised in the light of experience with
other target systems. '

5.6.1 LIBRARY
Purgoée: to define a private library.
Parameters: a variable number (up to 127) of parameters which

are either strings or named source or object files which define
entry names that are satisfied by this library.

Action: the function simply defines a library and does not
specify any action by the target system.
Value returned: the library so defined.

Options: [USER, GROUP - which name the library)
Example:

{A=SOURCFILE('M1'); !B=OBJECTFILE ('M2');
!L=LIBRARY(A,B, 'M3', 'M4' :USER="'JRSMPI');
/EQUIVALENT TO -
/!L = LIBRARY ('M1','M2','M3','M4' : USER='JRSMPI');
!P=LINK(X,Y,Z : LIBLIST = <L,K>); / EXAMPLE
/OF USE OF LIBRARIES IN PROGRAM LINKAGE
/(K HAVING ALSO BEEN ASSIGNED A LIBRARY).

5.6.2 CATALCGUE
Purpose: to form a new subroutine library or update an existing

one.
Parameters: there are two parameters - the first 1s a list of

object files to be deleted from the library and the second

is a list of object files to be added. All files must be named.
Action: 1f NEW=YES a new library is formed (in which case the
first parameter must be an empty list); otherwise an existing
library is updated.

Value returned: none.

Options: [GROUP - which names the library; the user name is

always taken to be that of the user running the job].

Examples:

/(A,B,——— ARE NAMED OBJECT FILES)
CATALOGUE (<>, <A,B,C,D,E>:NEW=YES);/FORM
/- NEW LIBRARY IN DEFAULT GROUP
CATALOGUE (<G,H>,<I,J,K>:GROUP='FRED');

/ UPDATE OF FRED LIBRARY

5.7 List Manipulation

This section describkes some general utility functions which
are particularly useful when manipulating large program suites.
5.7.1 APPLY |
Purpose: to apply a one parameter function to each element
of a list, replacing the list elements by the results of the
function evaluations.

Parameters: there are two parameters : the first is a single

parameter function and the second is a list..

Value returned: a list whose elements are the result of evaluatir

the function with each element of the list, in turn, as parameter
Options: those applicable to the function.

Example:

! X=APPLY(COMPILE,<A,B,C>) ; /EQUIVALENT TO:

/ 1X=(COMPILE<A>, COMPILE,COMPILE<C>);

5.7.2 JOIN

Purpose: to form a single list comprised of the elements of

two or more lists (i.e. concatenate the lists).

Parameters: two or more parameters which are lists.

Value returned: The resulting list.

Example:
!{X=JOIN(<A,B,C>,<D,E,F>); /EQUIVALENT TO:
F1%=(K,B,C, D,E,FJ);

[5.7.3 Multijob Examples using APPLY and JOIN]
(a) Suppose a user wishes to form a program from:
- (1) source files under group FIELD
(2) object files under group FIELD
(3) object files under group UTIL
(4) object files under user JIMKLD, group FIELD

for the sake of brevity, single character filenames will be

used.
GROUP:'FIELD'; ;
J&MODULES=JOIN(/LIST OF MODULES :

APPLY<SOURCEFILE, ('A','B')>, / (1)
APPLY<CBIECTFILE, { *C*, ¥D¥, *E*), J L[2)
APPLY<OBJECTFILE, ('F','G"'):GROUP="'UTIL'>,/(3)
APPLY<OBJECTFILE,('H',’K'):USER:‘JIMKLD'>);/(4)
!&PROG=LINK &MODULES; / "
(b) As a second example, suppose we wish to form the modules
in the previous example into a new subroutine library, named
FIELD, where the entry names are the file names of the
modules (ig. A,B,—-——,K).
GROUP='FIELD';
!&ENTRIES=JOIN(/LIST OF OBJECT MODULES TO BE
/ENTERED IN THE LIBRARY
APPLY<COMPILE, (APPLY<SOURCEFILE, ('A','B')>)>, /(1)
APPLY<BBJECTPILE, (1CY, Dt vE*)5, F (2) -
APPLY<OBJECTFILE,('F',‘G'):GROUP:'UTIL'>,(3)
APPLY<OBJECTFILE, ('H','K') :USER="'JIMKLD'>);/(4)
CATALOGUE (<>, &ENTRIES:NEW=YES) ; /CREATE LIBRARY
LIBRARY &ENTRIES; /AND DEFINE IT

5.8 Trangparent Insertion of JCL
5.8.1 TRANSPARENT
Purpose: to insert target JCL directly, allowing a job

to make use of target facilities not accessible via GCL.

Parameters: none.

- 29 _

Value returned: none.

Action: following lines in the input stream are inserted at
the current position in the GCL-generated JCL until a line
starting with the characters specified by the TERM option
(default '*/**' specifying a /* terminator) is encountered.
The next characters input by JOLT will be those immediately
following the terminator.

Options: TERM.

Caution: transparently inserted JCL is completely unchecked;
its use requires a good understanding of the target JCL. If
in doubt it is as well to examine generated JCL to check that
the combined effect of transparent and GCL-generated JCL is
what you reguire.

[Example: to overcome the current omission of paper tape
punch facilities in Multijob JCL:

TRANSPARENT ();

// SCHEDULE MICCSS:UTPROG.SOPTP,5

// CONFG STORE=3,RSP=2E10,PP=1

// FILE PTP,PP,*

// FILE READ,RA,XXX(S)

// EXEC

‘A

[5.8.2 RTP]
Purpose: to allow transparent insertion of Multijob run time
parameters for a job scheduled with GCL.

Parameters: none.

Value returned: none. .

Action: RTP affects the program most recently scheduled wvia

RUN, RUNJOB or RUNB; its effect is to insert, at the

appropriate place in the generated JCL, a // PARAM line followed
by lines read from the GCL input stream as for TRANSPARENT.
Options: TERM.

Example:
RUN(P, <I>, <PRINTER>};

RTP();/ RUN TIME PARAMETERS FOR P
FIRST PARAMETER

SECOND PARAMETER

/I

- 30 -

[5.8.3 NOWTRIALS]
Purpose: to allow the transparent insertion of Multijob
Trials statements.

Parameters: none,

Value returned: none.

Action: if a Trials run has been initiated by GCL then text
defined by the NOWTRIALS statement (terminated, as usual,
by TERM) is inserted following Trialsstatements inserted by
GCL. If no Trials run is current then a Trials run is
initiated and the text is inserted between bracketing

// TRIALS and // ENDTRIALS statements.

Options: TERM and, if a Trials run has to be initiated,
CLTIME, CLSTORE.

Example: to make use of the Usercode *DUMP option (not
available in GCL):

NOWTRIALS(); /TRIALS STATEMENTS FOLLOW

// UCODE COMP.ANAL

// OPTION *DUMP

/* / (TERMINATOR)

CHAPTER 6

[MULTIJOB OPTIONS, AVAILABLE SETTINGS AND SYSTEM DEFAULTS])
GCL option defaults for the Multijob implementation at Culham

are set up from GCL statements in the file

RJDSUI:GCL.OPTION(S)
which includes comment explaining the significance of each
option and available settings. The file also contains some syster
1imits and standard settings which are applied to generated
JCL in accordance with Culham stream configurations and operating

conventions.
This file has public read access to allow users to keep

themselves informed; a listing of the current version is given

below.

w 3P

LK GCL+OPTIONs»s»U

JEFEERERERRERRFEOPTIONS = SETTINGS AND DEFAULTSHHH+FErrErbbbbbee

t1) - COMPILE OPTIONS
'LANGUAGE = FORTRAN:/

/

ICLTIME =203/

/

ICLSTORE =1303/

/

'SOURCELT ST =YES;/

BRI ECTLI ST =803/

1DERUG =N03 /

IREFERENCES =NOQ3/

/

/=====(1.1)- FORTRAN OPTIOHNS
WMAVIHAMES =NO3/

/

/=====(1.2)- ALGOL OPTIONS
YENTRY =@31 43/

YALGBUG ='ROUTEK,ASSIGH "5/

/

/

/====={1.3)= COBIL OPTIONS
1COBYAP ="MAP»{REF";/

/

/=====(1.4)~ USERCODE OPTLONS
YACLIB ="SYSTEY';/

/

f=====(1.5)= LSD JPTIONS
IGENTIME =503/

'‘LSDD ='DECL "i/

ILSDE ="EXTS"/
'LSDSTACL=100;3/

ALY ={ESy/

'LSDU ="'MTCCSS '3/

ILSDG ="JEWLSD*; /

ILSDP ='PROG":/

/

/

/f========== {2) - LIN{ EDIT OPTLONS
/

'PROGHAP =(ES;/
"APLEVEL ='MAP";/
/

/

SOURCE CIDE LAVGUAGE~ ALSO :
=ALGOLs, COBIL, UCODE OR LSD

TIYE LIMIT FIR COMPILE & LIHK
(N ETU (1 ETU =3.5 SEC. CFU)

STORE FOR COMPILLE & LINS EDIT
[4 512 BITE UNITS

COMPILER SOURCE LISTING

COMPILER OBJECT CODE LISTING

COMPILER KTC. DIAGVOSTICS

={ES FOR COMPILER SY#BOL TABLES

={ES FOR LARGE TABLE COMPILER

EXTRY NAMEl DEFAULT IS FILEJAME)
ALGOL DERUG FACILITIES
([HYILED I F DEBUG= TRS)

COBOL REFEREVNCES SPECEIFLCATION

MACRO LI BRARY

.

YACROGEN ERATION TIME LIMIT (BT
LSD GLOBALS IN USER: GROUP.LSDDI S)
EXTPROCS [N USKR: GROUP.LSDE(S)
SIZE OF LSD STACK

=N [F {07 MALH MODULE

USER NAME ¥IR LSD ROUTIHES
GROUP FOR LSD ROUTINES

LSD PROGRAM NAME

PROGRAM MAP (SEE MAPLEVEL)

THIS GIVES MODULE {AP-
='(REF' ADDS CRJISS REFS.
{10 EFFECT [F PRIGAAP =479)

- 33 -

‘LET ={ BSi / =40 FALLS LI FDIT [F AdY

/ ONSATLSFLED REFERENCES

'ERREY =NO3/ ={ kS FOR ERROR EXIT FACTLITY
VECTI ="DUAYT "5/ EFROR BKXIT LABRL (LIN{ED TJ

/ DASATISFOED REFRREJCES)
IPROGSAVE =@tSCRATCH(): / FILE 19 HOLD LIALED PRIGRAA
ILIBLLST ={)3/ LIST OF SUBRIOTINE LI BRARLES

/ TO BE USED ¥ LINS EDIT

/ A

/

[========== (3) - PROGRAY EY{ECUTE OPTIOVS

/.

YRUATIYE =203/ TiME LIMIT- ELAPSED TIME DNITS
/ (1 FeTeUe = APFRIY. 3.5 SECS.)
ISTORE =130/ STORE REQUIREKD (512 BCTE UIITS)
VNTERACTIVE = 03/ ={ES [F [HAT'VE 9B VERY SHIRT
LTOURYAL =tDISPLAT:/ . ACTION TALET OY PRIGRAM JOURIALS
/ ALSO: =DELETEs RETALH, PRINT
/

f=====(3.1)~ SOCKET LISTS FOR RUVY FUJCTION

IFDRTRANIV=(37y 593} 3/ FORTRAN [HPUT DATE SETS
TFORTRANDGT=(33+I3s 69 7933/ OuTPOT

VELGOLLIY =(2205221522215/ ALGAL [NPOT CHANARLS

VALGOLOUT =(230:251+232)5/ OO0TRUT

ICIBOLIA =t 1)/ . CORIL [HPUT

1COBOLOUT =(3) 5/ QUTPUT

LUCODIN =(3920405/ USERCODE [N¥PUT~ FILED FILERs .«
tUCODSUT =(1,3:5)3/ OUTPUT

VLSPIN =(Hhe &) 3/ LSD [HPUT- READsHERGE

YLSNJUT =010 0037 QUTPOT= PRUATs PUNCH

VENLTST =@ FORTRAJI N ALGOLT Vs CORILI N, UCODI Ny LEDI TV LAJGDAGE; / [/ P SICL{ETS
OUTLLST =%(FORTRANOUTs ALGOLDUTy CIBOLIUT, UCODIUTs LSDIUT) LAVGUAGE: / D/ P

/

f========== (4) = SUBRDUTINE LTBEARY (CATALOGUE FUJICTIDN¥Y OPTIIIS

/

N =03/ =YkS TF 4kW LIBRARY BELYG FIRLED
7/ .

/

f========== (B) - [N-LINE TEXT OPTIONS

/

YTERM e LINE STARTLIG WITH TERM IS

/ TEXT TERAINATOE (DEFADLT /%)
/

/

/========== (&) - PRINTER LISTING OPTIOJVS

/

INIMBERED =N03/ =YES FOR LINE NOS. OV LISTIAGS
YBIGFLLE =03/ ={ES I[F IT WILL EXCEED

/ HOR4AL PRLIT LIMIT

'PRENTG = ®IF<BIGFILEs **/2% "™/1%3/ ="/3" KTC. FOR PRIYT O 3 ETC.

- 34 -

/

========== (7) - JCL GENERATION OPTIONS

/

M CLOUT ="ICLOUT'; JCL SFiIT T2 FILE-

/ USER: GROUP. FCLOUT(S)

/ \ JCLOUT [5 UP T & C{ARS.

ISETGCL ='SETGCL":/ SETUP FILE ([ASERTED B{ fOB):

/ USER: GROUP.SETGCLI S)

/ (UP T) 6 C{ARS.)

ISESTEM =MJ A3/ =By MIC FOR CULIA4 STSTEMS B» C

/

/

/========== (3) - MULTIJOB FILE SPECILFICATION JPTILONS

/

WRONND =03/ RUN Y0. FOR FILES % PROGRAM ERUYS

/ (0 TO 993 IF =J0RUIND [F NO4R)

USER =Y ULLSTR; / USER WAME (6 CIARS.)

/ DEFAULT [S SET BY TJB Fi.

GROUP =UTPROG;/ GRIUP JAME (UP TD 6 CIARS.)

IFTYPE =T{PES:/ T{PE CODFE FOR DATAFILE % SCRATCH

/ =TfPES FOR DATA OR LSD SQURCF»

4 =T{PEF FOR FORTRAY SOURCE CODE

/ =T{PRA FOR ALGIL SOURCE»

/ =T{PEC FOR COBIL SIURCE,

/ =T{ PREU FOR USERCODE SOURCE»

/ =T{PE{ FOR CI4FILED 4ODULE,

/ =TYPLP DR LOADABLE PROGRAY,

/. =T(FEY FOR PARTITIOIED ACCESS,

/ =T{PEZ FOR DED{CATKD FILES

IWWSPRC =303/ =SPVOL [F VILUME SPECIFLED,

/ =VSEQ [F SEQUEICE 4. OF

/ AULTI-VOLUYK FILE SPECIFLED

1oL =3/ VOLOAE OR VOLUAK SEQ. 0.

/ [3/A [F VSFRC=4D)

ITRSPEC =40;/ =TRACL/CYL, [F TRACC/CYLIVDER

/ [4CR. SFECLFLED (TfPKZ 040i()

YPRCY L =437/ TR{/CI{L [NCREAEST (/A [F TRSPHEC=

NO)

/

/

f========== (J) - LOWER LEVEL 4ULTIJOB OPTLOVS

/

ITRLALS = NO3/ =({FS [F TRIALS RUY CURRF4T

/ (GRFTFERALLY SET AUTIAATICALLY)Y

'STREAM =E{ [F<TRLALS»1sI FILNTERACTL YEy 29 51 >s/ MULTFLTORB STREAY:

/ . STSTRL A = TRUALS TH Ay

/ [ITHRACTLYE [1 Ry RLSE R
[F<[UTRRACTI VEs 25 1>/ S{STE4 B~ [AT'VE (9 By FLSHK A
1V SYSTEM: / STSTES €= ALL Ld STHEAY A

/ =19Prees FIR STRFAYS Ay Brses

ITRYY =03/ (AT TLAL RUY). FOR TRIALS

- 95 -

tCHRUN =h/ [ILTLAL ROY ¥De FOH CALLBACGK

IDEVICE =DLSCi/ DEVICE T{PFK

ILSDRUNND =03/ [AITIAL RUJ 4. FOR STAGE?

/ & LSDPP

'PRUV =03/ [NITL AL RUY 43 FOR BRIVT FILES
/

/

/

FRbbbb bbbt bbb EEERESTSTEY LIMITS % STAIDARD SETTIAGSHrttbbbrbbtbbes
£

PATRUITIME =COiST @< / MAXEHUM TI4ARE LLATTS (KT -
(30,20 100 1O 250 100) 4/ STREAMS A M) F (S{STEA M)
(1000520 10001 4/ h T C {SISTRA B)
(1000, 10N >S(STkA STREAM: / A & B (SISTEA C)

IMAYSTORE=CONST < / GAXTADd STIRE SIZFES -
{180, 2005365 32,4000 63) 4/ STREAAS A TO F [SESTHL #)
(6344133, 123),/ B TO C (SCSTHA B)
(336631 =>SISTH STREAM;/ A& B ISYSTRHSE O

PRANC =COIST 237/

IPRIDNWI T =CONSTA< / PRIDRITI S = STREA4S As Ryawe
(12913 100100 R 10}/ SYSTeEA A
(12:13%010) 4/ SCSTEA B

. (124 13%}>=57STE4 STREA4/ SYSTE4 C

/

e] I:\JD

w7

CHAPTER 7
[HOW TO USE THE MULTIJOB VERSION OF JOLT)

7.1 Operation from a Terminal
An interactive JOLT run is initiated by the console
command JOLT. The form of the JOLT command is:
?// JOLT filename[,,,run]
where filename is a file containing the GCL statements to

be translated. Further parameters can follow, the specification
of these being identical to those for the RUN command (see
Multijob Remote Terminals manual); the only parameter which
you should ever need to use is run number (tfo avoid clashes

with other people under the same username).

On completion of the translation JOLT types thé message
GCI. oK

or .

TRANSLATION FAILED

as appropriate. In the latter case the failure messages
and generated JCL are available foriﬂspection in the file
UTPROG.GCLERR(S),

If translation is successful the generated JCL can be inspected
in the JCL output file (see Section 5.1.2). Tt can then

be submitted to the system for execution via a RUN or REMJOR
command. This is a temporary arrangemént - a more automatic
mode of operation will be implemented when more experience

has been built up.

Non-interactive execution of JOLT can be initiated via
the REMJOLT command, which has the same parameters as JOLT,

but sends termination messages to the JOLT journal.

7.2 Failure Messages ‘ ‘
Any error which is detected in a GCL job causes the

generation of a message of the form:
FATLURE f LINE n LAST IDENTIFIER READ: ident
LAST 4 IDENTIFIERS ACCESSED: ident ident ident ident

- 37 -

where f i1s an integer identifying the reason for the failure,

which was detected on the nth line read by JOLT after reading

the specified identifier (denoted by ident). The line count
normally includes all lines read from substituted files;

Section 5.1.3 shows how lines from the setup file, automatically
inserted by the JOB statement, can be excluded from this

count. The second line of the failure message is an implementation

diagnostic aid which is of little significance to users.

There are some "suspicious circumstances'" (such as identifiers
longer than 12 characters) which also give rise to error
listings but do not cause the translation to fail. In such

a case WARNING replaces FAILURE in a message of the above form.

All failure and warning messages are sernt to the file
UTPROG.GCLERR(S).

Reasons for failures or Warnings are given (at Culham) in the
file RJDSUT:GCL.FAIL(S) in which line numbers correspond to
failure or warning numbers. Thus, if UTPROG.GCLERR(S) contains
a line starting

FATLURE "'12 ——-

then the terminal command

LOOK RJIDSUI:GCL.FAIL,12

will tell you why.

7.3 Keeping Up to Date

GCL has been implemented in a way that makes it relatively
easy to extend its facilities and change their form. Every
attempt will be made to react appropriately and promptly to
user suggestions. It is to be hoped, therefore, that corrections,
improvements and extensions will occur at a rate that revidons

of this manual could not hope to match in the early stages,

The resulting information problem is to be tackled on three
fronts:
i) where practicable, changes will not invalidate the

specifications in this manual,

e e

14}

iii)

up-to-date information on options, defaults and

system constants, in the same form as Chapter 6, will
be available at Culham in the file RJDSUI:GCL.OPTION(S).
Since the information in this file is actually used

to set up JOLT, its authenticity is guaranteed.

other information will be given in the file
RJDSUI:GCL.NEWS(S).)

7.4 How to Scream

Users are invited to participate in the interactive

development of GCL. Culham users should refer all guestions,

comments, suggestions and bouquets to:

Bob Dakin
Ext. 6133
Room G13,LE6

For users outside Culham Laboratory the full address is:

Dr R J Dakin
UKAEA

Culham Laboratory
Nr Abingdon

Berks

Telephone Abingdon 1840, Ext. 6133

- 39~

APPENDIX 1

How to Write GCL Fuﬁctions

It is possible for you to write your own GCL funﬁtions to
perform recurring tasks. Function definitions can be included
in your setup file, invoked automatically by JOB, in which
case they‘become, in effect, private extensions to GCL. A
group of users cén share a set of file definitions maintained
in a single file by including appropriate SUBST statements

in their setup files,

Al,1 The Form of a Function

A function is a sequence of GCL statements bracketed by @ and #

symbols. [In Multijob either the teletype # or the

punched card/line printer #, which corresponds to the teletype
character\(shift L) can be used.,] Statements in the .
function are separated by semicolons as usual, but the
terminating semicolon for the final statement (immediately

before the terminating #) can be omitted.

A function constitutes a Single syntactic unit. It usually
forms the right hand side of an assignment statement in which
case it must be followed by a semicolon to terminate the

statement.- ' ;

Execution of a function auvutomatically términates at the end of
the function; no special RETURN statement is required. The
value returned by the function is the value returned by the
final statement in the function. -

Examplé: the RUNJOB function is defined by the statement:
! RUNJOB = @ RUN (<TEXT()>, <TEXT()>, <PRINTER>)#;

A 1.2 Reference to Call Paramelters

The first, second --- parameters of a call on a function are
referred to inside the function as %1, 22, ———. '
Call parameters are evaluated once only, before the function

is entered.

[Example: Suppose a user wants to define a number of object

files under the Multijob user name CLIXXX (not his own), group

ROUTE and run number 237. This could be coveniently handled
by creating a function called &CLFILE as follows:
! &CLFILE = @OBJECTFILE(Z1:USER = 'CLIXXX"',
GROUP='ROUTE', RUNNO=237)#;
/ EXAMPLE OF CALL ON THIS FUNCTION:
«A= &CLFILE('ANAL'); / DEFINES A TO BE THE FILE
/ CLIXXX:ROUTE.ANAL(Y2370)]

A 1.3 Assignment Scope ,
The scope of GCL assignments is governed by the following

rule:
an assignment is only effective for the duration of
the statement or function in which it occurs; thereafter

the identifier concerned reverts to its original setting.

This rule provides the option default override behaviour
already described, and can be used in a number of other

ways. For example an identifier, used to hold intermediate
values in one function, can be used for the same purpose in other
functions without any risk of mutual interference, since the
above rule implies that assignments inside a function have

no external effects. The two identifiers TEMP and TEMPA are
used by system functions to hold intermediate results and

are available to users for the same purpose.

Another implication of the assignment scope rule is that
you cannot write a function that uses ordinary assignment to
initialise variables - since all assignments are nullified

on exit from the function.

Since all identifiers obey the assignment scope rule there

is no essential difference between options and other identifiers --
your own identifiers can be referred to inside your own functions
and make use of the normal default setting (ie. assignment

outside a function) and override facilities.

A 1.4 Other facilities
A number of other facilities such as loops and conditionals

are available in GCL but are outside the scope of this

manual.

- AT =

