CLM-PDN 2/74

A GENERAL PURPOSE QUEUEING MECHANISM
by

D A Fox and T Lang

ABSTRACT

The gueueing mechanism is designed to support any kind
of batch processing facilities in which tasks have to be
queued. It was designed for a small machine, to be simple,
flexible and yet provide comprehensive facilities for job

control and management.

U.K.A.E.A. Research Group
Culham Laboratory
Abingdon

Berkshire

May 1974

1.
2

3.

CONTENTS

INTRODUCTION

DESIGN CRITERIA

SYSTEM DESIGN

3.1 Basic Philosophy

3.2 Basic Procedures

3.2.1 Planting entries on gqueues
3.2.2 Removing entries from queues
3.3 Data Structure

SOFTWARE

4.1 Coding Notes

4,2 Disc Input/Output

4.2.1 Open

4.2.2 Read/Write

4.2.3 Release

4.3 Basic Queueing Procedures

4.3.1 Procedures to plant entries in queues

4.3.2 Procedures to extract entries from queues

IMPLEMENTATION NOTE
CONCLUSIONS
ACKNOWLEDGEMENTS

REFERENCES

PAGE

10
10
10
10

10

12
13

13

APPENDIX A

APPENDIX B

APPENDIX C

Al
A2
A3
Al

A5

A6
A7
A7.1
A7.2
A7.3

Modular 1 Implementation
General Message Format
Functions and Parameters
System Functions

General Purpose Queueing System -
with debug code

General Purpose Queueing System -
production version

Initialisation of Queue File
Operator Utility Programs
Operator Utility Program 1
Operator Utility Program 2
Operator Utility Program 3
General Flow Charts of Queueing
System

Check Queue

Add to Queue

Serve Queues

Get Entry

Remove Entry

Detailed Flow Charts of Queueing
System

Check Queue

Get New L abel

Add to Queue

Revive Servers

Revive

Serve Queues

Get Entry

Priority

Round Robin

Order Queues

Search Queue

Remove Entry

Access Q File

Basic Utility Routines

Get Q Descriptor

Get S Descriptor

Descriptor

PAGE

o

>

O O w w w

QO 0O N OO0 000000000

N N

10
11
12

bW

1 O W D

11
12
13
Lo

16
17
18

Get Q Entry

Q address

Get position in Q
Modulo

Get Q S Matrix

Q S Element

Disc Input/Output Routines
Read Q File

Write Q File

Read Q C B

Open Q File
Release Q

Set Save Marker

O 0 0O 0 0 0O

O 0 O O 0 0

PAGE

- 21
- 22
- 23
- 24

- 25
- 26
- 27
- 28
- 29

l. Introduction

A general purpose queueing systeml is an important component
in an intelligent satellite system since many different tasks
have to be performed by several different processes. These
tasks are processed at different rates and so have to be placed
on queues until the process is ready to handle them. A gueueing
system is needed to administer these queues.

This article describes the design and implementation of such
a system.

2. Design Criteria

1. The queueing mechanism is to work on a small (i.e. 16 bit)
machine equipped with disc backing store.

2. The software should occupy as little core store as
possible,

3. Portable - so that coding can be moved to different
machines with the minimum of effort.

4. The system should be as general as possible and be
independent of the nature of any tasks handled by the
system.

The queueing system should alsc have the following facilities:

5. Spcoling - the intermediate buffering of tasks on backing
store. This is reqguired as different procesées will service
and generate tasks at different rates. This facility also
allows tasks to be generated even if the service breaks
down (e.g. jobs for transmission to remote machines
can still be added to the appropriate queues).

6. Fail-soft - the ability to restart the system after system
breakdowns without loss of data.

7. Resource Pooling - sharing tasks according to lcoading
e.g. several line printers handling the same print queues.

wi

This provides a continued, though degraded, service in
the event of individual break downs.

8. Queue selection - selecting tasks for service either
by priority or "round robin'", e.g. printing short files
before long ones.

S. Operator control - allowing the operator to control and
monitor the system loading.

10. Accounting - simple accounting and statistics should
be available e.g. number of entries serviced by a
process.

3. System Design

The queueing system must be capable of supporting any kind
of "batch processing" requirement which involves input activities
putting entries on queues, and processing activities subsequently
removing them.

3.1 Basic Philosophy

To indicate the flexibility of the gqueueing mechanism, it
is convenient to first consider the basic philosophies underlying
its design. A queue is made up of a list 6f filenames; each file
is presumed to hold data which requires processing by some
"serverV. Alsc associated with each file name is the name of
the user who placed the entry on the queue, and a set of markers
which can be used to convey additional information to the queue
server (e.g. to indicate that the file is to be deleted when its
contents have been processed).

A gqueue is held in a backing store file. The file is of fixed
length (i.e. fixed at system generation time) and used as a
circular buffer. All entries are treated as first-in-first-out.
Priority scheduling is achieved by planting entries on different
queues. (This approach simplifies queue maintenance, and minimises
the number of backing store accesses required to add and remove

e B o

queue entries, whilst still leaving a good level of operational
convenience).

The information describing all the queues (e.g. pointers to the
head and tail of each queue) are held in a single compact data
block. (This is convenient where one server needs to inspect
several queues). Also held in the queue control block is a
queue/server matrix. This has a row for each queue and a column
for each server. If there is a non-zero entry at the intersection
of a row with a column, then the corresponding server is required
to process the indicated gqueue. 1In the simplest case there is Jjust
one server to each queue. Where one server serves seyeral gueues,
then the next queue to be served can be chosen in several ways
€.g. on a round robin basis, or according to a priority rating.

In the latter case the entries in the column of the queue/server
matrix indicate the relative queue priorities. It is also possible
for several servers to serve just one queue - this is indicated

by several entries in the same row of the queue/server matrix.

Operator control of the system is effected by a program which
accesses the queue control block. This program will provide facilities
to

(a) 1list and alter the gueue/server matrix

(b) 1list queue details, clear queues, reset queues (for warm
restarts)

(c) 1list server details, turn servers off.

Whenever a new server process is activated. by the operator, it
will first ask from which column in the queue/server matrix it is
to take its instructions, and provided no other server is already
using the same column, it can proceed accordingly.

The queueing system as described above allows the system manager

great flexibility in the control of the overall system. Queues

may be utilised to store tasks which are held up by problems
elsewhere in the computing system - e.g. mainframe or communication
1ine failures. Less important work can be held on queues which

are only serviced in of f-peak periods. Tasks can be split into
streams according to relative priorities. These streams can be
interleaved, so that lower priorities are only ser ved whilst no
higher priority work 1s waiting. (The utilisation of high priority
queues can be rationed via the use of the accounting system).

Work for different RJE links may be interleaved on the same
Satellite peripherals (i.e. a card reader/line printer pair).

In the case of very high transmission rates, several sets of
peripherals may be set to support one line. In the case of very
low transmission rates, one set of peripherals could share its

load over several communication lines.

The general purpose queueing system also maintains some
accounting statistics. The queue control block holds individual
totals for the number of jobs processed from each gueue and by each
server. One of the facilities offered by the operator control
program is the ability to 1ist these totals (optionally resetting
the entries to zero at the same time).

3.2 Basic Procedures

The mechanism has been designed as a set of procedures,
two to be called by generating activities which plant entries
on queues, and three to be called by serving activities which remove
entries from dgueues.
The means of driving these procedures from calling processes
is left to the implementor. The possibilities are:
(a) Embed the procedures in the calling processes

(b) Plant the procedures in a separate segment, but still
as part of the calling process

-4 -

(c) Embody the procedures in a separate activity, called
via some message mechanism of the supervisor.

It is likely that (c) should be preferred.

3.2.1 Planting Entries on Queues

Procedure CHECKQUEUE can be called by any process which
knows that it is about to generate a new queue entry. Its
primary purpose is to confirm that a specified queue is
available for use and that it has room for a further entry.

The procedure is actually a function, and the success or
failure of the check is indicated by the value it returns.
(All queueing procedures use this technique,) It may be used
to give the generating process early warning of any problems,
but does not guarantee that when it actually attempts to plant
an entry on the queue, using procedure ADD TO QUEUE, it will

definitely be successful.

A process which is going to generate a new gqueue entry
may well need to create a new file to hold the material of that
entry. This new file has to be given a name which is unique
within the file system. To assist in generating this name,
CHECK QUEUE will cptionally return, on request, a set of four
alphanumeric characters. These characters may be used directly
to form the new file name; however it is anticipated that in
general they will be appended to the end of the 8 character user
name to give a more informative file name. The 4 character label
will be "incremented" upon each generation.

A flowchart for CHECK QUEUE is given in Appendix B (tcgether
with the flowcharts for ADD TO QUEUE and SERVE QUEUES).

Procedure ADD TO QUEUE is used to plant an entry on a gueue.

The caller must specify:

gqueue number

file name (of file containing material to be processed)

user name (of user initiating the entry)

marker word (see section 3.3)

Upon return, if the entry has been successfully appended to its
queue, the caller is informed of:

gueue status (i.e. whether or not it is currently being served)
position of entry in queue

tag number

The tag number identifies the physical position of the entry in the
gueue file. This tag number may subsequently be used to service
status queries or a cancellation request by direct access, and
obviates the need toc search the whole queue to identify a particular

entry.

3.2.2 Removing Entries from Queues

When a serving process first starts up, it should identify
itself to the queueing mechanism via procedure SERVE QUEUES. The
caller must specify its server number - i.e. the column in the
queue/server matrix from which it will take its instructions. The
procedure checks the validity of the server number and that no
other server is operating with the same number.

To obtain details of the next entry requiring service,
procedure GET ENTRY should be used. The caller must again specify
his server number. The procedure will return all the details of the
next entry requiring service - i.e.
file name
user name
marker word
If there is no entry requiring service, the calling process will
be suspended until one becomes available. The flowchart for GET

ENTRY is given in Appendix B,

Procedure GET ENTRY marks the corresponding gqueue entry
as being serviced, but does not remove it from the system. When

service 1is completed, removal may be effected by a call on REMOVE

- B

ENTRY. The caller need only specify his server number. The
flowchart for this procedure is given in Appendix B.

3.3 Data Structure

The format of the queue control block is as follows
(the CLSD2 manifest constant/integer names are given in brackets):-

0 number of queues (NQUEUES)
1 pointer to start of queue descriptions (QDESCRIPTOR)
" 2 number of servers (NSERVERS)
3 pointer to start of server descriptions (SDESCRIPTOR)
4 pointer to start of queuie/server matrix (QSMATRIX)
5-8 unique 4 character alphanumeric label (one
character per word)

The queue descriptions are stored sequentially, each 'description

consisting of 9 words

Word 0 pointer to start of reserved queue area (QSTART)
1" 1 1" " end " 1" " 1" (QEND)
" 2 pointer to head of queue (QHEAD)

" 3 i " ofail W " (-1 = gusue full) (QTAIL)
" 4 number of entries (QENTRIES)
" 5 tag. number for next entry (NEXTAG)
" 6 gqueue status (-1 = do not use
(QSTATUS) 0 = may be used)

! 7 number of entries serviced since accounting

last performed (QSERVICE)
" 8 number of entries queue will hold (QMAXENTRIES)

The tag number of a queue entry is the relative serial number of
that entry from the time the queue was first used. When specified
in conjunction with a STATUS queue, it can be used to determine
whethef that entry has been serviced or its relative-position in tﬁe
queue. When specified in conjunction with a CANCEL request it
can be used to access the corresponding queue entry directly - i.e.
position in queue file = tag number/size of queue. (A CANCEL
command should of course carry out some checks - e.g. a comparison -
of user names - before altering the queue entry,)

The server descriptions are stored sequentially, each

description consisting of 5 words :-

Word O Server status (-1 do not use (SDONOTUSE)

I

(SSTATUS) 0 = no server active with this
number (SINACTIVE)
1 = active (SACTIVE)
2 = active and currently serving
an entry (SACTIVESERVING)
3 = suspended, awaiting entry

to serve (SSUSPENDED)
4 = server waiting but entry has
been placed on queue (SSUSQREADY)
5 = waiting - no gqueue(s) allocated
to server (SHASNOQUEUE))

queue number of entry being served (SQNUMBER)
position in queue of entry being served (SQPOSITION)
number of entries served since start-up (SSERVICE)
markers (bit 1 = 1 if termination has been

SMARKER requested (TERMINATE)

bits 13 - 15 queue selection algorithm (SELECTALG)
priority (PRIORITALG)

round robin (ROUNDROBINALG))

> w -

1l

1
2

The gqueue/server matrix is made up of one word entries; it
has a row for each gueue, a column for each server. A non-zero
entry indicates the priority with which the server serves the
corresponding queue (to be interpreted in conjunction with the
server's queue selection algorithm).

A queuincg system may be set up with any size of queue control
block. One page would be sufficient to hold details of 14 queues
with 6 servers.

All queue entries consist of 16 words:-

Words 0-7 file name (QFILENAME)
" 8-11 user name (QUSERNAME)
" 12 marker word (QMARKER)
L 13 service indicators (QSERVICEIND)
(bit 15 = 1 entry is present (Q ENTRY PRESENT)
(bit 14 = 1 entry is being served) (QBEINGSERVED)
n 14-15 spare

The marker word may be used to convey additional information
to the server. Bit 15 of this word is always used to indicate
0/1 = do not delete/delete file after serving.

The significance, if any, of the remaining bits, will be

specific to particular servers.

- 8 —

4, Software

The queueing system has been written in Culham Language for
Systems Development (CLSD)3 as the software is intended to be
portable. (CLSD is a language designed to facilitate portability
whilst generating efficient object code.)

The procedures have been written to allow the system to be

implemented in any of the ways indicated in section 3.2

4.1 Coding Notes

No records (descriptors, queue entries) of the queue file
overlap a page boundary (a page is the unit of disc transfer -
on the Modular 1 this is 256 words) and all like records are
contiguous on the backing store. These restrictions have two
results a) only one disc buffer is required thus helping to keep
the software small and b) only one basic routine is needed to read
any record into core. Further, any word .of the queue file can be
accessed as it is merely a record of unit length.

This basic routine, DESCRIPTOR, gives the address of the
required record in the disc buffer. The parameters are

(i) the record number (e.g. queue descriptor 5)

(ii) the record length (e.g. length = 9)

(iii) start address of the first record relative to the beginning

of the queue file. (e.g. first descriptor starts at
word 9 of queue file)

All accesses to the queue file are mdde via this routine.

4.2 Disc Input/Output

The disc I/O is single buffered into the array given by the
global constant "QFILEBUFF". Four routines handle the I/O.
(i) open g file
(ii) read g file (disc address)
(iii) write g file

(iv) release g

4.2.1 Open

This routine will normally be a dummy routine and only
carry out a simple check to make sure the file is open. Normally,
no alterations will be needed as it will be better to leave the
queue file permanently "open" (i.e. open the queue file once
at the beginning of each session).

4.2.2 Read/Write

A routine will be needed to read to/ write from a given
disc page. |
4.2.3 Release

This routine will not need alteration if the recommendation
to leave the queue file permanently open is accepted.

Note that "write g file" is never called by the queue routines.
To reduce disc accesses a routine "SET SAVEMARKER" is called to
set a marker indicating that the contents of the disc buffer have
been altered. This marker is examined by '"read" and "release"
and if set, the buffer is written to disc before carrying out the
required operation.

4.3 Basic Queueing Procedures

The procedures listed below are given in the LSD format,
where the parameters in the first pair of brackets are input
parameters, and the second set of brackets (if any) contain the
output parameters.

4.3,1 Procedures to Plant Entries in Queues (i.e. for Generators)

a) FUNCTION ADDTOQUE (Q,USER,FILE,MARKER) (STATUS,POSITION,TAG)
Function to add an entry to a dqueue.

Input Parameters

Q - gqueue number to receive entry

USER - address of 4 word array (2 characters per word) containing
name of user initiating entry '

FILE — address of 8 word array (2 characters per word)

containing name of file to be processed.

MARKER marker word (See section 3.3)

- 10 =

Output Parameters

STATUS - status of queue

POSITION - position of entry in queue (relative to start
of queue)

TAG - tag number associated with this entry

Function Values

add to queue = { entry successfully added
-1 1invalid queue number
-2 this queue not to be used
-3 queue full
-4 queue file fails to open

b) FUNCTION CHECKQUEUE (Q,GETLABEL,LABEL)
Function to check state of a queue

Input Parameters

Q - queue number
GETLABEL - 1 to generate a unique label (which can then be
used to form a new file name)
- 0 do not generate a new label
address of 4 word array (1 character per word)
to receive new label if requested.

LABEL

Function Values

checkqueue = § successful
-1 invalid queue number
-2 this gueue not to be used
-3 queue full
-4 queue file fails to open

4.3.2 Procedures to Extract Entries from Queues (i.e. for Servers)

a) FUNCTION GET ENTRY (S,FILE,USER)(MARKER)
Function to get next entry to be served from a queue.

Input Parameters

5 - server number

FILE - address of 8 word array (2 characters per word) to
receive name of file to be served

USER - address of 4 word array (2 characters per word) to

receive user name.

Output parameters

MARKER — marker word (see section 3.3)

- 11 -

Function Values

entry successfully obtained

invalid server number

invalid server status

termination requested (entry to be ignored)
invalid selection algorithm

queues for this server empty

no queue(s) allocated to this server

gqueue file fails to open

get entry =

|
o wNhHER

b) FUNCTION REMOVE ENTRY (S)
Function to remove entry from queue served by server S

Input Parameters

S - server number

Function Values

remove entry = @ entry removed from queue
-1 invalid server number
-2 invalid queue number being served
, or gueue has no server
-3 queue file fails to open

c¢) FUNCTION SERVE QUEUES(S)
Function to identify a server to the queueing system.

Input Parameters

§ - server number

Function Values

identification successful
invalid server number
server already in use
server not to be used
queue file fails to open

serve gueues =

s whH®R

5. Implementation Note

1. Set the machine dependent values as required in the CLSD
text. These manifest constants are:-

DISC BLOCK SIZE word size of disc block

PARITY MASK - mask toc remove parity bit

CHAR{ , CHARO - character constants

CHARA ,CHARZ - without parity bit

TERMINATE - termination bit (set to terminate a

server in server descriptor marker word)

A 17

Note: it is assumed that characters -9,A-Z have consecutive
values for their internal representations (with parity bit removed).
If this is not so then the routine "GETNEWLABEL" must be re-written.
2. Select appropriate values for the system constants (only

required when creating a new queue file).

MAXQUEUES - Maximum number of gueues in system
MAXSERVERS - Maximum number of servers in system
MAXQENTRIES - Maximum number of entries in any queue.

3. Write the disc I/O routines open, read, write, release as
required (see section 4.2), adding any extra global variables

as redguired.

4. Select the method to be used in implementing the system

(see section 3.2) and write a main controlling routine if needed.
5. Process the CLSD routines to produce the desired code for

the target machine.

6. Conclusions

The general purpose queueing mechanism will provide a
convenient and flexible mechanism for the matching of tasks
to‘resources, including provision for spooling, priority
mechanisms, the pooling of resources and warm restart facilities.

7. Acknowledgements

The concepts underlying this work were developed during
study of intelligent satellite systems sponsored by Computer

Technology Limited, whose support is gratefully acknowledged.

w I8 =

REFERENCES

A General Purpose Task Queueing Mechanism for Small
Machines by T LANG and D A FOX. Software - Practice
and Experience Vol 4, pages 333-444.

LSD Manual by V J CALDERBANK and M CALDERBANK. CLM-PDN 9/71
A Portable Language for Systems Development by

M CALDERBANK and V J CALDERBANK. Software - Practice and
Experience Vol 3, pages 309-321.

MISER - A minimum size executive for the Modular 1 by
M CALDERBANK CLM-PDN 1/73

APPENDIX A

The Modular 1 Implementation

Modular 1 Implementation

The queueing mechanism has been implemented as a single
core resident program running under MISER4. It is activated
by other processes, by an exchange of messages, using the

MISER message facility. The queue routines access the disc

file directly.
The layout is shown schematically below.

GENERATOR PROCESS GENERAL PURPOSE SERVER PROCESS
(ADDING TO QUEUE) [¥| QUEUEING MECHANISM [€ (REMOVING FROM QUEUE)

)

OPERATOR
CONTROL
PROGRAM

D

OPERATORS
CONSOLE

The full specification of the MISER message facllity is given

in the MISER manual.

Al General Message Format

a) Transmitting Data to Queue System
The A register is set up as follows
bits 2° - 2! segment containing data area (2 = Y, 3 = Z segment)
I channel on which message is sent (must be 2)
25 - 2'* 10 bit flag field

ghE not used

The B register contains the address of a data

area where word @ - function number defining gqueue operation
word 1 onwards - parameters of the corresponding function.
The M register contains the PRN of the core resident gqueue routines
(currently 5).
b) Data returned from Queue System
The A register is set up as follows

1

bits 2° - 2 segment specification (@ as no segment is passed)

22 _ 2% channel on which message is sent (always 2)

25 _ 2'% 10 bit flag field, exactly as transmitted by
the caller.

ge set to 1

The B register contains the integer result of the call. 1In
addition the contents of the function parameter list may have
been updated as appropriate.

The 10 bit flag field, sent in the A register by the caller,
is returned unchanged by the queueing mechanism. This may be used
to hold an identification number enabling a process to have more
than one call to the gueueing mechanism outstanding at the

same time.

A2 Functions and Parameters
Function @ - check queue
Parameters

1 gueue number
2 marker = 1 if a new label is to be generated
3 address of 4 word array to receive label

(1 character per word)

Message word returned
¥ success
-1 queue number invalid
-2 queue is not to be used (status = -1)
-3 queue full
-4 queue file fails to open

Function 1 - add to gueue

Parameters

~ O U

queue number

address of 4 word array containing name of user
initiating entry (2 characters per word)
address of 8 word array containing name of

file to be processed (2 characters per word)
marker word for queue entry

status of queue set by
position of entry in queue the queue
tag number associated with this entry system

Message word returned

g
-1
-2
-3
-4

Function 2

Parameters
1

success
queue number invalid

queue is not to be used (status =-1)
gueue full

queue file fails to open

- serve queues

server number

Message word returned

g
-1
-2
-3
-4

Function 3

Parameters
1
2
3

4

success
server number invalid

server already in use

server not to be used (status = -1)
queue file fails to open

- get entry

server number

address of 8 word array to receive file name

(2 characters per word)

address of 4 word array to receive user name

(2 characters per word)

marker word (set by queue system) - see add to queue

Message word returned

@
-1
-2
-3
-4
-5
-6
-7

Function 4

Parameters
1

success
server number invalid

invalid server status

termination requested

invalid selection algorithm

queues for this server empty

no queue(s) allocated to this server
queue file fails to open

- remove entry

server number

Message word returned

@ success

-1 server number invalid

-2 invalid gueue number/gueue has nc server
-3 queue file fails to open

Function 5 access queue file

This is a special function added to allow the operator

control programs access to the queue file. The routine
allows either any word of the queue file to be read

or any bit of any word to be altered.

Parameters
1 read-write flag (O=read, l=write)
2 word of queue file to be accessed + 1
3 1
4 zero
5 =zero
6 address of area to receive the word (read/write

flag=0) or word to be written to queue file
(read/write flag=1)

7 mask to allow bit changing of a word (read/write
flag=1)
all bits zero to replace whole word.

Message word returned

@ success
-1 queue file fails to open

A3 System Functions

The operator control programs which carry out system
"repairs" on the queue file e.g. reset the system after a
crash need exclusive control of the queue file while active. This
is achieved by having extra functions giving access to the disc
input/output routines. A program can open the queue file, and
keep it'"locked" during updates so that normal functions such as
adding to a queue are prevented. When the update is complete,
the queue file is released. These extra functions have values

starting at 100.

Function 100 - open g file

Parameters — none

Message word returned

@ success
-1 file failed to open

Function 101 - read g file

Parameters

1 - disc address (page number)

Message word returned

@ - read successful
-1 - read failed

Function 102 - set save marker

Parameters - none

Message word returned - not used

Function 103 - release g

Parameters - none

Message word returned - not used

Function 104 - get disc buffer

Parameters - none

Message word returned

address of disc buffer used by the core-resident

gueue routines.

Ad

GENERAL PURPOSE QUEUING SYSTEM - WITH DEBUG CODE
Function
To service aueue file

Core Requirements

YT 10:4:0

Running
This program must be loaded as PRN 5.

The program uses its own disc I/0. There are two alterations
required before running.

a) The disc page address of the start of the queue
file (currently 3000). This value is in location
1557 of the X segment.

b) A check is made for illegal disc addresses. The
upper limit of the gueue file is stored in location
1496 of the X segment in the form 'SBB L n', where n
is the upper limit. n should be changed to correspond
to the page size of the queue file as given by the
initialisation program. (currently n=9).

Termination

This program will only terminate if an error is detected.
The most likely failure pcints are given below:

Program Counter :
Decimal Hex Reason for Failure
98 62 invalid function value
235 EB " " "
1491 5D3 negative disc address) queue file
1500 spe disc address too high) corrupt
Note

This program contains debug code. It also prints the queue
number being served and the selection algorithm used to
select the entry on the monitor console.

GEniRAL PURPOSE QUEUING SYSTEM - PRODUCTION VERSION ("SMALL"M)

Function

To service queue file

Core Reguirements

Riyim

6:2:0

Running
This program must be loaded as PRN 5.

The program uses its own disc I/0. There are two alterations
required before running.

a)

b)

The disc page address of the start of the queue
file (currently 3000). This value is in location
1511 of the X segment.

A check is made for illegal disc addresses. The

upper limit of the queue file is stored in location

1468 of the X segment in the form 'SBB L n', where

n is the upper limit. n should be changed to correspond
to the page size of the queue file as given by the
initialisation program. (Currently n=9).

Termination

This program will only terminate if an error is detected.
The most likely failure polints are given below:

Program Counter .
Decimal e Reason for Failure
61 3D invalid function wvalue
189 BD n " n
1466 5BA negative disc address) queue file
1471 5BF disc address too high) corrupt

Ab

INITIALISATION CF QUEUE FILE

Func tion
To set up a queue file on disc

Core Regquirements

X:1V:iZ 6:6:0

Running

The program uses its own disc I/O.

Word 806 of the X segment

contains the disc page address of the start of the queue
file (currently set to 3000). Change this word to suit your

requirements.

Prompts and Responses

See example.

EXAMPLE

EXAMPLE OF QUEUE FILE INITIALISATION

TINT: RN
PRN: 6;
PTY: 2;

MAXTMUM NUMBER OF QUEUES FOR THIS SYSTEM = 14
MAXIMUM NUMBER OF SERVERS = 6

MAXIMUM ENTRIES IN ANY QUEUE = &4

NUMBER OF QUEUES?3;

NUMBER OF SERVERS?2;

ALPHA NUMERIC 4 CHARACTER LAREL?1234

QUEUE FILE HEADER PARAMETERS

3 QUEUES WITH DESCRIPTORS STARTING AT O

2 SERVERS WITH DESCRIPTORS STARTING AT 36
QUEUE SERVER MATRIX STARTS AT 46

FILE LABEL IS 1234

OK?Y

INITIALISATION OF QUEUE DESCRIPTORS

QUEUE 1 Note: No. entries is always rounded up to a
NUMBER OF ENTRIES?4; muitiple of 16.

START 1,END 2,ROOM FOR 16 ENTRIES

ORZXL

QUEUE 2

NUMBER OF ENTRIES?16;
START 2,END 3,ROOM FOR 16 ENTRIES
OK?Y

QUETE 3

NUMBER OF ENTRIES?17

START 3,END 5,RO0OM FOR 32 ENTRIES
OK?2Y

INITIALISATION OF SERVER DESCRIPTORS

REPLY 1 FOR PRIORITY,2 FOR ROUND ROBIN SELECTION ALGORTTHM
SERVER 1
AL.GORI THM?
OK?Y
SERVER 2
ALGORITHM?2;

OK?Y

SET UP Q-S MATRIX

i

REPLY 0 SERVER NUMBER WHEN FINISHED
SERVER NUMBER?1;

GIVE Q/PRIORITY

REPLY -1 TO MOVE TO NEXT SERVER1/3,2/2,-1:
SERVER NUMBER?2;

GIVE Q/PRIORITY

REPLY -1 TO MOVE TO NEXT SERVER3/1,-1;
SERVER NUMBER?j;

Q SERVERS
1 2
1 3 0
2 2 0
301
OK?YWRFTE Q FILE ENTERED BUT SAVE MARKER NOT SET
WRITE Q FILE ENTERED BUT SAVE MARKER NOT SET debug code

WRITE Q FILE ENTERED BUT SAVE MARKER NOT SET
WRITE Q FILE ENTERED BUT SAVE MARKER NOT SET

DISC BLOCK SIZE OF Q FILE = 5
OK?Y |

A7.1

OPERATOR UTILITY PROGRAM 1
Function
To access gqueue and server descriptors

Core Requirements

N & 5:3:¢

Running

The core resident gueue routines must be loaded as PRN 5
and must be running before this program is activated.

Commands
The command is typéd in response to the query
2
The reply can consist of up to 6 characters terminated by

a semi-colon. Command names may be truncated. The commands
avalilable are

QSTATUS Print queue status and number of entries
SSTATUS Print server status and selection algorithm
QALTER Alter queue status (to "on" or "off")

STERM Set termination marker of a server

AALTER Alter selection algorithm of a server

HELP Lists the commands available to the console
HALT Terminate program

SALTER Alter server status (to "on" or "off")

Prompts and responses

All numbers should be terminated either by a "/" or ";"
The program is sent back into command state if
a) 3 is the first character of the reply

b) if a complete range of values has been reqguested
e.g. if the status of all queues has been requested.

Command Prompt Response

QSTATUS

SSTATUS

QALTER Q/STATUS? gqueue number/new status

(ON or OF)

STERM SERVER? server number

AALTER S/ALG? server/new algorithm
PR=Priority or RR=Round
robin)

SALTER S/STATUS? server number/new status
(ON or OF)

AT7.2

OPERATOR UTILITY PROGRAM 2
Function
Queue-Server Matrix control program

Core Requirements

il 6:2:0

Running

The core resident queue routines must be loaded as
PRN 5 and running before this program is activated.

Commands
The command is typed in response to the query
?

The reply can consist of up to 6 characters terminated by
a semi-colon. Command names may be truncated. The commands
available are

QLIST Print entries in a queue

MALTER alter elements of the queue-server matrix
MLIST print the queue-server matrix

HELP lists the commands available to the console
HALT terminate program

Prompts and responses

All numbers should be terminated either by a "/" or 1
The programe is sent back into command state if

a) ; is the first character of the reply

b) if a complete range of values has been requested,
€.g. 1if the contents of all queues have been listed.

Command Prompt Response
QLIST Ql/Q2? range of queues e.g. 1/3
MALTER al)Q/s? queue number/server number

blelement? new value of matrix element
MLIST

A - 11

A7.3 OPERATOR UTILITY PROGRAM 3

Function
To reset queue file after a system "crash".

Core Requirements

b i s 11:3:¢

Running

The core resident routines must be loaded as PRN 5 and must be
running before this program is activated. The system shouldbe
quiescent. Any other program accessing the queue file when
this program is active is likely to fail "queue file already
open'".

Commands
The command is typed in response to the query
7
The reply can consist of up te 6 characters terminated by a

semi-colon. Command names may be truncated. The commands
available are:

QcB Print queue control block (all information except
queue entries)

DALTER Alter any word of quew or server descriptors.

CLEARQ Clear entries from a range of queues.

RESETQ Reset queue file (for use after system crash).

HELP List available commands.

HALT Terminate program.

Prompts and Responses

All numbers should be terminated either by a "/" or ";"
The program is sent back into command state if

a) ; is the first character of reply.

b) if a complete range values has been requested (e.g. all
queues cleared).

Command Prompt Response
acB
DALTER TN/A/V? T(type)=S(server) or D(descriptor)

N (number)=descrig*or number
A(address)=word of descriptor to

be changed
V(value)=new value
e.g. S1/@/-1; sets word ¥ of server
descriptor 1 to -l.

CLEARQ Ql/Q27? range of queues e.g. 1/3
RESETQ

A - 12

APPENDIX B

General Flow Charts for the

General Purpose Queueing System

WSINVHOIW
ONINANO dSO0dMNd TV INTD

dN3N0 MOIHO

— DINAID0dd 9NINIAND

5

ﬂ

ZMDHMW SS302NS

JIId 3N3ND 3ISYITIA

e

d1Id 3NIand NI T39vT 4Lvadn

|
TIEVT LOVIIXD

e

NINIR HOWdT ON _ o]
TIId 3n3ndD ISYITTI ¢q3qIaN TIEY'T

5 |

NINLR] HO¥dT
I1I3 303N0 ISVITIA
L

TINd _
TI0d LON 3N3ND MOTHD

=

NINLT Yo¥¥d

T 77T UITVANT ©

ON :i;

aIsn 39 ol ININD MOIHO

J1I4 3N3ND MD0T ANV NIJO
|

|
HIEWNN 3NIN0 MOFHD

A

(AVI¥Y TIGVI‘ON FNAND) 3NIND MOTHD

aanpsooad as3s3iut

WSINYHOEW

ONININO ISOLINd TvIINID

INdnd oL aav

TINAII0Ed ONININD

Y

NANLEE MO¥Ed
A4 aTId INAND ISVITIY
NINLIA H0¥dT _

!

LIX3 S5300NS

AJYSSTOAN JI (S)YIAYIS FIATATI

31Id IN3IND ISYITIA

dOVd 3LIdM

A4INT adv

F9Vd AMINT 3n3nd avTd

dOVd ¥3AvVIH NINLIA

QIATATY J9 OL S¥IAYTS ANV AT, ILON

|

VL mz<\mDmDO NI ZOHHHwom_MHoz

TTIJ 3N3ND ASVITI

|

ON :
dNEND NI WOOM SDTHD
1

£
€

NINLIT d0993
|

|
R agasn dg 0L 3nInNd XOFHD

|

A20Td TOILNOD AVIM

|

I7I3 3ININD MO0T ANV NIJO

< |
T 1
dITVANT ON 3NIND YOTHO

(ON 9VI°NOILISOd %

‘SNIVLIS ANANOMIOM ADIIVH
CIRYN ¥ISNCIWYN ITII°ON INdNd) InInNd 0L day

aanpaooad asfejut

WSINVHOIW

ONININO ISOMNd TvaANID

SANIND 3IAY3S

JINAID0Id ONINAND

_
NINLTI JOdAT

b,
ITId INAND dSYyITTA

i}

LIX3 SS3I00NS

_
I71d 3nAnNd ISYaTTd

JOVd ¥3dvIH NINITA

SYILNTIOd AMINI QNV

N3N0 INTRIND ¥YITO

_
JATLIOV SV ¥JANIS VA
<

JA¥ES 0L S3ANAND ON

dsn NI AQVTITY

A%
NINLTY Joudd
L

-
adsn 394 oL ILON °

STIVIAA Mmammm YOTHD

dOVd ¥3AYIH qvad

J1Id 3NIND ¥O0T ANV NIJO

s

QITVANT -::|:_
ON ¥3A¥ES 3OTHD

A

(ON ¥3A¥3IS) SANAND TANTS

sdanpsooad asFajut

Y
IIX3 S5300NS
|
9114 dn3nd ISYITIA
I
dOvd ¥dav3IH QMBAQ&D NINLIL

AN3ND SIHI ¥0d JOIAYAS
INIYINOI mmHmHj ON 31vadn

SNIVIS dIAYAS %
YIAYES STHL ¥0d XUINI
QIAIIS ATLNTIEND JLVAdN

|
d9vd d3dvIH avId-3d

I9vd aIIvadn !
TAVS ANV wwazm WIVH

STIVIIA AJLNT LOVILXd

——

mwmm LX3N
)
AJLNT LX3IN
ON

&

SdA

1
&39Vd 40 aNd

(qAA3sS 9NIFd AQVIITV)

| i

(QIATATH)
_
I
_
_
_
TVIATIATS LIVM

114 3N3INO ISVITI

doVd d30VIH MNANLIA

STIA (IOTIAMIS SAIAN AMINI SNIVLS ,dN-aTdH, _Hmm
|
Jovd dndNd J0 dVdH avad (ON)
1 — -
Y SdA ;30IAMAS ONICIIN IATND ANV

MINLTE HOTd I

|
d114 m:mDo_mm¢mqmm.

Y

- ALTHOT¥d

WSINVHOINW

ONININD ISOINd TVIINID

AINT L3O
- @Na3ID09d 9NININD

(QITYANT) NISOY aNNOd
\ < : < _
= WHLIJ0DTY
i NOIIOTTAS dNAND NO HOLIMS
MINLTI JOuNT
|
3113 IN3ND ,ISVITH]
;AILSANDTI NOILYNIWIA
0L MONIT ¢ SLLLRLIBELE
I713 2NAnNd, ISYITI
qo9d3
SALYLS ANV ON MIAI3S xﬂmzo
Tov¥d ¥IAVIH avad
< _
TIII 3NIND MO0T ANV NIdO
NMINLAT ORI T . |
QITVANI

1
ON ¥3AY3S »MO3HO

A

(TMOM IDNYRK® IWYN ¥ISN° IWYN TTII°ON ¥IAYIS) AMINT 139

sanpevoad as8alut

SWSINVHOIW SNININD ISOLINd TvIaANID

KIINT TAOWTM
- TNQI00dd ONINAND

dN3N0 JI0 avIH MAN ¥0d HOUVIS

Y

ZMDHmm_mommm

4

3IX3 SS3IIONS

d114 dn3Nd ISyaII1Td

dOVd ¥3IAVIH NINLIA

I0IND NI SHIMINA 3 IANIAS SATUINT IILvadn

|

SNLYLS ¥IAYIS 13sTd

dovd

dIdv3IH avII-3o

&
i€ ,
SYALNIOd ININD JO0 aAvay IISTH
|
d9vd ¥IAYIH QvDi-Td
¢HIIM ANOQ AYINT
Z 1
1
EERS ¢4naNd AN
Jﬁ
J9Vd 3ndNd IXAN avad
v]
ON N 1

&d9¥d dndand J0 aNiI

AMINT ILX3N OL ¥ld JONVAQY

<

|
¢dNand 40 AVIH LV AMINI SVM

dOVd AMINT N3N NINLTI

HLIM INOd SV AMINT VK

_ dovd mmazm InaND avad

J1Id MDMDﬂ dSYIT1Td

Y

ZMDHMM_MOMMM

qoTII N |
SNLVLIS % ON 0A¥MAS MOTHD

dOVd Y3AVY3IH avad

J114 m:m:o_zuoq aNV NAJdo

QITVANI N L
ON ¥IAYIS MOTHO

A

(ON ¥3A¥3S) AMINT FAOWTA

ON

v

APPENDIX C

Detailed Flow Charts of the General Purpose Queueing System

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX, T LANG,CULHAM LABORATORY, ABINGDON
,FUNCT10N CHECK QUEUE (Q,GET LABEL,LABEL) -MODULE LSD.CHECKQ (S)

OPENQFAI
B1

EXIT WITH CHECK
QUEUE = -4

D1
GETNEWLABEL

GENERATE NEV
ALPHA-NUMERIC
LABEL

A2
START HERE '

/

——B82
OPENQFILE

FAIL
OPEN QUEUE FILE

B4
GETQUESCRIPTOR

GET ADDRESS OF Q
DESCRIPTOR (@

CONTROL BLOCK

SUCCESS
7 QOFF
C2 C3
READOCB RELEASEQ
READ QUEUE

CLOSE QUEUE FILE

MAY QUEUE
BE USED ?

D2

NEW LABEL
REQUESTED ?

YES

NO

INVALIDQ
F1
RELEASEQ

CLOSE QUEUE FILE

61y
EXIT VITH CHECK
QUELE = 1

v

F2
QUEUE
NUMBER (@)
VALID ?

s

EXIT WITH CHECK
QUEUE = -2

IS QUEUE
FULL ?

Ef
RELEASEQ

CLOSE QUEUE FILE

FuN
EXIT WITH CHECK
QUELE = 0

CHART P1

GFULL
—0
RELEASEQ

CLOSE QUEUE FILE

ESJ

EXIT WITH CHECK
QUELE = -3

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX,T LANG,CULHAM LABORATORY, ABINGDON CHART P2
PROCEDURE GET NEV LABEL (LABEL) -MODULE LSD.CHECKQ (S)

A2
[START HERE l

B2

GET ADDRESS OF
LEAST
SIGNIFICANT
CHARACTER

el INCREHENiz
c2

SET CHARACTER TO
A

RECYCLE
D3

SET CHARACTER TO
0

E4

GET ADDRESS OF
PRECEEDING
CHARACTER

INCREMENT
CHARACTER

EXIT
el

COPY LABEL TO
0uT PUT
ARRAY”LABEL”

'

/

G2
SETSAVEMARKER

SET SAVE DISC
BUFFER MARKER

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG, CULHAM LABORATORY, ABINGDON

FUNCTION ADD 70 QUEUE (Q, USER, FILE, MARKER) (STATUS, POSITION, TAG) ~MODULE LSD. ADDTOQ

OPENQFA

1
B1
EXIT VITH FAIL
ADDTOQUELE = —4

A2
START HERE

/

B2
OPENQFILE

OPEN QUEUE FILE

SUCCESS

/

c2
READGCB

READ QUEUE
CONTROL BLOCK

INVALIDQ
01
RELEASEQ

CLOSE QUELE FILE

D2

QUEUE
NUMBER (@)
VALID ?

=

E2
GETQDESCRIPTIR

EXIT WITH
ADDTOQUELE = -1

GET ADDRESS OF
DESCRIPTOR @

QOFF
—F1
RELEASEQ

CLOSE QUEUE FILE

EXIT VITH
ADDTOQUELE = -2

F2

CHECK QUEUE
STATUS

CHART P1
v
B4 B5
UPDATE SETSAVEMARKER
TAG, NUMBER OF
ENTRIES, HAND MARK DISC BUFFER
BACK POSITION IN ALTERED
QUEUE
Y es ¥
REVIVESERVERS

RESET POINTER TO
TAIL OF QUEUE

WAKE UP SERVERS
IF NECESSARY

SAVEQCB i

D4
SETSAVEMARKER

~——[05
RELEASEQ

MARK DISC BUFFER
ALTERED

CLOSE QUEUE FILE

——E4
GETQENTRY

GET ADDRESS OF
QUEUE ENTRY

QFULL 7
——F3 Fi
RELEASES COPY FILE/USER

NAMES, NARKER
WORD TO 0
CLOSE QUELE FILE FILE.SET ENTRY
PRESENT

63y
EXIT WITH
ADDTOQUELE = -3

Esy
EXIT WITH
ADDTOQUELE = 0

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG, CULHAM LABORATORY, ABINGDON
PROCEDURE REVIVE SERVERS (@ -MODULE LSD.ADDTOQ (S)

A2-
START HERE

§

B2

SET UP LOOP
COUNT, S, FOR ALL
SERVERS

c21s
QUEUE Q

SERVED BY
SERVER 5

D3
REVIVE

IS SERYER S

SUSPENDED ? REVIVE SERVER S

E2

£ UPDATE COUNT S |3

3

F2
LooP NO

COMPLETED ?

CHART P2

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG,CULHAM LABORATORY, ABINGDON CHART P3
PROCEDURE REVIVE (DESC) -MODULE LSD. ADDTOQ (S)

B3
START HERE

f"(l?

SET SERVER
STATUS TO
SUSPENDED BUT
QUEUE NOT EMPTY

/

03
SETSAVEMARKER

SET DISC BUFFER
ALTERED

£z
EXIT

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX,T LANG,CULHAH LABORATORY, ABINGDON
FUNCTION SERVE QUEUES (S} -MODULE LSD.SERVEQ (S)

A2
START HERE

IIIHI'I

\\/

B4

az‘
UPENGF%{ DPENGFILE
EXIT WITH SERVE FAILY
QUELES = -& OPEN QUEUE FILE
SOCTESS
l‘z‘
READGCB
READ QIJEUE
CONTROL BLOCK
INVALIDS
D1

D2
SERVER
NUMBER (S)

SET ACCUMULATOR
= VALID ?

E2
GETSDESCRIPTOR

GET ADDRESS OF
SERVER
DESCRIPTOR (S)

FAILEXIT
F3

SERVER
STATUS 7

F2

SERVER
INACTIVE ?

ACTIVE

DONOTUSE
G634

SET ACCUMULATOR

SET SERVER S

ACTIVE. CLEAR
VALUES Q@ NUMBER
AND Q@ POSITION

Ch
SETSAVEMARKER

SET DISC BUFFER
ALTERED

HL‘
RELEASEQ

CLOSE QUEUE FILE

E4
EXIT WITH SERVE
QUELES = 0

Fé

SET ACCUMULATOR

CHART S1

|'|E|.

EXIT
BS V

SAVE ACCUMULATOR
IN FAILNUMB

CS
RELEASEQ

CLOSE QUEUE FILE

o5y

QUEUES =
~FAILNUHB

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX, T LANG, CULHAM LABORATORY, ABINGDON

FUNCTION GET ENTRY (S, FILE, USER) (MARKER) -MODULE LSD. GENTRY (5)

OPENQFAL

Bl—,
EXIT VITH GET FAIL]
ENTRY = -7 OPEN QUEUE FILE

INVALIDS

A2
START HERE

———B2 /

OPENQFILE

SUCCESS

Vv

C2
READGCB

READ QUEUE
CONTROL BLOCK

D1
RELEASEQ

D2

CLOSE QUELE FILE

SERVER
NUMBER (S5)
VALID ?

Ef
EXIT WITH GET
ENTRY = -1

STATUSER

F1
RELEASEQ

CLOSE QUEUE FILE

61y

EXIT WITH GET
ENTRY = -2

E2
GETSDESCRIPTOR

GET ADDRESS OF
SERVER
DESCRIPTOR (S)

TERMINAT
B3

SET SERVER
INACTIVE AND
CLEAR
TERMINATION
MARKER

- YES

y

——_C3
SETSAVEMARKER

SET DISC BUFFER
ALTERED

D3
RELEASEQ

CLOSE QUEUE FILE

A

EXIT WITH GET
ENTRY = -3

——F3
RELEASEQ

CLOSE QUELE FILE

63y
EXIT VITH GET
ENTRY = -4

TERMCHEC
B4£5

SERVER
TERHMINATION
SET ¢

C4

SERVER
SUSPENDED 7

NO

E4
SELECT
QUEUE BY
PRIORITY

ROUNDROB
G4
ROUNDROBIN

GET ADDRESS OF
NEXT ENTRY TO
SERVE

YES

YES

CHART Gl

QUEUESEH 1y
C5
RELEASEQ

CLDSE QUEUE FILE

05
EXIT WITH GET
ENTRY = -5

PRIORITY
ES
PRIORITY

GET ADDRESS OF
NEXT ENTRY TO
SERVE

G2 A2

ENTRY TO
SERVE ?

UPDATE
.

EXTRACT ENTRY

DETAILS. MARK

ENTRY AS BEING
SERVED

D2
SETSAVEMARKER

MARK DISC BUFFER
ALTERED

¥

E2
GETSDESCRIPTCR

GET ADDRESS OF
SERVER
DESCRIPTOR (8)

— RV

UPDATE QUEUE
NUMBER AND
POSITION IN
QUEUE. SET
STATUS "ACTIVE”

G2
SETSAVEMARKER

MARK DISC BUFFER
ALTERED

]

AIT

R | [, —
GETSDESCRIPTOR

GET ADDRESS OF
SERVER
DESCRIPTOR (8)

C3 IS
SERVER
ALLOCATED ANY
QUEUES ?

03

QUEUE EMPTY-SET
SERVER STATUS TO
“ SUSPENDED"

£V

SETSAVEMARKER

MARK DISC BUFFER
ALTERED

\/

63
RELEASEQ

=
—

CLOSE QUELE FILE

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX, T LANG,CULHAM LABORATORY, ABINGDON
FUNCTION GET ENTRY (S, FILE, USER) (MARKER) -MODULE LSD.GENTRY (S)

NOGTOSER
T4

SET SERVER
NO STATUS TO “NO
QUEUE ALLOCATED
T0 THIS SERVER”

Y

D4
SETSAVEHARKER

MARK DISC BUFFER
ALTERED

E4
RELEASEQ

CLOSE QUEUE FILE

Fud

EXIT WITH GET
ENTRY = -6

G4
EXIT WITH GET
ENTRY = 0

CHART G2

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX,T LANG,CULHAM LABORATORY, ABINGDON

CHART G3
PRIORITY (S) (Q,P)-MODULE LSD.GENTRY (S)

A2.
START HERE

/

——B82
ORDERQUEUES

DRDER QUEUES BY
PRIORITY IN
GLOBAL ARRAY

c2 /

EXTRACT NEXT
E>{ QUEUE NUMBER
FROM ARRAY

SCANNED

04
END OF LIST 7 ALLOCATED ANY Pt L
QUELES ? is

E2
SEARCHQUEUE

SEARCH QUEUE FOR
ENTRY AWAITING
SERVICE

E3
EXIT VITH
PRIORITY = 0

F2

ENTRY
PRESENT ?

it

PRIDRITY =
DDRESS OF ENTR

GENERAL PURPOSE GUEUEING MECHANISM. D A FOX, T LANG, CULHAH LABORATORY, ABINGOON
ROUND ROBIN (S) (Q, P) -MODULE LSD.GENTRY (8)

Al
START HERE
A B2
GETSDESCRIPTOR
INCREMENT GUEUE
GET ADDRESS OF NUMBER BY 1 |,
DESCRIPTOR 5 (RECYCLE IF
NECESSARY
) i
i c2
QSELEHENT
GET NUMBER OF
QUEUE LAST GET GUEUE-SERVER
SERVICED MATRIX ENTRY
o
SET UP LOOP

CONTROL TO SCAN
ALL QUEUES OF
Th15 SERVER

&

ROUNDROBIN =
DDRESS OF ENTR

E2
SEARCHQUEUE

SCAN QUEUE FOR
ENTRY WAITING
FOR SERVICE

D4 1S
SERVER
ALLOCATED ANY
QUEUES ?

ALL QUEUES
SCANNED ?

E4
EXIT VITH
ROUNDROBIN = -1

0s
EXIT WITH
ROUNDROBIN = 0

CHART G4

GENERAL PURPOSE QUEUEING MECHANISM. D A FOX, T LANG,CULHAM LABORATORY, ABINGDON
DRDER QUEUES (S) -MODULE LSD.GENTRY (S

A2
START HERE

c2
PUT SERVER
NUMBER INTO
GLOBAL ARRAY
“QPRIORITY”

/

SET UP LOOP
CONTROL TO SCAN
ALL QUEUES

——D02

/

E2
QSELEMENT

GET PRIORITY
FROM QUEUE-
SERVER MATRIX

E4
COUNT QUEUES
HAVING HIGHER OR

EQUAL PRIORITY
TO CURRENT QUELE

F2 NULLENTR

Fo Y

F3

ALL QUEUES
SCANNED ?

UPDATE QUEUE
NUMBER

STORE QUELE
NUMBER IN
“QUPRIORTY”
ACCORDING TO
COUNT

G3

CLEAR NEXT ENTRY

Gh
IN “QPRIORITY" []
TO MARK END OF EXIT

LIST

CHART GS

GENERAL PURPOSE GUEUEING MECHANISM. D A FOX,T LANG,CULHAM LABORATORY, ABINGDON
SEARCH QUEUE (@ (POSITION IN @) -MODULE LSD.GENTRY

A3
START HERE

)

B3
GETQDESCRIPTOR

GET ADDRESS OF
QUEUE DESCRIPTOR
(]

QIEUE EMPTY ?

c2
EXIT WITH
SEARCHGUEUES = 0

03
GETPOSITIONING

GET POSITION IN
QUEUE OF HEAD OF

QUEUE

YES —V

E2 GETQENTRY
ALL ENTRIES™_NO GET ADDRESS OF
SCANNED ? ENTRY FROM ITS

POSITION IN @

IS ENTRY
PRESENT ?

UPDATE
——G3
MOVE TO NEXT
ENTRY BY
UPDATING
POSITION.RECYCLE
IF NECESSARY

QUEUES = ADDRESS
OF QUEUE ENTRY

CHART Gé

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG
FUNCTION REMOVE ENTRY (S)-MODULE LSD.REMOVE (S)

DPENQFAT

XIT WITH REMOVE FAIL
ENTRY = -3

INVALIDS
——01
RELEASEQ

CLOSE JUEUE FILE

E1
XIT VITH REMOVE
ENTRY = -1

'’ 't

A2
f START HERE

/

B2
OPENGFIL|

E

OPEN QUEUE FILE

c2
READQCB

SOCTESS

/

READ QUEUE
CONTROL BLOCK

D2
SERVER

VALID 7

NUMBER (S)

STATUSER

]

D3
RELEASEQ

CULHAM LABORATORY, ABINGDON

C4
QSELEMENT

GET QUEUE-SERVER
MATRIX ENTRY

CLOSE QUEUE FILE

E2
GETSDESCRIPTOR

GET ADDRESS
SERVER
DESCRIPTOR S

3y
EXIT WITH REMOVE
ENTRY = -2

— ¥

GET QUEUE NUMBER
AND POSITION IN
QUEUE OF ENTRY

JUST SERVICED

E4
GETODESCRIPTOR

Q

GET ADDRESS 9F
QUEUE DESCRIPTOR

;1:7

UPDATE ENTRIES
SERVICED,

OF ENTRIES

= B /
SETSAVEMARKER

MARK DISC BUFFER
ALTERED

DECREMENT NUMBER

C-13

CHART P1

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG, CULHAH LABORATORY, ABINGDON CHART P2

FUNCTION REMOVE ENTRY (S) -MODULE LSD.REMOVE (5)

¥

D2
SETSAVEMARKER

MARK DISC BUFFER

E2
IS ENTRY

EMPTY ?

IS AN ENTRY
PRESENT ?

REMOVE
g2 B4 I
GETGENTRY SETSAVENARKER
UPDATE POSITION
GET ADDRESS OF IN QUELE TO
——bB>
ENTRY JUST POINT TO NEXT HAR?SDKEEEEEEFER
SERVICED ENTRY
L
NOTHEADS
" o g
GETGENTRY GETSUESCRIPTOR
CLEAR ENTRY GET ADDRESS OF
PRESENT MARKER GElH?gﬂggigYDF SERVER
DESCRIPTOR 5

GET ADDRESS OF

QUELE POINTER

GS‘

SET SERVER
STATUS TO ACTIVE
BUT NOT SERVING,
UPDATE ENTRIES

AS ALTERED
SERVICED
RESET ‘
Ed4 ES
GETQDESCRIPTOR SETSAVEMARKER

MARK DISC BUFFER

AT HEAD OF
QUELE 7 ¥ [AUEUE DE?CRIPTDR AS ALTERED
:4‘ -
RELEASEQ
QUELE NOW RESET HEAD OF

CLOSE QUEUE FILE

65-)
XIT VITH REMOVE
ENTRY = 0

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG;CULHAM LABORATORY, ABINGDON
FUNCTION ACCESS @ FILE (RWFLG, N, LENGTH, START, PTR, A, MASK) -MODULE LSD. ACCESS (S)

A2
START HERE i
B2
DPENGFILE

1
XIT WITH ACCESS FAIL
@ FILE = -1 OPEN QUEUE FILE

UPENFA%L

SUCCESS

v

c2
READGCB

READ QUEUE
CONTROL BLOCK

')

D2
DESCRIPTOR

CET ADDRESS OF
REQUIRED
DESCRIPTOR
(RECORD!

ALTER WORD OF

TRANSFER
——E3

COPY DESCRIPTOR
TO DATA AREA (X)

DESCRIPTOR
ACCORDING TO
MASK AND PTR
EXIT
. / 5 InE /
SETSAVEMARKER RELEASEQ

MARK DISC BUFFER
ALTERED

|y
“"|CLOSE QUEUE FILE

G4
XIT WITH ACCESS
QFILE=0

;

CHART P1

CHART P1

GENERAL PURPOSE QUEUEING MECHANISM O A FOX, T LANG,CULHAM LABORATORY, ABINGDON
FUNCTION GET @ DESCRIPTOR (@ -MODULE LSD.DESC (S)

B3
START HERE

=V
DESCRIPTOR
GET ADDRESS OF

QUEUE DESCRIPTOR
a

D3y

DESCRIPTOR =
ADDRESS

C-16

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG,CULHAM LABORATORY, ABINGDON CHART P2
FUNCTION GET S DESCRIPTOR (S) -MODULE LSD. DESC (S)

B3
START HERE

C3
DESCRIPTOR

GET ADDRESS OF
SERVER
DESCRIPTOR S

03y

DESCRIPTOR
=ADDRESS

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG, CULHAM LABORATORY, ABINGDON CHART P3
FUNCTION DESCRIPTOR (N,LENGTH, START) ,MODULE LSD.DESC (3)

FIRSTBLO

A3
START HERE

g3V

CALCULATE DISC
ADDRESS OF BLOCK
CONTAINING
REQUIRED
DESCRIPTOR

c3

CALCULATE NUMBER
OF DESCRIPTORS
[N FIRST BLOCK

D2
READGFILE

READ FIRST DISC
BLOCK INTO
BUFFER

EQ‘

FORM ADDRESS OF
DESCRIPTOR
RELATIVE TO

START OF DISC
BUFFER

F2

ADDRESS OF
DESCRIPTOR =
RELATIVE ADDRESS
+ DISC BUFFER
ADDRESS

@

DESCRIPTOR =
ADDRESS

03 g
DESCRIPTOR

IN FIRST
BLOCK

D4

CALCULATE
ADDRESS OF DISC
BLOCK CONTAINING
DESCRIPTOR

¥

E4
READQFILE

READ BLOCK INTO
DISC BUFFER

——F#4
FORM ADDRESS OF
DESCRIPTOR
RELATIVE TO
START OF DISC
BUFFER

G4
ADDRESS OF

ADDRESS

DESCRIPTOR = &
RELATIVE ADDRESS DESCRIPTOR =
+ DISC BUFFER ADDRESS

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG,CULHAM LABORATORY, ABINGDON CHART P4
FUNCTION GET Q@ ENTRY (DISC ADDRESS, POSITION) -MODULE LSD.DESC (S)

A3

START HERE '

B3 E?
DESCRIPTOR

GET START
ADDRESS OF QUEUE
ENTRY

3y
EXIT WITH GET O
ENTRY = ADORESS

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG, CULHAM LABORATORY, ABINGDON CHART PS5
FUNCTION @ ADDRESS (POSITION) -MODBULE LSD.DESC (S)

A3
START HERE

B3
CALCULATE START
ADDRESS OF QUEUE
ENTRY RELATIVE

TO START OF
QUEUE

7

ADDRESS =
ADDRESS

GENERAL PURPOSE QUEUEING MECHANISM D A FOX

4+ T LANG, CULHAM LABORATORY, ABINGDON
FUNCTION GET POSITION IN Q (ADDRESS) -M

CHART P&
ODULE LSD. DESC (S)

A3
START HERE

B3 /
FORM POSITION IN
QUEUE OF ENTRY
FROM ITS ADDRESS
RELATIVE TO
START OF QUEUE

£
POSITION IN Q =
POSITION

C-21

GENERAL PURPOSE QUEUEING MECHANISH D A FOX, T LANG, CULHAM LABORATORY, ABINGDON CHART P7

FUNCTION MODULO (T, N) -MODULE LSD. DESC (S)

A3
START HERE

i

CALCULATE T
MODULO N (MODULO
= T-T(T/NeN) }

e

EXIT WITH MODULO
= T HODULO N

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG, CULHAM LABUFATORY,ABINGDDN CHART P8

FUNCTION GET @ S MATRIX (Q, S) -MODULE LSD.DESC (5]
A3
START HERE

=¥

FORM ADDRESS OF
0 S ELEMENT
RELATIVE TO

START OF QUEUE-

SERVER MATRIX

c3
DESCRIPTOR

GET ADDRESS OF
ELEMENT

o

S MATRIX =
ADDRESS

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG, CULHAM LABORATORY, ABINGDON CHART P9

FUNCTION O S ELEMENT (Q, S) -MODULE LSD.DESC (S}

A3
START HERE

§

——B3
GETASMATRIX

GET ADDRESS OF
QUEUE SERVER
MATRIX ELEMENT

£z

GET CONTENTS OF
ELEMENT

B3]
ELEMENT =
ELEMENT

c-24

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANGyCULHAM LABORATORY, ABINGOON
FUNCTION READ @ FILE (DISC AODRESS)-MODULE LSD.DISCIO (S)

A3
START HERE

IS QUELE
FILE OPEN ?

C3 IS

DIsC

PAGE ALREADY

IN CORE
¢

YES

D3
HAS DISC
BUFFER BEEN
ALTERED

SAVE DISC
ADDRESS IN

——04
WRITEQFILE

WRITE DISC
BUFFER TO DISC

GLOBAL

F3
DISCT

READ FROM DISC
TO DISC BUFFER

EXIT st

XIT VITH READ Q
FILE = DISCT

CHART P1

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG;CULHAM LABORATORY, ABINGDON CHART P2

FUNCTION VRITE @ FILE-MODULE LSD.DISIO(S)

A3
START HERE

B3

82
NO IS QUELE

DuMP la——<FiLE open 7
YES

———C3
DISCT

)
FAIL WRITE DISC
DA l<S—— BuFFER TO QUELE
FILE

SOCCESS
Y
CLEAR BUFFER

ALTERED MARKER
(SAVE MARKER)

E3j
EXIT WITH WRITE
O FILE = 0

Cc-26

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG,CULHAM LABORATORY, ABINGDON

FUNCTION READ Q@ C B-MODULE LSD.DISIO (S)

A3
START HERE ’

/

B3
READQFILE

READ QUEUE
CONTROL BLOCK
INTO DISC BUFFER

i"{?

PUT NUMBER OF
QUEUES AND
SERVERS INTO
GLOBAL

D3 [

PUT START
ADDRESSES OF
QUEUE AND SERVER
DESCRIPTORS INTO
GLOBAL

g3V

PUT START
ADDRESS OF
QUEUE-SERVER
MATRIX IN GLOBAL

CHART P3

GENERAL PURPOSE QUEUEING MECHANISM D A FOX,T LANG;CULHAM LABORATORY, ABINGDON CHART P3
FUNCTION OPEN Q FILE-MODULE LSD.DISCIO{S)

A3
START HERE

B2
EXIT WITH OPEN @
FILE = -1

SET FILE OPEN

GENERAL PURPOSE QUEUEING MECHANISM D A FOX, T LANG,CULHAM LABORATORY, ABINGDON CHART P4
PROCEDURE RELEASE @-MODULE LSD.DISCIO(S)

A3
START HERE

N /R
YRITEQFILE

WRITE BUFFER TO
DISC

BUFFER BEEN
ALTERED

c3

SET FILE CLOSED <3

03y
EXIT

GENERAL PURPOSE QUEUEING MECHANISHM D A FOX, T LANGyCULHAM LABORATORY, ABINGDON

PROCEDURE SETSAVEMARKER-MODULE LSD.DISCIO(S)

—B3
START HERE

‘i

R s
UPDATE GLOBAL
MARKER (SAVE
MARKER) TO SHOW
THAT DISC BUFFER
ALTERED

EIBj

EXIT

CHART PS

