UNCLASSIFIED ' CLM-PDN 3/73

A PROGRAM FOR THE SOLUTION OF BOUNDARY VALUE PROBLEMS
FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

by
R. ENGLAND*

ABSTRACT

This report constitutes the documentation of a program which has
been developed for the solution of two point boundary value and eigenvalue
problems in differential equations. Because of the multiple shooting
technique used it is capable of solving a great variety of such problems.
The program may be used on its own, or as a subroutine within a larger
program, using either its standard input and output, or communicating
via argument lists. Three sample problems are described, from the areas
of hydrodynamics, atomic physics and plasma physics. The difficulties
encountered are described, and full details are provided of the working of

the program.

* Presently at: Universidad AutOnoma Metropolitana,
Unidad Iztapalapa,
Departamento de Matemhticas,
Apdo. Postal 55 - 534,
México 13.D.F.

Correspondence should be addressed to: Roland England,
Antonio Sola 45,
Col. Condesa,
México 11.D.F.

U.K.A.E.A. Research Group,
Culham Laboratory,
Abingdon,

Oxon.

October, 1975

CONTENTS

1. PURPOSE OF THE PROGRAM
2. DESCRIPTION OF THE METHOD
3. THEORETICAL CONSIDERATIONS
4. PROGRAMMING LANGUAGE
5. INPUT TO -THE PROGRAM
6. OUTPUT FROM THE PROGRAM
7. SAMPLE PROBLEM
8. CONVERGENCE AND ESTIMATION
9. EXTENSIONS TO THE PROBLEM CLASS
10, INDEX TO VARIABLES AND SUBROUTINES
11. INTERNAL STRUCTURE:
Subroutine Specification (DDO3)
1. Purpose
2. Argument Lists
3. Error Returns
4. Use of Common
5. Other Subroutines
6. Method
7. Example
ACKNOWLEDGMENTS
REFERENCES
APPENDICES
A, PROGRAM LISTINGS
B. FLOW CHARTS

C. OUTPUT FROM SAMPLE PROBLEM

10

12

15

16

21

33

1. PURPOSE OF THE PROGRAM

This report describes a program which is designed to solve numerically a system of
Ordinary Differential Equations constituting a Two Point Boundary Value or Eigenvalue
Problem.

A common form of two point boundary value problem may be written:

dty oy, 92\ ay) . &
dt? + Cpkt, ys dt /dt +x Y, dt)Y Wy, dt) 3 (1)
al %{_(a) +)81 Y(a) = ’Yl] Q'z g%(b)-ﬁ- BZ y(b) = "Yz ” (2)

Before submission to this program, such a problem would have to be rewritten in a

canonical form, as a system of first order differential equatioms:

dy.
Tﬂ% = gilt,¥y1,¥2s--.5¥n) » 1 =1,2,...,n 3)
with boundary conditions:
n
T{hﬁ-j Yj(a) + hzij YJ (b)} = hOi , 1 = 1,2,...,1’1 4)
=1

which may be more comveniently written in matrix notation:

dy _

at - G(t, Y(_t)) (5)

H, Y(a) + Hp Y(b) =H, (6)
where Y, G and H, are n-vectors and H,, H; are (n x n)-matrices. For the problem defined

by (1) and (2), n would of course be 2.
The class of problems which this program is designed to solve includes two

important extensions to the basic two point Boundary Value problem described by (3) and

(4).
The first is the case of non-linear boundary conditions, which should be expressed

in functional form:

hi (y,(a), y,(a),...,yp(a), vy, (B), yo(b),..., yu(b)) =0 ,i =1,2,...,n 7

or ' H(Y(a), Y(b)) =0 (8)

where H is an n-vector function of Y(a) and Y(b).

The second provides for parametric dependence of the equations, an important special
case of this being the Eigenvalue problem. The equations may depend upon a number of
parameters Wi, some of which may be eigenvalues, or unknown parameters to be determined,
and some of which may be fixed in the data. A number of eigenvalue parameters may be
included, such as the real and imaginary parts of a complex eigenvalue, or the multiple
eigenvalue parameters sometimes obtained after separating the variables in a multi-
dimensional boundary value problem. For each eigenvalue parameter, a normalizing
condition must be included, and for each data determined parameter, an equation must be
included to fix that parameter, these conditions being added to the boundary conditions

and treated on the same basis. The problem may then be expressed as follows:

= 6le, ¥ (1), W (9
with linear boundary conditions:
H Y(a) + H,Y(b) + HzH = H, (10)
or non-linear boundary conditions:
H(Y(a), ¥(b), w =0 (11)

where p is a p-vector, H and H, are (n + p)-vectors, H, and H, are (n + p)x n matrices,

and H; is an (n + p) x p matrix.

2. DESCRIPTION OF THE METHOD

The method used by the program is a Multiple Shooting method, the tineory of which is
described by M. R. Osborne (On Shooting Methods for Boundary Value Problems, J.Math.Anal.
Appl..27. 1969) and by H.B.Keller (Numerical Methods for Two-Point Boundary Value Problems,
Blaisdell, 1968). The associated initial value problems are solved by a fourth order
Runge-Kutta method described by R.England (Error estimates for Runge-Kutta type solutions
to systems of ordinary differential equations, Computer Journal, 12, 1969).

The overall interval is broken up into a number of sub-intervals by alternate
shooting and matching points, the two end points both being shooting points, and some
sub-intervals possibly being null. Estimates are made of the solution at each of the
shooting points, and using these as initial values, the differential equation (and in
general the variational equations also) are integrated as far as the adjacent matching

points, At the matching points, the difference between the two solutions is expressed

= 9w

as a linearized function of the deviations from estimates at the shooting points, and the
mismatch in the boundary conditions is similarly expressed. Setting the mismatches to
zero, the solution of these linear equations would give the Newton-Raphson correction to
the estimates, and for a linear boundary value problem, the correct solution would

result. TFor a non-linear problem, or eigenvalue problem, a number of iterations would

be needed, while if the initial estimates were poor, the Newton-Raphson method might not
converge. The program makes use of the Harwell library subroutine NSO3A to solve the
matching equations. This subroutine uses a version of the Marquardt algorithm which
largely abandons the Newton-Raphson method in cases where the residuals, or mismatches, do
not decrease sufficiently fast, and so enables it to find a solution even from quite bad
initial estimates (J.K.Reid, Fortran Subroutines for the Solution of sparse systems of
non-linear equations, AERE Harwell Report R7293, H.M.Stationery Office, 1972; R.Fletcher.
A modified Marquardt subroutine for non-linear least squares, AERE Harwell Report R6799,
H.M.Stationery Office, 1971; D.W.Marquardt, An algorithm for least squares estimation of
non-linear parameters, J.SIAM, 11. 1963).

The selection of the sub-intervals, or shooting intervals, can in some cases be
diff;cult, and an analysis of the local stability properties of the equations, performed
beforehand, may provide the best distribution of shooting and matchiné points. However,
if the user does not wish to specify the shooting intervals, the program will attempt to
choose suitable intervals by itself. It attempts to integrate from each end with steps as
large as possible, but stops as soon as a complementary solution (or solution of the
variational equations) grows by a factor of Cfac*’ in the max or L norm. It then
inserts a matching point, and examines the size of the two intervals. Proceeding in the
same direction as the larger interval, it obtains an initial estimate at a shooting point
coincident with the last matching point, and again integrates until a complementary
solution grows by a factor of Crac® The process is repeated until the integrations from
the two ends meet.

After the oyerall interval has been broken up into shooting intervals, the most

general problem expressed by equations (9) and (11) may be analysed as follows:

Consider the functiom Y(t, u, W, V) which satisfies

%% =G (t, ¥, v) ; (12)

* Default value is 10.5

where v is a value of the parameter vector W, and W is the current initial value at a

point t = u, expressed by

Y(u, u, W, v) =W, (13)
o ; . ay ay , ,
Defining the Jacobian matrices My(t,u) =5 and N(t,u) = Eo these matrices satisfy
the variational equations:
(an, an] oo fac ac] fiyle,w) wee,w (14)
dt dt Jay ou
Onp Ip
with tne initial conditioms:
MV(U,U) &l In, N(U,ll) = Opn . 7 (15)

The system of differential equations (12), (14) may be solved for any given value
v of p, and from initial conditioms (13), (15) at any point t = u. Suppose that the

shooting points are:
u=uy;, 1=0,2,..., qg+1
Matching at the internal points:
E =ty 1= L3500,

and imposing the boundary conditions, the algebraic equations to be solved are:

Y(ti, wi—yy Wiog, ¥) =Y fti, ujyy, Wign, ¥), 1 =1,3,...,q 116)
H (Wy, Wgeq, ¥) =0. (17)
If the solution is:
¥i =Wj +Ej, 1 =0, 2,...,q+1 (18)
H=v+{ (19)
the Newton-Raphson correction (Ej,f) is given by:

My (ti5° ui—y) Bi-y = My(tj, ujyy) Eiqp + (N (t4, uj-,) - N (ti, uj)¢

=Y (ti, Ujtgs Wi+l) v) - Y (_ti, ui_l,Wi_l, v), i = 1,3,..., q (20)
B 8 __ OHy=_H W, W (21)
9Y(a) Eo * BY(b)Eq+1 + ET £ (0 Mgur #) .

If My(ty, uioy) = Mo,i-a M (e, v,) =M,
N (ti, ui_l) - N (ti’ 'L'li+1) = NOi’
Y (ti, uitss Wisr,v) = ¥ (£5, uj_ g, Wiy, v) = I,

i=1,3,...q

this may be written in block matrix form

== . _ —
Moo Mg1 N Eq = Tos
o1
Moo M5 Nos E, Tos
Mo, q-1 -Mog Nog | Fog
oH oH OH
9y (a) dY’b) du ¢ —H(Wo,Wq+1,v) .(22)
S - - 2 - 4

The Jacobian matrix on the left of this equation, together with the residuals on the
right, are supplied to the subroutine NS03A, which determines a series of Newton-Raphson,

or appropriately adjusted Marquardt correctioms, until the desired accuracy is obtained.

3. THEORETICAL CONSIDERATIONS

The more common numerical integration methods currently used to solve two point

boundary value problems may be illustrated by reference to the equation:

gzlg +y=0. (23)
If >0 the solutions of this equation are oscillatory, and it is usual to use a

shooting method in which estimates are made of the initial conditionms, and these are then
adjusted when the mismatch in the end conditioms is known. Such methods are useless when
A <0 as any slight error in the initial conditioms, or in the integratiom, will be
magnified at the end point, and it will not be possible to perform a stable integration
in either direction. A finite difference method must then be used, in which algebraic
equations are set up for a large number of function values, and are then solved to give
the solution at every mesh point simultaneously. A finite difference method is
inadvisable when A > 0, as the algebraic matrix is then likely to be singular.

In the Multiple Shooting method, the overall interval is broken up into a number of
sub-intervals, which are chosen in such a way as to attempt to limit the growth of errors
in any sub-interval. In the two extremes, the method reduces to an ordinary shooting
method if only one sub-interval is used, or to a finite difference method if the
integration across each sub-interval is performed in one step. Othér standard cases, such
as shooting from each end and matching in the middle, are also included. The method can

be used for all values of A.by choosing suitable sub-intervals, and if A changes sign in

the interval of interest, it is possible to use a number of small sub-intervals where A
may be negative, and large sub-intervals elsewhere. The user need not necessarily specify
the sub-intervals, as the program will, if necessary, attempt to choose sub-intervals for
itself. However, its method of choosing sub-intervals is not always satisfactory. 1In
equation (23), if A is a function of an eigenvalue, an estimate of that eigeuvalue must
be made by the user. If the estimate results in too large a value of A, the potential
growth of the error will not be detected by the program, which will choose its sub-
intervals too large. Three methods may be available for avoiding this difficulty. If
the equations have a particularly simple form such as (23), it may be possible to make
estimates on the safe side, such as estimating A rather smaller than the value being
sought. It may be necessary to perform more detailed amalysis, from which suitable
sub-intervals can probably be determined. Finally, a first run of the program will
almost certainly improve even poor estimates, and the program may be run again from

improved estimates, when the choosing of intervals will give more satisfactory results.

4. PROGRAMMING LANGUAGE

The program is written in FORTRAN IV and is available on the IEM 360 —370*9eries
and the ICL 4/70 computers.

The routines of DDO3 are the same for both systems. However the Harwell Library
Subroutine NSO3A, and the others which it calls, use some extensions to FORTRAN IV pecu-
liar to the 360 implementation, in particular that allowing fairly general integer expres-
sions to be used as array subscripts. These subroutines have been converted for use on
the 4/70.

The subroutine DDO3 is available only in its double length version on both systems
since a number of test examples which have been solved successfully using double length
arithmetic failed due to rounding error problems when single length was employed.

The various library subroutines contain some input-output statements for printing
intermediate results and error diagnostics during the iteration, but otherwise all input-
output statements are concentrated in the highest level subroutine SETDEF, and in the
small main'program which must be provided by the user to define the problem size,

Certain facilities of IBM 360 and ICL 4/70 Fortran, which have been used, should
perhaps be noted. 2 byte integers are used to save space in some places. Namelist input
is used for all the data, which makes it easy to set default values, and allows the data
to be in a fairly free format. Data statements are used to initialize those variables

ot

" The Harwell Subroutine Library Specification is reproduced in Section 11.

which are not arrays. Multiple entry subroutines are used, where the first entry is
usually used to initialize the addresses and values of some variables, as well as the
dimensions of some of the dynamic arrays - though this only matters for those with more
than one dimension. In a number of places, where the symbolic arguments of a subroutine
are arrays, the actual arguments used are array elements, which causes the subroutine to
use for its array, that part of the whole array which begins at the element specified.

In particular, the work space array, TU, provided by the user, is broken up into smaller

arrays in this way, and some parts of the array are used as 2 byte integer arrays.

5. INPUT TO THE PROGRAM

The most important input required by the program is a set of one or two subroutines
which describe the problem as defined by one of the sets of equations (5), (6), or (5),
(8) or (9), (10) or (9), (11}, together with a small main program which declares arrays
of sufficient size for the problem, and reads in initial values to some of the arrays.

The suggested form of the main program is as follows, where the small letters must
be replaced by actual values for the problem in hand:

REAL*8 U(p),R(r),¥R(n,r),5(s),DH(n+p,2n+p +1),TU(w),ZET,FACT, CFAC

COMMON/ DDO3CD/ZET,FACT,MAXF,LP,CFAC

NAMELIST/ARRAYS/DH,S,R,YR,U,TU,CFAC

CALL SETDEF(n,n-Pp,2p-kp-+1,w,r,DH,TU,R,YR)

READ(5,ARRAYS)

CALL PROGC(S,U)

STOP

END
Here n and p are parameters of the problem; s is the maximum number of points at which the
solution may be required; r is a number greater than s, than the maximum number of shooting
points, and than the number of points at which an estimate of the solution may be given;
and w is the number of double words of work space available in the array TU. If ¢
shooting points are used (the q of section 2 was almost twice the value of this q), then
w need not be more than:

q(2 + 9%n + 10n? + &%np) + 1 + 7n + 5n? + 9%p + 3%p? + ldnp
while about % of this will often be sufficient.

A subroutine G is also essential to define the set of differemtial equatioms given by
(5) or (9). Where it is reasomably simple, the program works better if subroutine G also

; y a9G £G
provides values of the analytic derivatives, or Jacobian matrices T (and e A data

item, YMUST, described below, must indicate whether this has been done. The equations (5),
(6) or (5), (8) or (9), (10) or (9), (11) must first be scaled so that all the variables
in the vectors Y and ¢ are of the same order of magnitude. Subroutine G should then take
the following form:

SUBROUTINE G(T,Y,U,FG,DG,N)

REAL*8 T,Y(N),U(p),FG(N),DCG(N,n +p)
oY

Statements to determine the vector FG = 3t G(T, Y)
- oY _
or FG = e G(T, ¥, U)
Optionally statements to determine the elements of the Jacobian matrix DG = [%{G_ g—ﬁ]
RETURN
END

If the problem has linear boundary conditioms givem by (6) or (10), a default sub-
routine H* is provided with the program for dealing with them, and the boundary conditions
are defined in the data. If the problem has non-linear boundary conditions given by (8)
or (11), then a subroutine H must be written to define the vector functiom H. It should
have the following form:

SUBROUTINE H(YA, YB, U, FH, DH, NP)

REAL*8 YA(n),¥B(n),U(p),FH(NP),DH(NP,2n+p + 1)

]

Statements to determine the vector FH = H(YA,YB)

or FH

n

H(YA,YB,U)

OH oH oH . .
aY(a) m) a—u which are functions

Statements to determine those elements of DH = [
of Y(a), Y(b) and p. Any elements of DH which are constant may be initialized in
the data and need not be set in subroutine H. The last column of DH is not used
except by subroutine H, and may be used to communicate parameter values from the

data to subroutine H.

RETURN

END

The main program and one or both subroutines must be compiled and the rest of the
program composed with them. If the main program takes the form suggested, then the data
must be as follows, Qhere the usual rules for NAMELIST input apply, i.e. data is punched
in columns 2 to 80, the first card having an & and the name of the namelist, the last card
having &END, and intervening cards having an assignment to a program variable or array,
terminated by a comma, and in the case of an array, having individual elements separated

by commas. Assignments of numerical values may be made to any of the variables in the

*listed in Appendix A

namelists, but others may be left with their default values.

&VALUES

any of the following:

RI =

58I =

ZETA

EPSI

number of values of t at which initial estimates of Y(t) are given (< r; de-
fault O0; is this is zero, then zero will be taken as an initial estimate of p
and of Y(t) everywﬁere; if it is negative, zero will be taken as an initial
estimate of u,rbut IABS(RI) estimates of Y(t) will be used; if it is positive,
the estimate of p and RI estimates of Y(t) will be used; linear interpola-
tion between the given values will be used to obtain estimates at the shooting
points),

number of values of t at which the solutiom Y(t) is required (< s; default 0;
if this is zero, the solution is given at the shooting points actually used by
the program),

a (default 0.0),

b (default 1.0; b > a)

= root-mean-square error bound required of the iteration process used to solve
the potentially non-linear algebraic equations (default 10_5),

= error bound for each element of ¥Y(t), used by the Runge-Kutta integration
routine as a target for the integratiom error across each shooting interval
(default-—lo-t a negative value indicates a rtelative error bound; if this is
set to zero it is replaced by the value of ZETA; to obtain differential accura-

cies for the different elements of Y(t) the equations have to be rescaled),

YMUST = increment in Y and p for use in obtaining numerically the derivatives in the

Jacobian matrices g% and gg (default 0.0; subroutine G must provide analytic

values of the derivatives if and omly if this is zero),

MAXFUN = maximum number of integrations allowed (default 10),

LPRINT

number of iterations between printouts (default O; a value of zero gives no
intermediate output, while a negative value gives more complete details than

a positive value),

LP = stream number for the printed output (default 6),

DI = number of shooting points specified (< r; default 0; if this is zero, or if the
work space in array TU is insufficient, or if the specified points are not in
ascending order, then the érogram chooses shooting intervals for itself),

&END

&ARRAYS

any of the following:

DH(i, j) = - - - (default 0.0; assignments of this form may be used to set any ele-
ments of DH which are comstant, and so need not be determined by subroutine
H, or parameter values in the last column of DH; in the case of linear bound-
ary conditions (6) or (10), DH is the composite matrix comsisting of [H, H, H,
H,1, its last column H, being the right hand side of the boundary condition
equations, and all non-zero elements are constant and must be set),

S = 1list of SI specified tabulation points, or values of t at which the solution
Y(t) is required,

R = list of IABS(RI) values of t, arranged in order from a to b, at which esti-
mated values of Y(t) are given,

YR = list of estimated values of Y(t) at the values of t specified in R, where all

the elements of one vector Y(t) are given before those of the next,

U = estimated value of p, used only if RI is positive,
TU = list of Q shooting points TU(1l), TU(3), ..., TU(2Q-1) interlaced with Q-1
matching points TU(2), TU(4), ..., TU(2Q-2),

CFAC = factor allowed for growth of complementary solutions (default = 10.0),
&END

All this data is read from stream 5.

6. OUTPUT FROM THE PROGRAM

The call to subroutine SETDEF performs only the initialization of some addresses and
default values, and the reading of the namelist VALUES. PROGC is a side entry to the same
routine, and immediately it is called, details of the input data are written to the output
stream LP :

NUMBER OF DEPENDENT VARIABLES ¥: N=n

NUMBER OF BOUNDARY CONDITIONS: N+P = NO = n+p

NUMBER OF VARIABLES INVOLVED IN BOUNDARY CONDITIONS: 2N+P+1 = NN = 2n+p+ 1

NUMBER OF WORDS OF WORK SPACE PROVIDED: ITU = w

DIMENSION OF EIGENVALUE MU: P = p

MAXIMUM STORAGE FOR TABULATION POINTS OR ESTIMATION POINTS: R=r

NUMBER OF ESTIMATED VALUES OF Y (POSITIVE IF MU IS ESTIMATED): RI =RI

NUMBER OF SPECIFIED TABULATION POINTS: SI =SI

VALUES OF INDEPENDENT VARIABLE T AT BOUNDARY POINTS: A=a

B=b

DEFAULT VALUES FOR JACOBIAN MATRIX DH

OR COEFFICIENTS OF BOUNDARY CONDITIONS H1, H2, H3, HO

- 10 -

This is followed by the matrix DH, the list of

SPECIFIED TABULATION POINTS (if SI is positive), the

ESTIMATED VALUES OF ¥ (if RI is non-zero), the

ESTIMATED VALUE OF EIGENVALUE MU (if p and RI are positive),

NUMBER OF ITERATIONS BETWEEN PRINTOUTS: LPRINT=

MAXIMUM NUMBER OF INTEGRATIONS ALLOWED: MAXFUN=

INCREMENT IN Y AND MU FOR DIFFERENTIATION OF THE FUNCTION G: YMUST=

ERROR BOUND ON SOLUTION: ZETA=

ERROR BOUND FOR THE DEPENDENT VARIABLES Y DURING INTEGRATION: EPSI=

DI SPECIFIED SHOOTING POINTS (and matching points from TH).

After the list of shooting and matching points has been written, the subroutine DDO3AD
is called, to carry out the solution of the problem defined. The specification of this
subroutine appears in section 11 of this report. The main output produced during the
solution is that written by subroutine NSO3AD after every LPRINT iteratiomns, if LPRINT is
non-zero. Output is writtem at the first and last iteration and at every IABS(LPRINT)th
iterétion in between, as described in the Harwell library subroutine specification of
NSO3A (parameter IPRINT). If LPRINT is negative, the following vectors are output:

the current solution X, which consists of the values of Y at the sﬁooting points and

the values of p.
the current residual vector, which is the vector on the right hand side of equation
(22), consisting of the mismatches in Y at the matching points and the mis-
matches in the boundary condition equatioms (6), (8), (10} or (11).
the current vector V, which gives an approximation to the derivates of 3§ with
respect to the elements of X, where S is the sum of squares of the residuals or
mismatches.
This output is in addition to the following summary which is printed when LPRINT is posi-
tive:

the number of iterations and integrations (sometimes more than one integration may be

perfofmed in one iteratiom).

the Marquardt parameter A.

the sum of squares of residuals S.

the Euclidean norms (roots of sums of squares) of the vector X, the last change made

to it, and the vector V.
Qutput is also written by certain library subroutines to report some error conditions

which may arise, In particular, if the work space w is not large enough, if more than

- 11 -

MAXFUN integrations are required, if b 1is not greater than a, or if the iteration process
fails to converge to a solution, then a message is written and no further improvement to the
solution is carried out. Error messages may be written by MAl7 if overwriting of the data
has occurred, or if the overall Jacobian matrix of equation (22) is singular, which may
occur if the problem is not properly posed, if the initial estimates are unsuitable, or if
the increment and error bound YMUST and EPSI are unsuitable. DDO3AD also writes a message
if there is insufficient space for the specified number of shooting points DI, or if the
shooting and matching points are not in ascending order, and it reverts to choosing
intervals for itself.

Whether or not an error has occurred, the best result obtained (which may be only the
initial estimates, if the work space w is insufficient) is then tabulated under two
headings:

TABULATED VALUE OF Y

TABULATED VALUE OF EIGENVALUE MU
the latter being printed only if P is positive.

Following this, in order to give information on the working of the program, the fol-
lowing information is printed:

DI ACTUAL SHOOTING POINTS (if there was enough work space to perform a complete inte-

gration)

w WORDS OF WORKSPACE USED

and control is then returned to the main program at the statement STOP.

7. SAMPLE PROBLEM
The problem given here arises from the hydrodynamic flow between two infinite rotating
discs. It is given in this form by M.R. Osbornme (On Shooting Methods for Boundary Value

Problems, J.Math.Anal.Appl., 27, 1969) but the variables have already been appropriately

transformed and rescaled from the original problem (G.N. Lance and M.H. Rogers, The sym-
metric flow of a viscous fluid between two infinite rotating discs, Proc.Roy.Soc. 266,
(1962), pp. 109 - 121):

dx,

qac T EE

dx,

dt

1]
»

dx

s 2 2
s XX, + X,% - x, %+ k

dx,
dt

- 12 -

dx

—a't— =2 XX, + XX
x,(0) = x,(0) =0, x,(0) =1
x,(b) = x,(b) =0, x,(b) = s (24)

b and s are constants depending on the separation of the discs and their speeds of rota-
tion, while k is an unknown parameter to be determined along with the functions x;, X,,
., %5. (For physical interpretations see Lance and Rogers, as quoted above).
The routines required to solve this problem are as follows:
REAL*8 K,R(10),YR(5,10),5(10),DH(6,12),TU(3464),ZET,FACT,CFAC
COMMON /DDO3CD/ZET,FACT ,MAXF,LP,CFAC
NAMELIST/ARRAYS/DH,S,R, YR,K,TU,CFAC
CALL SETDEF(5,6,12,3464,10,DH,TU,R,YR)
READ(5,ARRAYS)
CALL PROGC(S,K)
STOP

END

SUBROUTINE G(T,X,K,FG,DG,N)
REAL*8 T,X(N),K,FG(N),DG(N,6)
FG(1) =-2.0%X(2)

FG(2) = X(3)

FG(3) = X(1)*X(3) + X(2)*X(2) - X(4)*X(4) + K

FG(4) = X(5)
FG(5) = 2,0%X(2)*X(4) + X(1)*X(5)
D01 J=1,6
DOl I=1,N

1 DpG(1,J) =0.0
DG(1,2) = - 2.0
DG(2,3) = 1.0
DG(3,1) = X(3)
DG(3,2) = 2.0%X(2)
DG(3,3) = X(1)
DG(3,4) =-2.0%X(4)
DG(3,6) = 1.0
DG(4,5) = 1.0

DG(5,1) = X(5)

- 13 -

DG(5,2) = 2.0*X(4)
DG(5,4) = 2.0%X(2)
DG(5,5) = X(1)
RETURN

END

To solve a case where b = 18
&VALUES

RI = - 2,

B = 18.0,
ZETA = 1E-6,
MAXFUN = 40,
LPRINT = 1,

T = 10,

&END

&ARRAYS
DH(1,1) = 1.0,

DH(2,2) = 1.0,

DH(3,4) = 1.0, DH(3,12) = 1.0,
DH(4,6) = 1.0,
DH(5,7) = 1.0,
DH(6,9) = 1.0, DH(6,12) = 0.5,

R = 0.0, 18.0,

YR = 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
TU = 0.0, 2.0,

2.0, 4.0,

4.0, 6.0,

6.0, 8.0,

8.0, 10.0,

10.0, 12.0,

'12.0, 14.0,

14.0, 16.0,

16.0, 18.0,

18.0,

&END

and

s = 0.5, a suitable set of data is as follows:

- 14 -

With this data, the program uses the same shooting intervals as were ﬁsed by
M.R. Osborne, as quoted ébove, and should converge to the same solution with only 11 inte-
grations, as compared with the 26 quoted by Osborne, using a less sophisticated method for
solving the algebraic equations. The comparison gives some idea of the operation of fhe
program, but is not entirely valid, as the initial estimates and final accuracy are defined

differently. The output for this case is reproduced in Appendix C.

8. CONVERGENCE AND ESTIMATION

Some of the data items required by the program are not immediately obvious from the
mathematical definition. In this respect, the items R, YR, U, EPSI, TU are discussed here.
R, YR, U constitute the initial estimate of the solution. It may be natural at a first
attempt to provide no estimate, or some properties of the solution may be conveniently
known. In the sample problem, a first attempt was made with no estimate, which meant that
zero values were used, as by M.R. Osborne. However, the estimate with all the functions
equal to zero was an exact solution of the differential equations, and the integration
routine integrated over each sub-interval in a single step without error. In this case,
because of the zero solution, many of the partial derivatives in the Jacobian matrix,
which are in general non-zero, give zero values, and in some cases this has given rise to
a singular matrix. Therefore it is important that the initial estimates are not special
values, which may give rise to a particular simple solution. Even for a linear problem,
which does not in general require initial estimates, the use of zero estimates may give
rise to exaggeratedly large integration steps, and thereby to excessiveiy large shooting
intervals, and the required accuracy may then not be obtainable.

It should be noted that, on return from the call to PROGC, the last estimate of the
solution (at the tabulation points) is contained in R, YR, U. If it is required to find
another solution with different parameter values, or to find a more accurate solution by
decreasing the error bounds, it is sufficient to call PROGC again, when the last solution
will be used as an estimate. In that case, the same shooting intervals will be used again.
If it is required that new shooting intervals be chosen, then SETDEF must first be called
to read the Namelist VALUES from the data, and DI must be reset to zero in that data.

The error bound ZETA is used in such a way that a normal return is made if, on any
iteration, both the root-mean-square of the residuals or mismatches kon the right-hand

side of equation (22)), and the root-mean-square of the changes made to Y and p, are less

- 15 e

than ZETA. Therefore, in order that EPSI should provide the same order of error bound,
its value, in absolute terms, should be approximately equal to ZETA. (If a negative
value of EPSI is specified, then the actual error bound used for ¥y in integrating
across any shooting interval, is |EPSI|(|EPSI| + [yil) where a local value of y, 1is
used.) However, a first attempt, using the desired values of ZETA and EPSI, may en-
counter an integration which is excessively difficult, and uses up too much time without
completing an iteration. In such cases, it may be well first to improve the initial
estimates by using larger error bounds, and then to decrease them and call PROGC again.
However, if excessively large values of EPSI are used, the integration routine may take
exaggeratedly large integration steps once more, and produce a small error estimate
although the actual error is large.

If shooting intervals are not specified, the programattempts to choose them for
itself, but its process for choosing them is not always satisfactory. In particular,
trouble may arise if the properties of the equation (the nature of the complementary
solutions) vary considerably over the interval (a, b) or between the initial estimate and
the desired solution. If the variation is across the interval, it may be necessary to
analyse the complementary solutions, and so decide what size of shooting interval is
possible in each direction in each part of the overall interval, and so set up appropri-
ate shooting intervals in array TU. If the variation is due to a poor initial estimate,
it should usually be possible to obtain good results by first improving the initial esti-
mate using large values of ZETA and EPSI, and then resetting DI = O, reducing ZETA and

EPSI and calling PROGC again.

9. EXTENSIONS TO THE PROBLEM CLASS

Certain problems which are not immediately seen to be of the form solved by this
program, may nevertheless be transformed in such a way that it will solve them. The par-
ticular difficulties discussed here are boundary conditions at infinity, and other singu-
larities in the natural specification, complex variables in the mathematical descriptiom,
and the treatment of parameters or constants upon which the solution depends. In the
case of singularities, so many types may occur that a general discussion is impossible,
but the difficulties mentioned above will be illustrated by two examples.

The first is a very simple one dimensional Schr&dinger equation, whose dominant eigen-
function is known, and which illustrates the treatment of a boundary condition at infinity.

The problem was suggested by Dr R.C. Grimm, recently of Culham Laboratory.

- 16 -

Evr(x)

]

2
- é%? Wix) + 20 tanh?(x)¥(x)

V(o) = Y(=) =0 , (25)

The known solution to this problem is E = 11, ¥(x) = o sech?(x)tanh(x) for any constant a.

Writing y = %% we have

%ﬁ = (20 tanh?(x) - E)V¥

L (26)

1

which is in the form (9).

As x 2 o, tanh?(x) - 1 and so the asymptotic solution of (26) has the form

y = A exp(x~ 20-E) + B exp(-x~ 20 - E)

exp(xV 20 —E) - —2— exp (- xV20-E) . (27)

A
‘I“=_
N20 -E N20 -E

For most boundary conditions at infinmity, it should be possible to find such an asymptotic
solution as t = ®, and to apply the boundary condition to it, giving in this case A =0

(20 > E). From this we conclude the following boundary condition as x — © ;
y(x) +J20-E W(x) ~0 (28)

while we could not use V¥(x) ~ 0 as this would never be satisfied exactly by a mon-zero
solution., It remains to decide by what finite value of x we can approximate infinity,
and in this case, the asymptotic solution is already very closely satisfied for x= 10,
and the new asymptotic boundary condition can be applied at that point. An additional
boundary, or normalizing, condition is also required to define the problem completely, and
in order to ensure a non-zero solution (indeed a solution with @ = 1) a suitable condition

is y(o) = 1. The complete set of boundary conditions of the form (11) is then:

y(o) =1
V(o) =0
y(10) +VJ20 -E ¥(10) = 0 . (29)

Again for this problem, attention should be given to the initial estimates, as if no esti-
mates are given, the program will first find the zero solution and integrate across the
whole interval in one step, while in order to find a good solution, some 10 to 20 shooting
intervals are needed. Inr fact, zero estimates should not be given at either end, as if
the estimates at x = 10 are zero, the program will again integrate all the way back in

one step, and use only two shooting intervals. Suitable estimates are:

= 1% 5

y(e) =1, V(o) =0
y(l) =0, (1) =1
-12 12 (30)
y(10) = - 3 x 10 s ¥(10)= 10
E =10

and with these estimates, four figure accuracy should be obtainable in around 10 iteratioms.
This problem was solved using an earlier version of the program with different character-
istics. So no exact details are available as to the performance of this program on this
problem.

The second example was suggested by Dr C.N. Lashmore-Davies, of Culham Laboratory
(Stabilization of a low-density plasma in a simple magnetic mirror of feedback control,
J. Phys. A: Gen. Phys. 4, 1971).

It illustrates a singularity of the type occurring in Bessel's equation (for some
particular parameter values it may be reduced to Bessel's equation), as well as methods
for treating complex variables and parametric dependence of the problem. The mathematical

expression of the problem is as follows:

g d%p . | W 1. Y5 an| dg _ m? By
1 +_R_N(x) _&JTE‘?-F L 1 +525~N(x) ;+ ;' |l & RE 1 +_ETQ N(x)| o
i i

w2

8Pt . 1 dv
+om Qi Ww+mw*) x dx ¢ =0, (31)
d d U2i a . wzi -

oD - 3o e(1-) - FENA-) goe(l-) = m? B O () o) -

i i

b b
%‘P(;*) 'dixq(z-) = Bl (33)
p{x) >0 as x~- o (34)
- o< (P(O) < 4+ ® (35)
where wpi B Qi , W, W* are parameters whose approximate ratios are L.);. N O(Qi Wwk) « Qiz ,

R(w) = 0(-%w*), m is an integer parameter with small value, a, b, 6 are parameters sueh
that 0 < a <b, and N(x) is a known function which is zero for [x| > 1, and for which
the particular case WN(x) =1-x?, (|x| < 1) is of interest. It is desired to find the

relationship between the complex eigenvalue w and the parameter &, for given values of

b W wzi
the ratios 2 —P—-ni R —-—Lﬂi oE and of m.

- 18 -

i ol oetm
2
“pt
2 =
q% =
W 12
Al (36)
the problem reduces to:
a2 |1, ___q* aN| dop |m?, p? _ dN -
ax? * l:x T q2N(x) dx| dx | x? ¥ 2x(1 + q2N(x)) dx ¢=0. (37)
dix e(1+4) = (1 + q®N(1-)) a‘i}{- p(l-)+ %pMW(1-)p(l)=0 . (38)
%¢(§+)--dd;cp<§-)-ﬁcp(l)=0. (39)
p(x) 0 as =x- @ (40)
-o<@0) <+ A (41)

Since W(x) = 0 for ,x| > 1, the solution for x > 1 may be performed analytically, and

- b
[:GJ(I) + lﬁl ad; tP(l-!-)) x’ml + G(l) - |%| % cp(l-i-b x fm[] for 1 <x <7

(42)

- or2lal \]
[6(1) + I%I % cp(1+)> (E) +(q>(1) - I%I % (p(1+))] x]m' for x ,>—-]3 .

Applying conditions (38) and (39) this gives the condition at x =1 :

gives:

1]
N[

o(x)

il
M=
1]

aylml -1 , R d
5 (;) « |m| - Ep(L)| o(1) +(1+q N(l-)) L1 = 0. (43)

In general, N(x) =1 + 0(x?) as x = 0, and performing an asymptotic solution as x = 0,
¢ ~ L L P (44)

Applying the condition (41) to this gives B =0, or the boundary cc;ndition
p(0) =0 . (45)

Finally, defining y(x) = (1 + q*N(x)) %E for |x| <1, all the singularities can be

- 19 -

eliminated to give:
2 2 '
%%=[I—26.+qzﬂ(x\))+%%}:|cp-%y for x #0

0 for x=0 if ,m| + 2

2A for x =0 if |m| =2 (46)

1
do . -
dx 1 + q®N(x) 4

with boundary conditions :

p(0) =0

R 'ml-—l
8 (E) + |m| - 5p2N(1-)]| (1) + y(1) =0 (47)

and a normalizing condition chosen to be compatible with the exact Bessel function solu-
tion o(x) = Jm(px) which arises when N(x) = 1-x? and q2? = 0 (which also gives rise

to A= %p? in (46))

o(1) Jm(p). (48)

The next problem is that the eigenvalue, W, is in general a complex number, and must
be split into its real and complex parts as follows, and related to the variables appearing
in (46), (47) and (48)

w = we(u + iv) (49)

p2(u?-v?2 + um) = - 2m?r? , v(2u +m) =0 (50)

the last arising from the definition of p? in (36).
The following variables now appear in the problem, either as eigenvalues to be deter-
mined, or as parameters to be varied to give different solutions:

o[- 1
5(5) s M, P, qzl rzs u, v

and it is convenient to make the vector p, appearing in (9) and (l1) consist of these

seven variables. The required nine boundary conditions of the form (11) are then made up

of (47), (48), (50) and four conditioms:

INLIES!
o 6(;) -dc>.+(1—af)(p-po)=0

m-m =0
o (51)
2 _ =
o, O
r?-r =0
s

—20 -

where o (= 0 or 1), do’ Py My» 4 T, may be provided as data through the last column

of DH. If m, q?, r? are specified through ms Qg Ty then by varying &, the pro-

|m|-1
gram can be used to specify 6(—2') = do and find p, u, v, or to specify p = po

and find & (%) [ml_l, u, v. A number of cases were successfully solved using the
earlier version of the program, with N(x) =1 - x2, m =1, q2 =0, r?2 = 1 (values of P,
in the range 1 to 6, and two values of do were used). Attention should again be given
to the initial estimates, which should not be zero, for the same reason as before. Also,
so that none of the partiall derivatives of the boundary conditions with respect to the

parameters should accidentally be zero, none of the following expressions should be zero

at the initial estimate:
(1), p, u?2-v2 + um, 2u + m, v .
Suitable estimates might be those compatible with ¢(x) = Jm(px) for some typical value

m -1
of p (such as p=3) which is not a root of Jm’ with 6(-:-)' =0, u=0, v=1,

|m|-1
When specifying 5(%) = do » more attention should be given to the estimate of p,

as multiple solutions are possible.

10. INDEX TO VARIABLES AND SUBROUTINES

The first subroutine described here is the default subroutine H, which is only used
for problems with linear boundary conditions given by (6) or (10), and determines the
difference between the left and right hand sides of those equations. The variables used
are as follows:

SUBROUTINE H:
C - an integer equal to n+p
N - the integer n

Q - an integer used for counting the equations

7]
1

an integer used for counting the terms in the equations

DH - the composite matrix [H, H, H, Hy]

FH - the vector of residuals (result of the subroutine)

MU - the vector of eigenvalue parameters u

NP - an integer equal to n+p

PI - the integer p

QH - an integer used for accessing H,, the right hand side of equations (6) or (10).
RH - an integer used for accessing H,, the coefficient of Y(a) in equations (6) or

(10).

- 21 -

SH - an integer used for accessing H, and H,, the coefficients of Y(b) and p in
equations (6) or {10)

YA - the vector Y(a)

YB - the vector Y(b)

The next subroutine described is the highest level subroutine SETDEF with entry

PROGC, which performs the principal functions of input and output for the program.

SUBROUTINE SETDEF:

A - the boundary point a

B - the boundary point b

C - an integer equal to n+p for the use of the default subroutine H

G - the subroutine defining the differential equatioms (5) or (9)

H - the subroutine defining the boundary conditions (6), (8), (10) or (11)

I - an integer for counting the elements of Y(t) in either the estimated or the
tabulated solution

J - an integer index used for various purposes

K - an integer index used for various purposes

L - the output stream number LP

M - the input stream number 5

N - the integer n for use by the default subroutine H

R - the list of values of t at which the solution Y(t) is either estimated or tabu-
lated

S - the list of values of t at which the solution Y(t) is required

Y - the subroutine entry for performing interpolation between the estimated values of
v(t)

DH - the Jacobian matrix of the function H with respect to its arguments, or the
composite matrix [H, H, H, Hgl

DI - an integer equal to the number of shooting points

LP - the output stream number

MU - the vector of eigenvalue parameters u

NI - the integer n

NN -lan integer equal to 2n+p-+1 or the number of columns in DH

NO - an integer equal to n+p or the number of rows in DH

PI - the integer p

QL - an integer giving the maximum number of tabulation or estimation points

= P

RI - an integer giving the number of values of t at which the solution Y(t) is
either estimated or tabulated

SI - an integer giving the number of values of t at which the solution Y(t) is
required

TU - a work space array, of which the first 2 X DI - 1 elements give the shooting
and matching points

YR - the array of the estimated or tabulated values of the solution Y(t)

ITU - the dimension of the work space array TU

ZET - a default value for ZETA if this is reset to zero

EPSI - error bound for the elements of Y(t) during integration

FACT - the ratio of EPSI to ZETA

MAXF - a default value for MAXFUN

SETY - the subroutine for initializing the interpolation routine Y

ZETA - error bound on the residuals of the solution

DDO3AD - the principal entry to the subroutine which solves the problem

DDO3BD - a side entry for extracting values of the solution Y(t)

YMUST - increment in Y and p for differentiation of the function G

LPRINT - the number of iterations between printouts

MAXFUN - the maximum number of integrations

VALUES - the namelist for reading all scalar input

The subroutine SETY with entry ¥ is used to interpolate between the estimated values

of Y(t), or to set the estimates to zero if none are given.

SUBROUTINE SETY:
A - the boundary point a
B - the boundary point b
R - the list of values of t at which the solution Y(t) is estimated
T - the value of t at which an estimate of Y(t) is required
U, V - work variables for the interpolation
FY - the result of the interpolation, or estimate of Y(T)
ITI - an integer used for counting the values of t in the list R
JJ - an integer used for counting the elements of Y(t) in the estimate FY
NI - the integer n
RI - an integer giving the number of values of t at which the solution Y(t) is esti-
mated

YR - the array of estimated values of the solution Y(t)

- 23 -

The subroutine DDO3AD with entry DDO3BD is the highest level subroutine of a package

which actually solves the problem. Its principal function is the allocation of the work

space array TU into smaller arrays for use by the other routines.

SUBROUTINE DDO3AD:

A

B

DH

DI

DT

IL

IP

IU

- IW

IY

JK

LP

Lw

1

the boundary point a

the boundary point b

the subroutine defining the differential equations (5) or (9)

the subroutine defining the boundary conditions (6), (8), (10) or (11)
an integer used for counting elements of the array TU

an integer giving the size of various sub-arrays of TU

an integer used for extracting the solution from the array TU

an integer giving the number of linear equations in (22)

a value of t at which the solution Y(t) is required

the subroutine entry for obtaining estimated values of Y(t)

the Jacobian matrix of the function H with respect to its arguments

an integer giving the number of shooting points

the integration interval for finding a value of the solution Y(t)

an integer giving the shooting point immediately below T

an integer pointing to that portion of the array TU containing the numbers of
non-zero derivatives in each column of the Jacobian matrix of equation (22)

an integer giving the shooting point immediately above T

an integer pointing to that portion of the array TU used as work space by the
routine NSO3AD

an integer pointing to that portion of the array TU used in routines DDO3DD and
DDO3GD, to hold Y(t) and its derivatives with respect to yi(tj) and by s where
tj is some shooting point.

an integer used for extracting the solution from the array TU

an integer pointing to that portiom of the array TU used in routines DDO3DD and
DDO3GD, for accumulating mismatches at the matching points, and their derivatives
with respect to the parameters Hy

the output stream number for error messages

an integer giving the double words of work space available to NSO3AD

an integer pointing to that portion of the array TU used in routine DDO3GD, to
hold the Jacobian matrix of equation (22)

the vector of eigenvalue parameters p

= T

NI
NZ
PI
PO
Ql
QJ

- an integer pointing to that portion of the array TU used in routines DDO3DD and

DDO3GD, for holding the results of integrating the variatiomal equations across

each shooting interval

- the integer n

- the number of non-zero elements in the Jacobian matrix of equation (22)

- the integer p

- an integer equal to n+p+1

- an integer giving the number of shooting points actually used

- an integer giving the maximum number of shooting points

- the shooting point used for obtaining the solution at a point T

- a work space array consisting of the following parts:

(i)
(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

2 X QL elements giving the shooting and matching points;

n elements for use in subroutine DDO3ED, for storage during numerical
differentiation of the function G;

a sub—afray MV (n, 2n, QL -1) for use in subroutines DDO3DD and DDO3GD, for
holding the results of integrating the variational equations across each
shooting interval;

a sub-array KN (n, p+1, QI -1) for use in subroutines DDO3DD and DDO3GD, for
accumulating mismatches at the matching points, and their derivatives with
respect to the parameters My s

a sub-array Y(ax(n+p+1)) for use in subroutines DDO3DD and DDO3GD, to hold
Y(t) and its derivatives with respect to yi(tj) and Ky o where tj is some
shooting point;

énX (n+p+1) elements for use in subroutines DDO3ID and DDOSJD, for storage
of immediate results during the Runge-Kutta integration process;

a sub-array YU (nXx QI +p) used in subroutines DDO3DD and DDO3GD, and called X
in subroutine NSbSAD, used to hold the current values of ¥; at the shooting
points, and My 3

an INTEGER*2 array IP(nx QI +p+1) for use in subroutines DDO3GD and NSO3AD,‘
to define the number of non-zero derivatives in each column of the Jacobian
matrix of equation (22) ;

an INTEGER*2 arrayIRN((n XQL+p) X (2n+p)) for use in the same routines to
define the positions of the non-zero derivatives ;

a work space array W for subroutine NSO3AD, of whihh the first nX QL +p ele-
ments are also used by the name GA by subroutine DDO3GD .

- 25 -

IGA - an integer pointing to that portion of the array TU used in routine DDO3GD, to
hold the right hand side of equatiom (22)

IRN - an integer pointing to that portion of the array TU containing the row numbers
of the non-zero derivatives in the Jacobian matrix of equation (22)

ITU - the dimension of the work space array TU

IYU - an integer pointing to that portion of the array TU used in routines DDO3DD,
DDO3GD and NSO3AD, to hold the current values of Y at the shooting points,
and Hy

SAC - error bound on the sum of squares of the residuals

ZET a default value for ZETA if this is zero

EPSI - error bound for the elements of Y(t) during integration

FACT - the ratio of EPSI to ZETA

IAUX - an integer pointing to that portion of the array TU used in routine DDO3ED,
for storage during numerical differentiation of the function G

LAST - an integer pointing to the last of the non-zero derivatives of the Jacobian
matrix of equation (22)

MAXF - a default value for MAXFUN

YRES - the solution Y(t) at a specified value T of t

ZERO - a constant equal to 0.0

ZETA - error bound on the root-mean-square of the residuals of the solution

DDO3DD - the subroutine for performing a first integration to determine the shooting
intervals, if these are not specified

DDO3ED - an initialization entry to the subroutine called by the Runge-Kutta integra-
tion routine to calculate G, and if required its derivatives

DDO3GD - the subroutine for performing the first integration if the shooting intervals
are specified,and for determining the sparsity pattern of the Jacobian matrix of
equation (22)

DDO3HD - a side entry to DDO3GD used for performing subsequent integrations during
the iteration process

DDO3JD - the subroutine for integrating across a single shooting interval, used here
to obtain the solution Y(t) at specified points

DDO3KD - a subroutine used for compacting the work space array TU, by.shifting down -
the sub-arrays when the number of shooting points is known

DUMMY - a dummy argument supplied to subroutine NSQ3AD for options which are not used

NSO3AD - the library subroutine used for solving the non-linear algebraic equationms

(16) and (17) - 26 -

YMUST - increment in Y and p for differentiation of the function G
LPRINT - the number of iterations between printouts

MAXFUN - the maximum number of integrations

The BLOCKDATA subroutine for common block DDO3CD is used to provide certain default

values for the program. The variables are as follows:

COMMON DDO3CD:

ZET - a default value (10~ n for double precision working) for the error bound on the
residuals of the solution

FACT - the ratio of EPSI to ZETA (default value 1.0)

MAXF - a default value (10) for the maximum number of integrations

LP - the output stream number (default value 6)

CFAC - the factor allowed for the growth of complementary solutions (default value

10.0)

The subroutine DDO3DD is called by DDO3AD to perform a first integration and deter-
mine the shooting intervals if they are not specified. In any case, by calls to the entry

Y of subroutine SETY, it obtains initial estimates at the shooting points.

SUBROUTINE DDO3DD:
A - the boundary point a

B - the boundary point b

]

J - an integer equal to n+1

K - an integer index used for various purposes

T - the value of t during integration

Y - the subroutine entry for obtaining initial estimates of Y(t)

DI - an integer giving the number of shooting points (set negative if no integration
is performed to obtain them)

DT - the integration step, for use by the Runge-Kutta integration routine

IT - an integer index used for various purposes

JJ - an integer index used for various purposes

JK - an integer used for counting the forward shooting intervals from a to b

KK - an integer used for counting the backward shooting intervals from b to a

KN - an array for accumulating the mismatches - I' at the matching points, and

oi
their derivatives Noi with respect to the parameters ui‘

LI - an integer giving the maximum number of matching points that may be used

MO - an integer equal to 2n

- 27 =

NI
PO
PP
QL
i
TU

YU

an array for holding the results Moi of integrating the variational equations

across each shooting interval

the integer n

an integer equal to n+p+1

an integer equal to p+1

an integer giving the maximum number of shooting points that may be used
a variable used as a value of t or an interval in t for each shot

an array for storing the shooting and matching points

an array used to hold the initial estimates of ¥ at the shooting points

AUX - a work space array to hold Y(t), its derivatives with respect to yi(tj) and

Ky (where tj is some shooting point) and intermediate results during the

integration process

EPSI - error bound for the elements of Y(t) during integration

DDO3JD - the subroutine for integrating across a single shooting interval

The subroutine DDO3ED with entry DDO3FD is called by the Runge-Kutta integration

routine, to calculate the function G, and if required its derivatives.

SUBROUTINE DDO3ED:

G

LO

NI

PO

VF

the subroutine defining the differential equatioms (5) or (9)
an integer index used for various purposes
an integer index used for various purposes
an integer index used for various purposes
an integer used for accessing the derivatives of G in the array VF
an integer used for accessing the differentials of Y(t) in the array Y
a storage location for elements of p during numerical differentiation
a value of t at which the function G is to be calculated
an array holding the value of Y(t) at which the function G is to be calculated,
together with finite differentials of Y(t) for numerical differentiation

an integer giving the number of differential equations being integrated, n if
only equations (5) or (9) are being integrated, or un(n+p+1) if the vari-
ational equations (14) are also being integrated

the vector of eigenvalue parameters u

the integer n

an integer equal to mn+p+1

an array for holding the value of the function G, together with its derivatives

or differentials
- 28 -

AUX - a work space array of n elements for use during the calculation of derivatives

or differentials of G

SUM - an accumulator for use during the matrix multiplication of the Jacobian matrix

of G by the finite differentials of Y(t)

DUMMY - a dummy argument to the subroutine G when it does not calculate analytical

derivatives

YMUST - increment in Y and p for differentiation of the function G

The subroutine DDO3GD with entry DDO3HD is called by DDO3AD to determine the sparsity

pattern of the Jacobian matrix of equation (22). If shooting intervals are specified, it

has to perform the first integration to do this. The side entry DDO3HD is called by NSO3AD

to perform subsequent integrations, and the evaluation of the Jacobian matrix,

SUBROUTINE DDO3GD:

H

I

DH

DI

DT

GA

II

IP

I1

JJ

KI

the subroutine defining the boundary conditioms (6), (8), (10) or (11)
an integer index used for various purposes
an integer index used for various purposes
an integer giving the number of linear equations in (22)
an integer giving the number of unknown corrections in equation (22) (M = N)

the value of t during integration

the Jacobian matrix of the function H with respect to its arguments

an integer giving the number of shooting points (negatiée on entry if no integra-
tion has yet been performed)

the shooting interval for each single shot

the vector of residuals or mismatches (the negative of the righf hand side of
equation (22))

an integer index used for various purposes

an INTEGER*2 array defining the number of non-zero derivatives in each column of
the Jacobian matrix of equation (22)

an integer giving the number of empty rows at the top of each column of the
Jacobian matrix of equatiom (22)

an integer index used for various purposes

an integer index used for various purposes

an array for accumulating mismatches at the matching points, and their derivatives
with respect to the parameters Hy |

an integer pointing to the first non-zero term in each column of the Jacobian

matrix of equation (22) 5

K2

LI
MO

MT

NI
NO
NZ
PO
PP
QL

TT

an integer pointing to the last non-zero term in each column of the Jacobian
matrix of equation (22)

an integer giving the number of matching points used

an integer equal to 2n

an array used for storing the Jacobian matrix of equation (22) in compressed
form for use by NSO3AD

the vector of eigenvalue parameters u

an array for holding the results of integratiﬁg the variational equations
across each shooting interval

the integer n

an integer equal to n+p

the number of non-zero elements in the Jacobian matrix of equation (22)

an integer equal to n+p+1

an integer equal to p+1

an integer giving the number of shooting points used

the value of t at the end of a shooting interval, or matching point

an array containing the shooting and matching points

an array used to hold the current estimates of ¥, at the shooting points,

and the current estimates of My

AUX - a work space array to hold Y(t), its derivatives with respect to yi(tj) and

Hy (where tj is some shooting point) and intermediate results during the

integration process

IRN - an INTEGER*2 array defining the row numbers of the non-zero derivates inm the

Jacobian matrix of equation (22)

EPSI - error bound for the elements of Y(t) during integration

DDO3JD - the subroutine for integrating across a single shooting interval

NCALL - the number of times DDO3HD has been called, or number of integrations

performed

The subroutine DDO3ID is the Runge-Kutta integratiom routine, which given Y(t),

integrates over one step h, to find Y(t+h), and also an estimate of the local trun-

cation error. Besides these n equations, it integrates a further £ - n equations (the

variational equations) which do not affect the derivatives of the first n variables.

SUBROUTINE DDO31D:

E - an array used for storing intermediate values of Y(t) and the error in Y(t +h)

- 30 -

Harwell Subroutine Library DDO3AD

1. Purpose

This subroutine uses the method of multiple shooting to solve numerically
a system of ordinary differential equations constituting a two-point boundary-
value or eigenvalue problems and having the form

£ y(0) = gle, y(©), chen (1D

h(y(a), y(b), w =0 cwws (2)

where y(t) is an n-vector of unknowns at values of the scalar t in the

range fé,b], u 1is a p-vector of unknown scalars, g is an n-vector function

and h is an (n + p) vector function. Equation (1) constitutes the differential
equation itself and equation (2) its boundary conditioms.

It should be noted that these problems are normally written as an equation
of second or higher order, or a system of such equations. To use this sub-
routine they should be reduced to a system of two or more first-order equations.

In the case of an eigenvalue problem one or more of the parameters i

are the required eigenvalues and one or more of the equations (2) are usually
normalising conditions. If an eigenvalue is complex it must be broken down
into two real parameters y; .

The subroutine works by using NSO3AD to improve iteratively approximations

to p and to y at the "shooting-points" a =t <t, <.. <t, =b. Runge-
Kutta 1ntegrat10ns are performed forwards and backwards from each shooting
point to "matching" points ti, =1,2, ... q-1, where t; S t1 st; ., and

the iteration aims for continuity at these points, as well as satisfaction of
equation (2).

It is important that the problem be scaled so that all the variables v
and pj are of similar size.

2 Argument lists

Main entry:

CALL DDO3AD (A,B,N,P,G,H,DH,Y,U, ZETA, YMUST, MAXFUN, LPRINT,
Q, TU, ITU)

Entry for subsequent evaluation of solution y(t):
CALL DDO38D (T, YRES)

DDO3AD arguments

A,B are REAL*8 variables to be set by the user to the values
a,b of the variable t where the boundary conditions are
imposed. It is necessary for the condition a < b to hold.

N (INTEGER*4) is the number n of dependent variables ' and of
differential equations.

P (INTEGER*4) is the number of parameters My -

G is the name of a subroutine with arguments (T,Y,U,FG,DG,N)

which must be written by the user. When given values
of t,y and p in T,Y and U it must calculate the vector
function q (t,y,u) and place it in the array FG.
Optionally (see YMUST, below) it may in addition place
the derivatives

0g.

§§£ in DG(i,j), 1,j = 1.2, ..., n and the derivatives
J

Sgi

& fn DG, 190l d= L8, sw oy J = L2y s B

]

where DG is an array with dimensions (n,p + n). DDO3AD
passes n to the subroutine G.

H is the name of a subroutine with arguments (YA, YB3, U,
FH, DH, NP) which must be written by the user. When
given values of y(a), y(b), and u in YA, YB and U it
must, for i= 1,2, ..., n+p, place hi in FH(i),

ahi Bhi
5. (a) i DHEE, 0 J = 1a2y csus 85 5;7?57 in DH(i, n+j),
J J
oh,
auf in DH(i, 2n+3), j = 1,2, ..., p,
J
where DH is the array of dimensions (n + p, 2n + p),
which is the next argument of DDO3AD. Any derivatives
which are constants may be set in DH before DDO3AD is
called and do not then need to be set by H. NP is used
to pass n + p to subroutine H in case this is required
for a dummy dimension..

j=1,2, ..., n and

DH is a REAL*8 array of dimensions (n + p, 2n + p) whose
function has just been described.

Y is the name of a subroutine with arguments (T,FY) which
must be written by the user to specify a starting approx-
imation to y(t). Givem t it must return y(t) in FY.

u is a REAL*8 array of length p which must be set on entry
to contain an estimate of p and on return it contains
the best estimate of u found.

ZETA is a REAL*8 variable used to specify the accuracy required.
Iteration continues until the root-mean-square discontinuity
in the components of y at the matching points and the
root-mean-square change to the components of y at the

- P o

IMUST

MAXFUN (INTEGER*4)

LPRINT (INTEGER*4)

Q (INTEGER¥4)

shooting points is less than ZETA. If ZETA is set non-
positive it is replaced by a default value (see 3 4).
There is no facility for defining a relative accuracy,

or for getting greater accuracy in particular variables,
though appropriate scaling will help to achieve this end.

is a REAL*8 wvariable which must be set to a step size for
use in obtaining numerically (by one-sided differencing)

the derivatives 8g;/dy; and 09gi/0u; in the case where

G does not find them analytically. YMUST must be set to
zero if G calculates these derivatives.

is the maximum number of integrations between a and b
allowed during the iteration process. At least one
integration is also performed before the iteration
process starts. If MAXFUN is not positive it is
replaced by a default value (see B 4).

is used to control the printed output from NS503AD. If
LPRINT = 0, no output is written to stream 6 apart from
diagnostics. If LPRINT # O, output is written to stream
6 at the first and last iteration and at every
IABS(LPRINT)th jteration in between, as described in

the specification of NSO3AD, LPRINT being the parameter
IPRINT of that subroutine. If LPRINT > 0, a summary

is output, giving some idea of the progress of the
iteration. If LPRINT < O, more details of the current
approximate solution are output. The current solution
X gives values of y; at the shooting points, and values
of By - The current residual vector consists of the
mismatches in yi at the matching points, and the mis-
matches in the boundary conditions (2). The current
vector V gives an approximation to the derivatives of

% S with respect to the elements of the solution, where
S is the sum of squares of the residuals.

must be set by the user to the number of shooting points
he requires. If its value 1is less than 2 shooting
points are chosen automatically. On exit it contains
the number of shooting points used.

is a REAL*8 work array of length ITU. If q shooting
points are used the storage required is not more than
q(2 + 9%n + 10n? + 4%np) + 2 + 7n + 5n2 + 9%p + 3%p?

+ l4np and about % of this may be sufficient. If Q is
non-zero on entry than TU(i), i = 1,2, ... 2q -1 must

be set. Shooting takes place from the points TU(2i - 1),
i=1,2, ... q and can be in both directions. Matching
takes place at the points TU(2i), i = 1,2, ..., q-1
which should be distinct and interlaced between the
shooting points (i.e. TU(j) <TU(j + 1), j = 1,2, ...,
2q -2 and TU(2i) < TU(2i + 2), i = 1,2, ..., q-2). After
a successful entry the shooting and matching points used
are stored in this way, TU(ITU - 1) holds the number of
iterations taken. TU(ITU) is set to the number of words
of TU actually needed or, if this is not known, to the
upper bound given above. TU(ITU - 1) is also used to
indicate error conditions (see B 3).

o B o

ITU (INTEGER*4) must be set by the user to the length of the array TU.

DDO3BD arguments

T is a REAL*8 variable specifying a point at which y(t)
is required.

YRES is a REAL*8 array used for output of y(t) .

3. Error returns

Error returns from DDO3AD occur if the workspace TU is not large enough,
if a =b, if NSO3AD fails to solve the problem to the required accuracy or
if more than MAXFUN iterations are needed. A message is output on stream 6
(unless LP is changed, see § 4) and the conditions may be recognised by
TU(ITU - 1) being set to O, -1, -2 or MAXFUN +1, respectively. If DDO3AD is
entered with Q > O but the shooting and matching points in TU are unsuitable
~ then a message is printed and execution continues as if Q had been zero.

4, Use of common

The subroutine contains a common block called DDO3CD
COMMON/DDO3CD/ZET , FACT,MAXF, LP, CFAC

These variables are set to 1D-13,1D0,10,6,1D1 by BLOCK DATA. ZET and MAXF
give default values for ZETA and MAXFUN, and LP gives the stream number for
diagnostic messages or zero if no such messages are required. FACT controls
the Runge-Kutta integration; if € = FACT* ZETA then the steps are adjusted
so that the error in yji across any shooting interval is less than € if

€ >0 or |E[(|E! + yi)if € < 0. CFAC controls the automatic choice of
shooting and matching points; it should be increased for less points (but
probably more convergence difficulties) and vice-versa.

S Other Subroutines

DDO3AD is in fact a package of subroutines. Besides DDO3AD/BD/CD
already mentioned it contains subroutines and entry points called DDO3DD-KD.
It calls Library Subroutines NSO3AD, MA17AD,MCO2AD,MCO9AD and TDO2AD.

6. Method

The subroutine uses an extension of the Multiple shooting Method
described by M.R. Osborne (On Shooting Methods for Boundary Value Problems,
J. Math. Anal. Appl. 27, 1969) and by H.B. Keller (Numerical Methods for
Two-Point Boundary Value Problems, Blaisdell, 1968), using for the associated
initial value problems a fourth order Runge-Kutta method described by
R. England (Error estimates for Runge-Kutta type solutions to systems of
ordinary differential equations, Computer Journal, 12, 1969). It is hoped
that a Culham report by R. England, describing the subroutine in detail, will
be available by the end of 1973 (A program for the solution of boundary-value
problems for systems of ordinary differential equations, CLM/PDN 3/73).

7. Example

For a very simple example consider the eigenvalue problem

2
9—&%-(2—':—)—+ Xe(t) = 0

with boundary conditions

92 (0) =0, w(/2) =0
dt
and the additional boundary conditions
p(0) =1
fixes the normalisation. To reduce this problem to the required form write

yi(®) = o(e), y,(e) = 4%

to give the equations

dy1
FTRRA)
dy, N
7 = Mg
y,(0) =0
y,("/2) =0
y,(0) =1

For a first approximation we take zero for A and a straight line with
correct end values for o.

C

10

15
20

EXAMPLE PROGRAM

DDO3 TEST
IMPLICIT REAL*8(A-H,0-Z)
EXTERNAL G,H,Y
DIMENSION TU(1000)
DIMENSION YRES(2)
DIMENSION DH(3,5)

INTEGER P,Q
A=0.)
B=1.570796)
N=2

P=1

DO 10 I-1,3)
DO 10 J=1,5)
DH(I,J)=0.)
DH(1,2)=1.)
DH(2,3)=1.)
DH(3,1)=1.)
U=0.
ZETA=1E-4
YMUST=0.

MAXFUN=15
LPRINT=1
Q=0

ITU=1000

CALL DDO3AD(A,B,N,P,G,H,DH,Y,U,
1 ZETA,YMUST,MAXFUN,LPRINT,Q,TU,ITU)

DO 15 1I=1,11
T=1.570796%(I-1)/10)
CALL DDO3BD(T,YRES))
WRITE(6,20)T,YRES(1))
FORMAT(2F12.6)

STOP

END

SUBROUTINE G(T,Y,U,FG,DG,N)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION Y(2),FG(2),DG(N,3)
FG(1)=Y(2)

FG(2)=-U*Y(1)

DG(1,1)=0.

DF(2,1)=-U

DG(1,2)=1.

DG(2,2)=0.

DG(1,3)=0.

DG(2,3)=-Y(1)

RETURN

END

declare subroutines as external references

workspace

to contain y;(t) values for printing

to contain derivatives of boundary
conditions

range of integration

no. of equations
no. of parameters

set derivatives of boundary conditions

estimate of A

accuracy

to indicate derivatives supplied
analytically

max. no. of iterations

obtain printout at each NSO3 iteration

shooting points to be chosen
automatically

size of workspace

print out solutiom at 11 equally
spaced points

to evaluate g and its derivatives

SUBROUTINE H(YA,YB,U,FH,DH,NP) to evaluate boundary condition
function h

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION YA(2),YB(2),FH(3),DH(NP,5)

FH(1)=YA(2)

FH(2)=YB(1)

FH(3)=YA(1)-1.

RETURN

END

SUBROUTINE ¥(T,FY) | to provide initial values of y
IMPLICIT REAL*8(A-H,0-Z) using straight-line interpolation

DIMENSION FY(2)
FY(2)=-1./1.570796
FY(1)=1.+T+*FY(2)
RETURN

END

October, 1973.

ACKNOWLEDGMENTS

I should particularly like to express my gratitude to two people who ﬁave made
possible the publication of this report, after my own departure from Culham Laboratory to
take up employment in the Direccidn General de Planeacibn Educativa of the Secretaria de
Educacibn Publica in Mexico City.

Dr J.K, Reid has made considerable finishing touches and improvements to the sub-
routine package DDO3AD, in order to include it in the Harwell Subroutine Library.

Mr P.M. Keeping has supervised the typing and reproduction of this report at Culham,
and has also adapted those routines which were necessary for the program to be used at
Culham,

I would add my thanks to Mrs Olive Thorne who has so capably typed the report from

my manuscripts returned from Mexico.

REFERENCES

England} R. - Error estimates for Runge-Kutta type solutions to systems of ordinary

differential equations, Computer Journal, 12, 1969.

Fletcher, R. - A modified Marquardt subroutine for non-linear least squares, AERE

Harwell Report R6799, H.M. Stationery Office, 1971.

Keller, H.B. - Numerical Methods for Two-point Boundary Value Problems, Blaisdell,

1968.

Lance, G.N. and Rogers, M.H. - The symmetric flow of a viscous fluid between two

infinite rotating discs, Proc. Roy. Soc. 266, (1962), pp. 109 -121.

Lashmore-Davies, C.N.- Stabilization of a low-density plasma in a simple magnetic

mirror by feed back control, J.Phys. A: Gen.Phys, &4, 1971.

Marquardt, D.W. - An algorithm for least squares estimation of non-linear parameters,

J. SIAM, 11, 1963.

Osborne, M.R. - On Shooting Methods for Boundary Value Problems, J. Math. Anal. Appl.

27, 1969.

Reid, J.K., - Fortran Subroutines for the Solution of sparse systems of non-linear

equations, AERE Harwell Report R7293, H.M. Stationery Office, 1972.

101

102
113

104

108
107

50

60
79

30

90

100
114

200
103

105
106

APPENDIX A. PROGRAM LISTINGS

SUBROUTINE SETDEF(NI,NG,NN,ITU,QI,DH,TU,R;YR)
IMPLICIT REAL®*8(A=H,0=2)

INTEGER NI,NO,NN,ITU,Q1,PT,RI,SI,DI,MAXFUN,LPRINT,L,1,C
DIMENSION DH(NO,NM),TUCITU) ,R(QI),YR(NI,QI)
COMMON/HDATA/C,N

COMMON/DDO3CD/ZET,FACT,MAXF,LP

EXTERNAL G,H,Y

DATA A,B/0D0,1D0/,ZETA/1D=5/,YMUST/ODO/ ,EPSI/=1Dws/
DATA RI,ST/0,0/,MAXFUN,LPRINT/10,0/,D1/0/.,M/5/
NAMELIST/VALUES/RI,S1,A,B,ZETA, YMUST,EPSI,MAXFUN, LPRINT,DI,LP
DO 101 K=1,NN

DO 101 J=1,NO

DH‘J[K)ﬂ0.0

N=iNI

c=NO

READ(M,VALUES)

L=LP

PI=NO=NI

GO Tn 200

ENTRY PROGC (S, M)

REAL*8S(1),MU(T)

IF(RT.GT.0 .OR. PI.LT.1)GO TO 113

DO 102 K=1,PI

MU(KY=0,

CONTINUE

WRITE(L,103)NI,HD N, ITU,PT, Q1. RI,ST,A,R

DO 104 K=1,HN

WRITE(L,105)K, (DHCJ,K),J=1,ND)

IF (SI1.GT.0) WRITE(L,106) (S(¢J),d=1,S1)

IF (RI.EQ.N) GO TN 107

K=IABS(RI)

p0 108 J=1,K

WRITE(L,109)RCJI,(YRCI, J),I=1,NI)

IF (PI.GT.0.,AND.RI.GT.0) WRITECL,110) (MUCJ),J=1,P1)
WRITEC(L,111)LPRINT,MAXFUN, . YMUST,ZETA,EPSI

IF (D1.GT.0) YURITECL,112)DL,TUC1) , (TUC2%#J=2) , TU(2%J=1) ,d=2,D1)
IF(ZETA*EPST NE.O.)FACT=EPSI/ZETA

CALL SETY(A,B,RI,NI,R,YR)

CALL DDO3ADCA,B,NT, PL,G,HoDH,Y MU, ZETA, YHUST MAXFUN, LPRINT,DI,
1 TU,ITY)

IF(TUCITU=1).EQ.0.)GN TN 100

IF(SI.LT=1)GO TN &N

R(JI=S(J)

RI=SI

GO Tn 80

DO 70 J=1,DI

R(JISTU(2*Jw=T)

RI=DI

DO 90 J=1,RI

CALL DDO3BDC(RCJ),YP(1,u))

DO 114 J=1,RI

WRITECL,115)RCJDI ,C(YRCI,J)Y,I1=1,01)

IF (PI1.GT.0) WRITE(L,116) (MUCJ),J=1,P1)

K=DI+DI=1
IF(DIGT.O)URITE(L,118)DI,(TUCJ) J=1,K)

JETUCITU)

WRITE(L,117)J

RETURN

FORMAT(TH156X35HNUNBER NF DEPENDENT VARIABLES Y: N=I4/
1 ‘ THO53X384NUMBER NF BOUNDARY CONDITIONS: N+p=NO=I4/
2 1HO27X644NUMBER NF VARIABLES IMVOLVED IN BOUNDARY CONDITION

3S5: 2N+P+1= HNN=14/1HO45X44HNUMBER OF WORDS OF WORK SPACF PROVIDED:
LITU=16/ THOATXZ0YDIMNENSION OF EIGENVALUE MUs Ps14/

5 THO29XA2HMAXINUM STORAGE FOR TABULATION POINTS OR ESTIMATIO
AN POINTS: R=I4/

7 THO25X66HNUMBER OF ESTIMATED VALUES OF Y (POSITIVE IF MU IS
3 ESTIMATED): RI=I&4/1THO4OX42HNUMBER OF SPECIFIED TABULATION POINTS:
9 Si=l4/

A THO3ZAXSS5HVALUES OF INDEPENDENT VARIABLE T AT BOUNDARY POINT

BS: AmF9.4/90X2HB=F?,4/THO32X37HDEFAULT VALUES FOR JACOBIAN MATRIX
CDH/26X50HOR COEFFICIENTS OF BOUNDARY CONDITIONS H1,H2,H3,H0/1%)
FORMATCIXIL, 12 CTIXF2,4)/(5X12C1%XFR.4)))

FORMAT(28HOSPECIFIED TABULATION POINTS/1X/(6XF9.4))

109
110
111

112
115

116
17
118

10

20
30

40

FORMAT(23HOESTIMATED VALUES OF Y(F11.6,1H)1PBE12,4/(35X8E12.4))
FORMAT(THO34X32HESTINMATED VALUE OF EIGENVALUE MU//C11X1P10E12.4))
FORMATCTHO44X47HNIIMBER OF ITERATIONS BETWEEN PRINTOUTS: LPRINTsI4/
/THOL4X4THMAXIMUM NUMBER OF INTEGRATIONS ALLOWED: MAXFUN=L4//25X67
7 HINCREMENT IN Y AND MU FNR DIFFERENTIATION OF THE FUNCTION G: YMU
18T= TPE10.2/1H"61X30HFRROR BOUND ON SOLUTION: ZETA=1PE10.¢
2 /1HO024X67HERROR BOUMD FOR THE DEPENDENT VARIABLES Y DURING INT
JEGRATION: EPSI=1PE10,?)
FORMAT(1HNI?,26H SPECIFIED SHOOTING POINTS/1X/(5X2(1XF9.4)))
FORMAT(23HOTABULATED VALMES OF Y(F11.,6,1H)1PSE12.4/(35X8E12.4))
FORMAT(1HO3Z4X32HTABULATED VALUE OF EIGENVALUE MU//(11X1P10ET12.4))
FORMAT(1HO16,24H UORDS NF WORKSPACE USED)
FORMAT(THOI2,23H ACTUAL SHOOTING POINTS//(S5X2(1XF9.4)))
END

SUBROUTINE SETYCA,B,RI,NI,R,YR)
IMPLICIT REAL%8(A=",0=2)
DIMENSION R(1),YR(MI,1)

INTEGFR RI

RETURN

ENTRY Y(T,FY)

DIMENSION FY(1)

IF(RIL.NE.0)G0 TO 20

DN 10 JJ=1,N1

FY(JJI=0,

RETURH

11=1ABS(RI)

I1=11=1

IF((R(II)=T) «6T.0.760 TO 30
U=P(TT1+1)=R(IT)

Ve (T=R(II))/U

Us(RCIT+1)=T)/U

DO 40 JJ=1,N1

FYCJJ)SV*YR(JJ, TI+1)4+U%YRCyJ, 1)
RETURN

END

SUBROUTINE H(YA,YB,MU,FH,PH,NP)
IMOLICIT REAL*B(A=H,0=2)

REAL*S YAC1),YBC1) M (1Y, FE(1),DH(T)
COMMON/HDATA/C, N

INTEGER C,N,Q,5,P1,0I,RH,SH
PI=Cw=?

QH=C* (N+C)

D0 1 @=1,C

QH=0H+1

FH(Q)=m=~DH(QH)

RH=Q

SH=Q+C*N

DO 2 S$=1,N
FH(O)=FH(N)+DH(RH)*YA(S)+DH(SH)*YR(S)
RH=RH+C

SH=SH+C

IF (PI,LT«.1) GO TO 1

D0 3 $=1,PI
FH(Q)=FH{(Q)+DH(SH)*MU(5)
SH=SH+C

CONTINUE

RETURN
END

C

« 20

SUBROUTINE DDO3AD(A,B,NI,PI1,G,H4,DH,Y,HMU,ZETA,YHUST, MAXFUN,LPRINT,
1DI,TU,ITU)

IMPLICIT REAL*B(A=,0N=2)

COMMON/NSOZHD/ITEST
COMMON/DDO3CD/ZET,FACT,MAXF,LP,CFAC

INTEGER @J,P0O,DI,PI,01

REAL*S HMUCPI),TUCITUY,ZERN/ODO/,DH(T)

EXTERNAL DDOZHD .G, H,Y

JTEST=ITEST

ITEST=1

IF(A.GE.B) GO TO 340

IF SHOOTING POINTS ARE GIVEM THEN CHECK THEM,

IF(DI.LE.1)GO TN 2

J=2%DI=?

D0 3 11,4

IF(TUCI) oGTTUCI+1))DI=0

J=J=2

po S5 1=2,J,2

IF(TUCI) aGE.TUCI+2))DI=0

IF(DILEQ.0 .AND, LP.GT.0)URITE(LP:7)

FORMAT(' DDNZ HAS TEEN GIVEN FAULTY SHOOTING OR MATCHING POINIS,
TEXECUTIAN WILL CONTINYUE AS IF Q=0')

IF(DI.LE.1)DI=0

1E NOT SET., PROVIDE DEFAULT VALUES FOR 7ZETA AND HAXFUN,

IF (ZETA.LE.ZERO)ZFTA=ZFET

IF (MAXFUNLLE.Q) MAXFUN=MAXF

EPSI=ZETA*FACT

PO=NI+PI+1

C ALLOCATE SPACE IH T! NH BASTS OF GIVEN HUMBER AF SHOOTING POINTS OR

C GREATEST NUMBER THAT ALLNWS NDU3ZE/H T BE FXECIUTED.

] QJ=DI

IFCAY LEaT) 0= (I TUm2=NI=T*NI*PON=Flalil)/(2+2%NI«NI+NI*(P[+2))
TU(ITU)=0J*(?+1H*HI*PUwNI*(1+11*PI)/2)+Pu*(2+S*NI1+9*N!*PI+PI*(1S
1 +7+p1)/2

IF(RJ.LE=T1)GO TN 320

IAUX=2*0J+1

MV=TAUX+NT

KN=MV42*NT*MNI*(NJ=1)

[Y=KN+NI®#(PI+1)%x(01=1)

IYU=IY+7*NI+PN

IP=IYU+NI+AJ+P]

IFC(IP,LELITINGD TN 20

DI=0

IF(LP.GTLOYWRITECL™1G)

19 ENRMATC(® DD)Z HAS MEEN GIVEN [WSUFFICIENT WORKSPACE FOR THE '
1'SPECIFIED HUNBER NF SHNOTING PNINTS, EXECUTION TN CONTINUE AS 1F
20="")

GO TO 9

C INITIALIZE SUBRNUTINE CALLED 7Y RUNGE=KUTTA INTEGRATINN ROUTIMNE.
20 CALL DDOZED(NI,YMUST,G,MU,TUCIAUX))
C FIND FIRST APPPNX. SOL"TINN AND, IF REQUIRFED, FIND SHOOTIMG AND

c

MATCHING PDTMTS,
CALL DDOZDD(A.B, NI 2%N1,P1+1,P0,QJ DI EPSI,TUeY,

TTUCTYY) ,TUCMV) , TOCRMY , TH(TY))

C JUMP IF DDNZD WANTEN MNRE SPACE THAN IT WAS GIVEN.

IF (DI.ED.0) GO TO 320
QI=IABS(DI)
NENI*0T+P]

C SHIFT ARRAYS IN WORKSPACE TN CORRESPOND YWITH ACTUAL NUMBER OF
C SHOOTIMNG POINTS,

IF(QOI.EQ.QJIGO TO 210

TIAUX=2*0T+1

CALL DPDOJZED(NI,YMUST,G. MU, TUCTIAUX))
1=My

JEZHNI#NI*(QA]=1)

MV=TAUX+NI

CALL DDOZKDC(TU(MVITUC(I) , J)

T=KN

KN=MV+J

JENI*(PI+1)»(QI=1)

CALL DDO3ZKDCTUCKN) ,TUCL))
I=1Y
IYaKN+J
JETHNT*PO
CALL DDOZKD(TUCIY) . TUCI) d)
I=1YU
IYUsTY+)
CALL DDOZKD(TUCTIYU) ,TUCT) (N)
]P:IYLHN
210 IRN=IP+(N+2)/2
NZ=(2*NI+PI)*N
IGARIRN+{(NZ+1)/2
MT=IGA+N
LAST=MT+NZ
IF(LAST.GT,ITUXGN TO 320
C FIND INTEGER ARRAYS IP AND TRN AND NUMBER (MNZ) OF NON=ZEROS.
CALL DDO3GD(MI,2*NT,P0m1,2741,P0,DI,DH,EPSI,TU, MU, TUCIYU) ,TU(MV),
TTUCKN) p TUCTGA) gMZ, TUCMT) g TUCTIRN) ,TUCIP) , TUCIY) + H)
IWSTIRN#(NZ+1)/2
LW=TITH=TW+1
SAC=ZETA*ZETA*N
€ CALL NON=LIMEAR EQUATINN SOLVER,
CALL NSOZADC(DDOZHN,N,M,TUCIYU),SAC, SAC,MAXFUN,LPRINT,TUC(IY),
TLW,TUCIRN) , TUCIP) , DUMIY, DUMMY , 0, ZERD)
€ TEST FOR NS03 ERROR FLAGS.
TUCITY)Y=DMAXT (LAST+ZERQ, IW+TUCITUY)
IF(TUCITU=1).ER,0)G0 TO 320
TFCTUCITY=) .GT . MAYXFUN)GO TO 340
CALL MECO2ADCTUCTIWY zTUCIWY S, N)
IF(S.GT.SACYGO Tn 383
212 ITEST=JTEST
RETURM

ENTRY DDO3BD(T,YRES)
DIMENSION YPES(1)
C FIND THE INTERVAL BETWECEN SHOOTING POINTS IN WHICH T LIES.
1L=0
I1U=DTI+1
215 I=s(IL+IIND/2
IF((TU(2*I=1)=T)*(R=A))22N,250,230

220 IL=1
60 TO 235
230 Tu=1]

235 IF(IUNELIL+1)GO TO 215
C DECIDE WHETHER FORWARD OR BACKWARD SHOOTING IS APPROPRIATE AND PERFORUM
C SHOOT.

IFCIL.ER.0)TL=1

IF(IUL.GT.DI)GO TO 240

Cw IF(TUCTL*2)aLTT)TL=TU
IF(TUC2#IL) LT.TYIL=TV
240 I=1L

250 JKSIYU+(I=1)*NI=1
TT=TU(2%1=1)
DT=T=TT
DO 260 I1=1,NI
K=I+JK
260 YRES(I)=TU(K)
IF(DT NE.ZERO)CALL DPO3JD(,TRUE,,NI,NI,TT,DT,T,YRES,EPST,TU(1IY))
RETURN
c
C ERROR RETURNS,
300 IF(LP.GT.0IWRITE(LP,310)
310 FORMAT('+ERROR RETURN FROM DDO3 BECAUSE")
60 TO 212
320 IF(LP.GT-0)WRITE(LP,330)
330 FORMAT(32X,' DIMENSIDM NF TU IS TOO SMALL')
TUCITU=1)=0
60 TO 300 :
340 IF(LP.GT.0)WRITE(LP,350)
350 FORMAT(32X,'T0O0 MANY ITERATIONS NEEDED')
GO TO 300

350 IF(LP.GT.0O)URITE(L,370)

370 FORMAT(32X,"A.GE .B")
TUCITU=T) ==
G0 TO 300

330 IF(LP.GT.0)WRITE(CLP,390)

3720 FORMAT (32X, "NS03 HAS FAILED TO SOLVE PROBLEM')
TU(ITU=1)==2
GO TO 300
END
BLOCK DATA
IMPLICIT REAL*8(A=H,0=2)
COMMON/NDO3CD/2ZET,FACT,MAXF,LP,CFAC
DATA CFAC/1D1/
DATA ZET,FACT,MAXF,LP/1D=13,1D",10,6/
END

SUBROUTINE DDN3IKD(A,B,N)
IMPLICIT REAL*S (A=l Nmy)
DIMENSTION ACH),BCH)
DO 17 I=1,N

19 AC1)=B(1)
RETURM
END

SUBROUTINE DDOZJUDCAN, LOGHT, T,DT,TT,Y, EPST,AaUX)
C INTEGRATES NVER A SIHGLE INTEPVAL.
IMPLICIT REAL*Z(AmI,0wZ)
LCGICAL BN
EXTERHAL DDO3FD
DIMENSINN Y(LD) ,AUNCLO,H6)
COMMOMN/DDO3CD/ZFT,FACT MAXF,LP,CFAC
C STORE INITIAL VALYUE OF Y AND SHONTING I{TERVAL SIZE.
D0 101 JJ=1,L0
101 AUX(JJ1)=Y(JS)
W=TTm=T
C REDUCE STEP SIZFE IF ONE THTFGRATION STEP WILL EXCEED MATCHING PODINT,
IF (Y/DTLT.1.0) RT=Yy
V=T
106 CALL DDAZIDCLN,DDAJZFR, 0T, Y, YeAUX(1,2) ,HI.AUX(T1,3))
C DETERMIMNE MYNARM 0OF IMTEGRATINN ERRNR IN PROPORTIN!N TO EPSI, THENW
C DIVIDE BY FRACTINI NF SHOATING INTERVAL TO GIVE !la
U=6,.0
po 102 11=1,N1
AUXCIT,2)=0ABSC(AUXC(IT,2))/EPSI
IF (EPSTaLELD.0) AMX(IL2)=AUXCIT,2)/ (EPSI=DABSCY(II)))
IF (U LTLANACIT.2)) U=anX(1l,2)
102 CONTIHUE
U=U*W/DT
C ADJUST STEP~SIZE ACCORDING TO SIZE OF U,
1F (U,GE.0,25) GO TO 103
DT=DT*3,0
IF (U.GT.0,0081) DT=0T*N,.3/DSQRT(LSORT(U))
GO TO 104
103 IF (UoLTa0,75.0RU/DT.GT1E3.0RV.EQY+UT/3.0) GO TO 104
DT=DPT/3.0
IF (U,LTa33,1776) DT=DT*2.4/DSART(DSQRT (UY)
IF (".LE<1.0) GN TN 104

C RESTORE INITIAL VALUES OF Y AND T.
PO 105 I11=1,L0
105 YC(II)=AUXCII, 1)
V=T
60 TO 106
C STORE NEY VALUES OF Y AND T,
104 DO 107 11=1,L0
107 AUXCIT,1)=Y(ID)
T2V
C JUMP IF SHOOTING INTERVALS HAVE BEEN DETERMINED.
IF (BN) GO TO 107
C TEST WHETHER NORM OF PROPAGATIGN MATRIX IS GREATER THAN 10 AND IF S0

C RETURN.

PO 109 II=1,h
JI=II+NI
U=0,0
D2 110 K=JJ,L0,NI
110 U=U+DABS(Y(K))
IF (U.GT.CFAC) GO TO 111
109 CONTINUE
C JUMP IF NEXT INTEGRATION PUOINT WILL NOT EXCEED MATCHING POINT,
108 1F ((TT=T)/DTGTa1.0) GO TN 104
DT=TT=T
g REDUCE STEP=SIZE AND J!IMP IF STEP=SIZE WILL MAKE A SIGNIFICANT CHANGE
IN T
IF (T.NE.T+DT) GO TN 104
111 RETURN
END

SUBROUTINE DDO3GD(NI,N0,NO,PP,PO,DI,DH,EPSI, TU,MU,YU,MV,KN,GA,
1 MZeMT,IRN,IP,ALUX,H)
THIS ENTRY (FORMERLY PACDIF) PREFORMS SHOOTING AND MATCHING IF
THIS HAS NOT JUST BEEN DONE BY DDO3D AND IN ANY CASE CALCULATES THE
€ INTEGER ARRAYS IP AND IR!,
IMPLICIT REAL*S(AmH,0=Z)
INTEGER#2 IRN,IP
INTEGER GI,M0,NO,PP,PD,DI
REAL*S TU(2,1) ,MUCPP) , ¥YI(1) ,MVINI, MO, 1) ,KN{NLI,PP,1),GAC1),MT(1)
DIMENSION DH(HO,MO) , IRNC1) ,IPC1) , AUXCHILPN,T7)
NCALL=0
DI==DI
C RECORD THE NUMBER OF SHOOTING AND “ATCHING POINTS.
QIsTABS(DI)
LI=QI=1
_1F (PP.LT.2) GO TN 103
C IF THERE IS A VECTOR MU ADD IT TO THE END OF THE VECTOR oF ESTIMATES,
II=NI*0]
D0 101 JJ=2,PP
I1=I1+1
101 YUCID)=HUCJJ=1)
69 TO 103
ENTRY DDO3HD(H,YU,GA,H,MT)
C THIS ENTRY (FORMERLY MHMYSHT) IS CALLED RY NS03 AND CALCULATES THE
C RESIDUALS AND THE JACORIAN MATRIX. '
NCALL=HCALL+1
C IF THERE IS A VECTOP MU INITIALIZE IT FROM THE END OF TNE VFCTOR OF
C ESTIMATES.
IF (PP,LT.2) GO TN 103
IT=NI*QT
DO 104 JJ=2,PP
11=11+1
104 MUCJJ=1)=YUCIT)
103 KKsNI+®L]
TI=NI*AQI
CALL HCYU,YUCKK+1),YUCITI+1) ,GACKK+1),DH,NO)
¢ JUMP TF AN INTEGRATION HAS JUST BEEN PERFOPMED BY DDO3D OR THIS IS
C THE FIRST CALL OF DDO3Y,
IF (DILLE.0) GO TO 102
IF(NCALL.EQ.1)G0 TO 102
=0
DO 105 KK=1,LI
C INITIALIZE PARTIAL DERIVATIVE ARRAY,
DO 106 JJ=1,NI
Is1+1
pa 107 11=2,PO
107 AUX(JJ,11,1)=0,0
AUXCJ) e dd+1,1)=1,0
106 AUX(JJI.1,1)=YU(T)

=]

C SET UP FORWARD SHOOTING INTERVAL.
T=TU(1,KK)
TTaTU(2,KK)
DT=TT=T
IF (ToNE.TT)
1 CALL DODO3JD(.TRUF. HI*PO, NI, TyDT+TT,AUX,EPSI,AUX(1,1,2))
C ADD RESULTS TO PROPAGATIOH MATRICES AND REINITIALIZE PARTIAL
C DERIVATIVE ARRAY,
DO 109 JJ=1,NI
I=1+1
KNCJJ, PP, KK)=AUX(JJ,1,1)
“IF (PPLLT.2) GO TN 110
PO 111 T1=2,p0
K=NTI+II1
KN(JJ!II-“IKK)‘:AUX(JJIKl.‘)
111 A'-.'X(JJ!K:1)=O‘§{J
110 b0 112 11=1,MN1
MY CJJ o TT,KKY=AUXC(JL,T11+1,1)
112 AUX(JJd,11+71,1)=0,0
AUX(JJvdd*+1,1)2-1,0
109 AUXC(JJ1,.1)=Y1(T)
I=I=NI
C SET UP BACKWARD SHONTING INTERVAL.
T=TU(T,KK+1)
TT=TU(2,KK)
DT=TTm=T
IF(T.HNE.TT)
1 CALL DPDO3YD(LTRUEL,II*PO, NI, T,D07,TT,AUX,EPST,AUX(T,1,2))
C SUBTRACT RESULTS FRNM PRAPACATION ATRICES.
Do 105 JJd=1,HT
IF (PP, LT.2) GO TN 115
DO 116 11=2,PP

K=HI+T11
116 KNCJJ,T1=1,KK)=KHCIS, T1=1,KK)=AUXC(JJ K, 1)
115 K=NI

po 117 11=1,NH1

K=K +1

117 MVJJ K KKY=AUXCII, TT+1,1)
105 KNCJJ,PPsKKI=KNCJJ PP, KK)=AUXCJJ1,1)
C RESET MARKER IF INTEGRATINY PERFORMED BY nNDO3B (ONEPAS).
102 DI=QI
IF(NCALL.GT.0)G0 TN 215
C
C FIND SPARSITY PATTFRHN NF JACORIAN,
K=1
KK=NI*LT
DN 117 11=1,NI
C SET PRINTER ARRAYS FOP FIRST PROPAGATION NATRIY
TOIPR(II)=K
pn 120 Jd=1,N01
IF(JI.NELTT JAND. TUC 1,1),EQ.TUC 2,1))G0 TO 120
IRN(K)=JJ
K=K+1
120 CONTINUE
C SET POINTER ARRAYS FOP DH/DY(A)
DO 112 JJd=1,H0
IRN(K)=KK+)J
K=K+1
119 CONTINUE
IF (LI.LT.2) GO TO 121
C SET PDIWTER ARRAYS FOR PAIRS NF BACKWARD AND FURLARD PROPAGATION
C MATRICES,
DD 122 KK=2,LI
DO 122 I1I=1,N1
I=NI*(KK=1)411
IP(I)=K
I=snNI+TI
DO 123 JJ=1,NI
IF(JJeNELTI oAND, TU(1,KK) . EQaTU(2,KK=1))GO TO 123
IRNCK)=SNTI* (KK=2)+JJ
K=K=+1
123 CONTINUE
SNI*(KK=1)
DO 122 JJ=1,NI

IF(JJNELIT ,AND, TU(1,KK) . EQ,TU(2,KK))IGO TO 122
IRNCKI=T+JJ
K=K+1
122 CONTINUE
121 KK=NI+*LI
DO 124 I11=1,NI
C SET POINTER ARRAYS FOR LAST PROPAGATION MATRIX,
I=KK+T1
1IP(I)=K
I=NI#+I1
pn 125 JJ=1,N1 ;
IF(JJoNELITI AND. TU(1,01).EQ.TU(2,LI))GO0 TO 125
IRM(K)ZSKK=NI+JJ
K3 K+1
125 CONTINUE
C SET POINTER ARRAYS FOR DH/DY(R)
DO 124 JJ=1,ND
IRN(K)=KK=+JJ
K=K+1
124 COMTINUE
1F (PP,LT.2) GO TO 129
C SET POINTER ARRAYS FOR DERIVATIVES WITH RESPECT TO MU,
D0 126 11=2,PP
I=NI*QI+11
IP(I=1)=K
1=1
DN 127 KK=1,LI
DO 127 JJ=1,NI
IRN(K)=I
K=K+1
127 1=1+1
I=M0+11
KKaNI*LT+1
pQ 126 JJ=1,NO
" IRNCK)=KK+JJ=1
K=K+1
126 COMTINDE
129 I=NI*Q1+PP

IP(I)=K

NZ=K=1

RETURN
C
C TRANSFER RESIDUALS INTO NMATRIX GA.
215 I11=1

po 220 KK=1,LI
D0 220 JJ=1,NI1
GA(II)=KN(JJ,PP,KK)
220 11=11+1
KK=NI*LI
C TRANSFER FIRST PROPAGATION MATRIX AND DH/DY(A) TO MT
DO 240 II=1,NI
K1=1P(I1)
K2=IP(IT+1)=1
DO 240 KmK1,K2
JJ=IRMN(K)
IF(JJ.GT.NI)GO TO 230
MTC(K)=MV(JJ,I1,1)
GO TO 240
230 JJ=JJ=KK
MTC(K)=DH(JJ,I1)
240 CONTINUE
IF (LI1.LT.2) GO TO 270
C TRANSFER PAIRS OF BACKWARD AND FORWARD PROPAGATION MATRICES TO MT.
D0 260 KK=2,LI1 '
DO 260 11I=1,NI
I=NI*(KK=1)#11l
I1=NI*(KK=2)
K1=IP(I)
K2=IP(I+1)=1
I=NI+11
po 260 K=K1,K2
JIJSIRN(K)=T1
IF(JJ«GT.NI)GO TO 250
MT(K)=MV(JJ,T,KK=1)

G0 TO 260

250 Jy=JdJ=NI

MT(KI=MY (JJ . T1,KK)

260 CONTINUE
270 KK=NI*LI
€ TRANSFER LAST PROPAGATINH MATRIX AND DH/DY(B) TO MT

po 290 1I1=1,N1
I=KK+II

K1=IP(I1)

K2=IP(I+1)=1

I=NI+IT

Do 290 K=K1,K2
JISIRN(Y) =KK+N]
IF(JJGTNI)GO TN 230
MTC(K)Y=MV(JJ,T,LD)

GO TO 270

250 Jd=JJ=H]

MTCKI=DH(JJ,I)

290 CONTINUE

IF (PP,LT.2) GO TO 329

C TRANSFER DERIVATIVES WITH RESPECT TO MY Tu T,

30

31
32

OO0

e NaNal

19

29

30

po 310 11=2,PP
I=NI#QT+I1
K1=IP(I=1)
K2zIP(1)=1
[=M0+11
pO 310 K=K1,K2
KK=(IRN(K)=1)/NT1+1
JJSIRN(K)=(KKmT1) T
JF(KK.GT,LI)GO TO 207
MTCEI=KNCID , TT=1,K¥)
GO TO 310

0 JI=IPN(K)=NI*LI
MTCE)=DY(J,1=1)

0 CONTINUE
0 RETURW
END

SUBROUTIME DDNZIDCL, FUNC, Y, T,Y, EeMsnllx)
THIS SYBROUTINE IMPLEMFNTS THE® USUAL FOURTH ORDER RUNGE=KUTTA METROD
FOR L DIFFERENTIAL EQUATINNS AHD USES ENGLANHD'S (CoMp, J, 12 (1949),
P.166) ERROR ESTINATE (6) FNOR THE FINST ™ VARIABLES, IT ASSUMES THAT
THE FIRST M DERIVATIVES DG MOT DEPENDL 4! THE PEMATYING VARIABLES.

IMPLICIT REAL*8(A=",N~2)

DIMENSION Y(L) ,FC(L) ,AUXKC(T)
AUX IS A WORK ARRAY NF DIMENSIUN L*4
Y(T) IS OVERWRITTEN RY Y(T+H),T BY T+H ANU ERPOIR ESTIMATES ARE PLACED
It 'Ea

L2=L*2

L3=L*3

CALL FUNCC(T,Y,AUX,L)

FO=H/2.

pn 10 1I=1,1L

ECI)=Y(I)+AUX(I)*FO

CALL FUHCCT+FO,E AIX(L+1),L)

FO'—'H/"*‘O-

po- 20 I=1,L

12=1+L

ECI)=Y(I)+(AUXCT)+AUX(I2))*FO

CALL FUNC(T+H/2.,EAUR(L2+1),L)

Fl==H)

F2=H+H

po 30 1I=1,L

I12=1+L

13=1+L2

ECI)=Y(I)+F1#AUX(I?)+F2*AUX(I3)

CALL FUNC(T+H,E,AUX(L3+1),L)

DO 40 I=1,M

FO=AUX(T)*H

12=1+L

F1=AUX(I2) *H

I13=1+L2

F2RAUXCIZ)w*H
I4al+L3
F3sAUX (14)%H
EC(I)=(42.*F0+224 ,%F2421.%F33 /336,
AUXCTI)aY(I)+ (7, *#FO+10,*F1+F3) /27,
C* AUXCI+L)I3Y (I (28 % FD=125 % F 14546, %F2454,%F%) /625,
100 = I & |
AUX(IOO)SY(I)+(28.%Fﬂ-125.*F1+5k65*F2+54»*F3)f625,
40 Y(I)aY (1) & (FOw4 , xF2+F3} /6,
IF(L.EQ,M)YGN TO 4?
MimsMe1
Hé=H/06,
DO 45 laMi,L
13=21+L2
Td=l+13
45 YOTI)mY (D) (AUX(T) 4 o#AUX(IZ D)+AUX(I4))*H6
47 CALL FUNC(TH2,%#H/3., AUX,AUXC(L2+T1),M)
F4a=373 . *H/625,
b0 50 I=1,M
i12al+L
I3=1+L2
50 AUX(I2 JI)=AUX(I2)+AUX(I3)*Fé&
CALL FUNC(T+H/5,, AUX(L+1),AUXC(L3+T) ,M)
F&=167*%H/336,
F5=125.%*H/336,
po 60 I=1,M
i13=1+L2
l4minl3
60 E(I)=F4*AUX(I3)+FS#AUX(14 DI=E(I)
T=T+H
RETURN
END

" SURROUTINE DDO3NDDCA,R, NI, NO,PP,PN,QL,D1,EPSTI,TU,Y,YU,MV,KN,AUX)
C THIS SUBROUTINE (FORMERLY CALLED ONEPAS) OBTAINS FIRST APPROXIMATION
C TO Y AND FIHNDS THE SHODNTING AND MATCHING PDINTS IF THESE ARE NDT GIVEN
IMPLICIT REAL*8(A~H,0~2Z)
INTEGER NI, ,MD,PP,PD,QRI,DI
REALwA KN(NI.PP.Qli-AUX(NI,PO.T)'TU(Z.OI).YU(NI.QI)JMV(NI;MO.QI)
C INITIALIZE ERROR PRNOPAGATION MATRICES MV AND KN.
LI=QI=1
DO 101 KK=1,LI
DO 101 JJ=1,NI1
0O 102 11I=1,H0
102 MY(JJ,IT,KK)=D,0
MY (JJoJdJ KK)=T1.0
II=dJ+NI
MV(JJ'I![KK)=-1|0
DO 101 Ii=1,PP
101 KNCJJ o IT,KK)=0,0
IF (DI.LT.1) GO TN 103
C OBTAIN FIRST APPROXIMATION TO Y IN CASE WHEN SHOQTING POINTS ARE GIVEN
DO 104 KK=1,DI
104 CALL YC(TUCT,KK),YUCT,KK))
DI==D1
RETURN -
C CHODOSE SHOOTING AND MATCHING PQINTS.
C
~C SET UP FIRST SHOOTING POINT AND THE WHOLE INTERVAL (A,B),
103 JK=1 .
KKk=QI
TU(1,1)=A
TU(2,Q1)=8B
DT=B=A
TU(1,Q1)=DT
C OBTAIN ESTIMATE AT SHOOTING POINT,
123 T=TU(1,JK)
TTaTU(2,KK)
CALL Y(T,YUC1,4K))
C INITIALIZE PARTIAL DERIVATIVE ARRAY AUX,
112 DO 115 JJ=1,N]
DO 116 11=m2,PO

116 AUX(JJoT1,1)20.,0
AUXC(JJ o dd+1,1)21,0
115 AUXGJJd 1, 1)=aYUCdd ,JK)
"~ CALL DDPO3JD(.FALSE,HI*PO,NI, T DT TT,AUX,EPSTAUX(1,1,2))
C ADD RESULTS TO PROPAGATINN MATRICES, INSERT MATCHING POINT AND
C REDUCE REMAINING INTERVAL,
DO 117 JJ=1,NI
KNCJJ PP JK)=KNCIJ PP JK)+AUXCII,1:1)
IF (PP.LT.2) GO TO 118
DO 119 11=2,PP
KsNI+II
119 " KN(JJ, 1I=1,JK)SKNCJJ, T1=1,JK)+AUX(JJsKko1)
118 DO 117 II=1,NI
117 MVGJJIT,JK)=AUXCJJ o TT1+1,1)
TUC2,JK)=T
TT=TT=T
JK=JK+1
C JUMP IF REMAINING INTERVAL IS SMALL.
IF (T.EQ.T+TT) 60 TQ 120
C JUMP TIF ALL SHOOTING TIHTERYALS HAVE BEEN USFD.
IF (JKaGT.KK) GO TN 121
C JUMP IF THE FORWARD SHOOTING INTERVAL IS NOT GREATER THAN THE BACKWARD
C SHONDTING INTERVAL. ;
IF ((T=TUC1,JKe1))/TUCT1,KK)LE.T1a8)) GO TO 122
C INSERT MZW SHOOTING POINT,
TUC1,JK)=T
G0 TO 123
C REVERSE THE INTEGRATION STEP.
122 DT==DT
C SET UP SHOOTING POINT FOR BACKWARD SHQOTING ANo REMAINING BACKWARD
C INTERVAL.
134 T=TU(2.KK)
TUCT,KK)=T
TTeTU(2,JK=1)
C OBTAIN ESTIMATE AT SHOOTING POINT,
CALL Y(T,YU(1,KK))
C INITIALIZE PARTIAL DERIVATIVE ARRAY,
126 DO 129 JJd=1,N01
po0 120 1I=2,PND
130 AUX(JJ,T11.1)=0,.0
AUX(JJ edd+1,1)2=1,0
1292 AUXCIU 1, 1)=YUCII KK)
KK=KK=1 .
CALL DDOSJD(.FALSE-.HI*PG,NI.T,DT.TT.ﬂUX;E?SinA“X(1:1.2))
C SUBTRACT RFSULTS FROM PRNPAGATION HMATRICES, TWSERT MATCHING POIMNT AND
C REDUCE REMAINING IMNTERVAL.
D0 131 JJ=1,NI
TKNCJIaPPLKKI=KNCIS e PP, nK)=AUXCUJ o T41)
1F (PP.LT.2) GO TO 132
po 132 11=2,PP
KSNI+IT
133 KN(JJ, II=1,KK}=SKNC(JJ,II=1T KK)=AUXCJJ K1)
132 K=NI
po 131 11=1,NI
K=K+1
131 MV(JJJKUKK)=AUX(JJ|11"‘1!1)
TU(2,KK)=T
TT=2TT=T
¢t JUMP IF REMAINING INTERVAL IS SMALL.
IF (TLED,T+TT) GO TO 120
C JUMP IF ALL SHOOTING POINTS HAVE BEEW USED.
IF (JK.GT.KK) GO TN 121
TT=TUCT , KK+1) =T
¢ JUMP IF THE BACKWARD INTERVAL WAS GREATER THAWN THE FORWARD SHOOTING
C INTERVAL.
IF ((TUC2,JdKk=1)=TU(1,JK=1))/TTaLlTa1,0) GO TO 134
C SET UP SHOOTING PNINT FOR FORWARD SHOOTING AND REMAINING FORWARD
C INTERVAL AND REVERSE INTEGRATION STEP.
TUCT KK) =TT
TUC1 . JK)=TUC2 : JK=1)
DTw=DT
G0 TO 123
¢t SET MARKER FOR INSUFFICIENT SHOOTING INTERVALS.

121 Dl==1
C JUMP IF BACKWARD SHOOT HAS BEEN PERFORMED.
120 1IF (KK LT.O0I) GO TO 135
C OBTAIN ESTIMATE AT B,
CALL Y(B,YU(1,KK))
C INSERT A NULL BACKWARD SHOOTING INTERVAL AND ADJUST PROPAGATION MATRIX
TUCT1,KK)=TU(2,KK)
T‘J(Z'KK"1)=TU(2'KK)
KKsKKe=1
DO 141 JJ=1,NI
141 KNCJJ PP KKISKNCIJ PP, KK)=YUCId) KK+T)
C JUMP IF ALL SHOOTING INTERVALS HAVE HOT BEE# 'ISED.
135 IF (JK.LEaKK) GO TO 142
C SET JK EQUAL TO NUMBER OF SHOOTING POINTS.
JK=Q1
GO TO 143
C ADJUST PROPAGATION MATRIX AT FINAL MATCHIIG POINTS.
142 JK=JK=1
DO 144 JJ=1,PP
DO 144 1T1=1,NI
144 KN(IIIJJIKK)=KH(IIJJJIKK)+KN(IIIJJIJK)
C ARRANGF IN COMPACT FORM THE PPOPAGATION MATRICES AND ARRAYS DEFINING
C SHOOTIMNG INTERVALS AND ESTIMATES.
DO 145 JJ=KK,LI
DO 146 TI=1,NI
DO 147 K=1,PD
147 KNCIT, KyJKI=KN(IT,%,JJ)
JERI+1
DO 14A K=J,N0
146 MV(IT, K JK)=MV(TIT.KedJ)
JK=JK+1
TH(T,JK)=TUCT ,0d+1)
TUC2,J%)=TU(2,JJ+1)
DO 145 TI=1,NI
145 YUCIT,JK)=YU(IT,JdJ+1)
C RESET MARKER FOP FIHAL MATCHING POINT,
KK=KK+JK=0T
C SET DI EQUAL TO NUMBER OF SHOOTING POINTS, UR ZERO IF MOT ENOUGH,
143 IF (DI.EQ.0) DRI=JK
IF (DI.LT.0) DI=N
C MAKE FINAL ARJUSTMEMTS TN THE PROPAGATION MATRICES TO ACCOUNT FOR THE
C ALTERNATE HULL INTERVALS,
JK=JKm1
K=KK+1
DO 148 JJ=1,NI
IF (KoGT.JK) GO TO 149
DO 150 TI=K,JK /
150 KNCJJ,PP,II)=KNCJJ PP, LI)+YUCJJ,II)
149 I1F (KK.LTa.?2) GO TO 1428
DO 151 I1I=2.KK
151 KNCJJ,PP,IIm1)=KNCJY, PP, IT=1)=YUCJJ, I 1)
1483 CONTINUE
109 RETURN
END

SUBROUTINE PDDOZED(NTI,YMUST,G, MU, AUX)
C THIS IS AN INITIALIZATION ENTRY.
IMPLICIT REAL*B(A=H,0=2)
INTEGER NI, PO
REAL#*#& MU(1) ,AUX(T)
G0 TO 1
C THIS ENTRY IS CALLED BY THE RUNGE=KUTTA SUBROUTIME DDN3I
ENTRY DRO3FD(T,Y,VF,LOD)
DIMENSION VF(1),Y(1)
CALL GCTtYrMUnVF,V?(HI*“)JNI)
C RETURN IF VARIATIONAL DERIVATIVES NOT WANTED 4
IF(NI.EQ,LO)RETURN
PO=LO/NI
C JUMP IF ANALYTIC DERIVATIVES ARE AVAILABLE.

IF (YMUST.EQ,0.0) GO TO 2
C FOR EACH VARIABLE.ADD FINITE INCREMENT AND FIND ONE=SIDED DIFFERENCE
K=NTI+1
Do 3 I=2,P0D
DO 4 J=1,NI
AUXCI)=Y(J)+Y(K)*Y'IUST
A K=K+1
KaK=HNI
J=l=1=NT
IF (J.LE.O) GO TO 5
s=MUCJ)
MUCJ)=S+YMUST
5 CALL G(T,AUX,MU,VFC(K),DUMMY,NT)
IF (J.GT.0) MUCJI)=S
DO 3 J=1,N1
VF(K)=(VF(K)=VFCJI)/YNUST
3 K=K+1
G0 TN 1
C CALCULATE THE DIFFERENTIALS FROM THE PARTTAL DERIVATIVES SUPILLIED BY G
2 DO 2 I=1,NI
L=1
DN 7 K=1,N1
L=L+NT
7 AUX(K)=VF (L)
L=1
po 9 J=2,P0
SHM=0,
L=L+NI
1F(JoGTNI+1)SUN=VI(L)
M=NI*J=NT
DO 3 K=1,NI
M=M+1
8 SUM=SUM+AUX (K) *Y (1)
9 VE(L)=SIM
1 RETURHN
END

SUBROUTINE

SETDEF

:

APPENDIX B. Flow Charts

INITIALIZATION OF
ADDRESSES AND

DEFAULT VALUES

!

INITIALIZATION OF

INTEGERS NEEDED

BY DEFAULT ROUTINE H

!

READING OF
SCALAR DATA

(&VALUES)

;

RETURN

ENTRY

PROGC

:

INITIALIZATION

OF p IF ROT

SET IN DATA

!

PRINT DETAILS

OF INPUT DATA

y

CALL SETY

!

CALL DDO3AD —O

SET TABULATION
POINTS AS
SPECIFIED

80
FOR EACH

3 TABULATION POINT
CALL DDO3ED

ENOUGH WORK SPACE

PROVIDED?

TABULATION POINTS

SPECIFIED?

SET TABULATION
POINTS FROM

SHOOTING POINTS

100
PRINT BEST

RESULTS

OBTAINED

!

RETURN

Y

INITIALIZATION
OF ADDRESSES
AND DIMENSIONS

SET THEM
TO ZERO

RETURN

INITIAL ESTIMATES

ENTRY

20

DETERMINE
INTERVAL
IN WHICH

REQUESTED

POINT LIES

y/

PERFORM
LINEAR
INTERPOLATION

RETURN

PRINT - MESSAGE

SUBROUTINE ! STORE AND RESET
i CONVERGENCE |
DDO3AD

CONTROL FOR NSO3

ABANDON THEM
AND PRINT MESSAGE

v ¥

IF THEY ARE NOT SET ?|1r suoorING PoINTS ARE WOT
PROVIDE DEFAULT VALUES SPECIFLED, DETERMINE 1S THERE
—_— I . SPACE FOR TWO SHOOTING
POINTS?
MAXFUN, EPSI WHICH MAY BE USED

)

ABANDOM THEM
AND PRINT MESSAGE

IS THERE SPACE
FOR THE SPECIFIED SHOOTING
INTERVALS?

PARTITION OUT WORK SPACE

CALL DDO3ED DID DDO3DD
ENTRY + HAVE ENOUGH WORK
DDO3BD SPACE?
¢ O—[CALL DDO3DD
DETERMINE O‘ REPARTITION WORKSPACE
INTERVAL CALL DDO3ED DID DDO3DD USE
IN WHICH O CALL DDO3KD THE MAXIMUM NUMBER OF
REQUESTED FOR THE SUBARRAYS SHOOTING POINTS?
POINT LIES MV, KN, ¥, YU

l —
DETERMINE O———‘ CALL DDO3GD

THE APPROPRIATE
SHOOTING POINT

i

IS THERE
SPACE AVAILABLE TO
PROCEED?

I Yy

DID NSO3AD PRINT
FIND THE O—— CALL NSO3AD HAVE ENOUGH WORK
MESSAGE
SOLUTION AT SPACE?
THAT SHOOTING
POINT
DID
¢ PRINT
O | CALL MCO24AD
NSO3AD CONVERGE? MESSACE

IF THE REQUESTED
POINT IS NOT
THE SHOOTING POINT
CALL DDO3JD O

NSO3AD CONVERGE TO A PRINT MESSAGE

RETURN 300
RESTORE CONVERGENCE PRINT ERROR

CONTROL FOR NSO3 | MESSAGE

Il

YES

YES

YES

121

SUBROUTINE

INITIALIZE ERROR

DDO3DD

PROPAGATION MATRICES

REMAINING INTERVAL

HAVE ALL

SHOOTING INTERVALS

BEEN USED?

HAVE ALL

SHOOTING INTERVALS

BEEN USED?

SET MARKER

FOR INSUFFICIENT

SHOOTING INTERVALS

FOR EACH
SHOOTING POINT

CALL Y

ARE

SHOOTING INTERVALS
SPECIFIED?

103

SET UP FIRST SHOOTING POINT
AND THE WHOLE INTERVAL (a,b)

ADD RESULTS TO PROPAGATION
MATRICES, INSERT MATCHING
POINT AND REDUCE
REMAINING INTERVAL

FORWARD SHOOTING

BACKWARD SHOOTING
INTERVAL?

(OR UNDECIDED)

INTERVAL GREATER THAN THE

CALL | INITIALIZE PARTIAL
DDO3JD | C) DERIVATIVE ARRAY
A
Lo FOR THE
INSERT NEW
B SHOOTING POINT |-@
SHOOTING POINT | o
CALL ¥

3

YES
SET UP SHOOTING POLNT FOR

FORWARD SHOOTING AND

REMAINING FORWARD INTERVAL,
AND REVERSE INTEGRATION STEP

REVERSE THE
INTEGRATION STEP

)

ST

BACKWARD SHOOTING

FORWARD SHOOTING

INTERVAL GREATER THAN THE

SUBTRACT RESULTS FROM
PROPAGATION MATRICES,
INSERT MATCHING POINT AND

REDUCE REMAINING INTERVAL

I

SET UP SHOOTING POINT
FOR BACKWARD SHOOTING

AND REMAINING BACKWARD
INTERVAL

134

FOR THE
= SHOOTING POINT
CALL Y

YES

1
INITIALIZE PARTIAL

CALL

142

ADJUST PROPAGATION MATRIX
AT FINAL MATCHING POINT

DDO3JD DERIVATIVE ARRAY

ARRANGE IN COMPACT FORM

THE PROPAGATION MATRICES AND RESET MARKER

FOR FINAL

INSERT A NULL BACKWARD
SHOOTING INTERVAL AND

ADJUST PROPAGATION MATRIX

ARRAYS DEFINING SHOOTING
INTERVALS AND ESTIMATES

MATCHING POINT

143
SET DI EQUAL TO

NUMBER OF SHOOTING
"~ POINTS, OR ZERO

SET JK EQUAL TO
NUMBER OF SHOOTING POINTS

1IF NOT ENOUGH

/

MAKE FINAL CORRECTIONS TO

PROPAGATION MATRICES TO

ACCOUNT FOR THE ALTERNATE
NULL INTERVALS

SUBROUTINE ’ ENTRY
DDO3ED : DDO3FD

\ i y/

INITIALIZATION CALL G —O

OF ADDRESSES
AND ARRAY SIZES

PERFORM THE BLOCK
MATRIX MULTIPLICATION
ON THE RIGHT HAND
SIDE OF EQUATION
(14) TO OBTAIN THE
DERIVATIVES OF THE
PROPAGATION MATRICES

ANALYTIC DERLVATIVES
AVATLABLE? "

VARIATIONAL EQUATIONS BE

FOR EACH VARIABLE
ADD FINITE INCREMENTS,

CALL G —O

AND DETERMINE ONE
SIDED DIVIDED DIFFERENCE

|

RETURN

SUBROUTINE

DDO3GD

ADD IT TO THE
END OF THE VECTOR

OF ESTIMATES

I

TYES

RECORD NUMBER OF
SHOOTING AND
MATCHING POINTS

THERE A VECTOR

ENTRY
DDO3HD

THERE A VECTOR

AN INTEGRATION JUST
BEEN PERFORMED BY

DDO3DD?

INITIALIZE PARTIAL

INITIALIZE IT
FROM THE END
OF THE VECTOR

OF ESTIMATES

DERIVATIVE ARRAY

WAS THAT
THE LAST SHOOTING
INTERVAL?

RESET MARKER IN DI

IF INTEGRATION

121

PERFORMED BY DDO3DD

DETERMINE POLNTER
ARRAYS, IP, IRN FOR
THE MATRIX 8H/8Y(a)

SET UP FORWARD
SHOOTING INTERVAL

SHOOTING INTERVAL

O

CALL DDO3JD

Y

SUBTRACT RESULTS FROM
PROPAGATION MATRICES

1s
THIS A CALL OF
DDO3HD?

DETERMINE SPARSITY
PATTERN POINTERS, IP,

A

ARE THERE
MORE THAN 2 SHOOTING
INTERVALS ?

YES

DETERMINE IP AND
IRN FOR THE LAST
PROPAGATION MATRIX

B> IRN FOR 8H/3Y(b)

IRN, FOR THE FIRST
PROPAGATION MATRIX

YES

CALL DDO3JD

SHOOTING INTERVAL
NULL?

TRANSFER THE RESIDUALS

INTO THE MATRIX GA

v
TRANSFER FIRST

v

ADD RESULTS TO
PROPAGATION MATRICES
AND REINITIALIZE
PARTIAL
DERIVATIVE ARRAY

Y

SET UP BACKWARD
SHOOTING INTERVAL

TRANSFER

PROPAGATION
MATRIX TO MT

DETERMINE IP AND
IRN FOR PAIRS OF
BACKWARD AND FORWARD
PROPAGATION MATRICES

TRANSFER PAIRS
OF BACKWARD AND
FORWARD PROPAGATION
MATRICES TO MT

I

YES

DETERMINE IP AND

DETERMINE IP AND
IRN FOR DERIVATLVES
WITH RESPECT TO n

YES

TRANSFER

3H/0Y(a) TO MT

ARE THERE
MORE THAN 2 SHOOTING
INTERVALS?

TRANSFER LAST

PROPAGATION

oH/oY(b) TO MT [€

1s
THERE A VECTOR
u?

Is
THERE A VECTOR

MATRIX TO MT

TRANSFER DERIVATIVES
WITH RESPECT TO u
TO MT

]

SUBROUTINE DDO3ID

a, =FUNC (T, y,, ¥3o .o y) 1=1, 2, ..., L ———-0

ei=yi+aixH/2 =L 20
b, = nmci('r+3/2, €, €35 vuuy) i=1,2,...,L—O

g, =y, + (ai +bi) xH/4 i=1,2,...,L

!

e, = FUNC.(T + /2, e, €5, .., &y 1=1,2,...,1 O

v

ei=yi+(—bi+ Zci)XH 1= 2, ey b
d, = FUNC (T + H,), &5 ..., &) i=1, 2, ...,L O

v

FO = a X H
Fl =b. XH
b
F2 = ¢, XH
E
F3=dixH
o e, = (42 X FO + 224 X F2 + 21 X F3)/336
ai=yi+(7xF0+10xF1+F3)/27
b, =y, + (28 X FO - 125 X F1 + 546 X F2 + 54 X F3)/625

yg = yg + (FO + 4 3 F2 + F3)/6

{n

= + (& + + X
5 ool o ¥ = ey il di.) H/6
YES No 0 i=M+1,M+2,...,L

YES

‘1’MC1(T+2“/3' a,, a,, ...,aM) i=1,2, ..., M O

b, = b, - c, X 378H/625 i=1,2, ..., M
1 i i
d; = FUNC_(T + H/5, by, by, ..., by i=1,2, ..., }——0O

= (162¢ + 125d)X H -e 1=1,2, ..., M

47

i

YES

REDUCE
STEP
SIZE

VALUE OF T?

U < 33.17767

NO

MULTIPLY
STEP SIZE
BY 2.4/U%

YES

RESTORE INITIAL

VALUES QF Y AND T

SUBROUTINE STORE INITIAL VALUE WILL DYE
"D = oF ¥ D' SHOOTING INTEGRATION STEP EXCEED
A ?
R TCHING POINT?
NO
106
= CALL DDO3ID
1
DIVIDE BY FRACTION DETERMINE NORM OF
OF SHOOTING INTERVAL | INTEGRATION ERROR 1IN
T0 GIVE U PROPORTION TO EPSI
TRIPLE STEP SIZE
DIVIDE OR STEP SIZE < 1/1000 ™~
STEP SIZE SHOOTING INTERVAL OR IN LAST U > 0.00817
- L SIGNIFICANT BIT OF L

104

STORE NEW

DIVIDE STEP
SIZE BY
U% x 10/3

VALUES OF [<
Y AND T

SHOOTING INTERVALS BEEN

NO

WILL NEXT
INTEGRATION STEP EXCEED

<

MATCHING
POINT?

REDUCE STEP SIZE

WILL STEP
SIZE MAKE A SIGNIFICANT

YES CHANGE 1IN

T?

b

0

PROPAGATION MATRIX

IS NORM OF

> CFAC?

90=000°1L =YL3Z INOILRTIO0S NOQ ONNODHE 40d¥3
00 000°0 =LlSPKA D MOILINN4 JHL 40 NOTLVILNI¥IA4IC do4 N0 ANV A NI LH3AnI™IN]
0% =NNdXYW 03IM0TTY SNOILVHOILNI 40 4IHWNN HAKIXYH
b =LNTHdT SSLNOLNIHd NIINL3IA SNOLLYHILI 40 YIAWON
00 GO000"D D0 40000°0 00 40000°0 006 G0000°GC 00 GD000°0 (0U00N0"gL DA 40 S3HIVA GILVWILS3

00 40090°0 00 G0000°L 00 docoo®o 00 doooo®"s 00 A0000*C (0G00D0®Q JA 40 S3NIYA Q3LVWILS3

0605°0 00000 0000°0 0000°1L 00000 0000°0 2L
0000°0 0000°¢G 0000°0 0000°0 GOG0%0 006G0®0 LL
0000°0 0000°0 0000°0 00u0"0 VoGO 00000 0l
0000°1L 0000V G000 0060°0 0v00°0 ©000°G 6
0000"0 00060 0000°C 0000°0 Goo0"0 00G0°0C 2
0000°0 0001 000G*0 00u0®0 0000°0 0060°0 L
0000"°0 0000°0 0000° L 0000°0 G000°0 0000°C 9
0o0o® 0 0Cou® 00000 06G0°0 G000°0 0600°%0 5
0000°0 0000 ¢ 0eoo0°e 0G0 L G000 0 Gou0" G i
00600 0000606 QC00°%0 00000 0000°0 G000"C g
60000 000G"0 Con0®0 00u0D"0 0000°1L 00G0°0 2
0000°0 000G"G eopo*o 0000°0 0000°0 0000" L L

OH'SH*ZH'LH SNOILIONGD AMYGHNOE 40 SINIIJII44309 ¥HO
HAd XITdLVW NYITHOIYP dod SANTVYA 1Anvd43aQ

0000°"81L =8
oooo*®0 =Y $SINIOd AdYANNOE LV 1 37dVI¥VA LNIQNI4IANT 40 SINTIVA

0 =I§ SSININDd NOILYINaYL 0314133dS 40 YIEWNN

2= =1d '(03LvWILSI ST fiW 41 JAILISOd) A 40 SINIVA GILYWILST 40 ¥3gHNN
0L =d :SINIOJd NOILVWILSI ¥0O SINIOd NOILvlg¥l H0d 2YHYYQLS WNAWIXVH

L =d Nk INTYANISIZ 0 NUISNIAWIG

¥9%¢ =NLl1 103aTAUY¥d FIVAS NUUN 40 SQYOM 40 d3sHNh

2L =NN =L+d+N2 SSNOILIGNOS AMYANNOS NI GIATUAKI SITUVIYVA 40 83IgWDN

? EONEd+N SSNOTLIGNGD AYYUNNUE 40 ¥IHWNN

S =N A S$37dvIdVA LNIANIHEU H0 dIAWNN
NATd0dd JATIAVS WO¥d ILNdLIN0 O XIANAdAV

b

7l=

ageev* 9

avv66°t

L0=0066L"°2

20=

a%09s"s

L0=06550"1L

LO=

00

Lo

Lo

LO

L0

a9¢08°9

a6986°Y

a4g986°Y

ayiee*s

avia2gts

ayLee*s

L0=aL8%%"2
§1 STvndisly 40 SIdvnos

%0~00262°G
SI 87vnars3d 40 s3dvnes

20=0a%126°¢
SI SIvNAISdd 40 s3¥Ynos

LO=de%éR®2
SI s7vna1s3ay 40 sSAYvNos

LO=QL2%1L%6
ST sIvnalIs3y 40 SIMYNGS

00 a49.l8R"1L
S1 8IvnaIrs3dd 40 s3dvnos

00 qoEl8°L
SI sIv¥naIs3iy 40 s3¥vNoS

00 0g895°¢2

10 WNS

Jauv LI 0L 3dvw FIONYHI LSY"
IHL ANV 00 40000°0 SI vawvl
N0 A4g8999®2 34v LI OL 3JavW F9YNYHI LSy
40 WNS 3JHL aNY 00 d0000°0 SI! vawvi
00 02695"%2 24V LI 01l 3avH J9NVHDI Lsvl
40 KNS 3HL ANy QU d0000°Q0 ST vauv1
00 44086°2 ddv¥Y L1 0L 3awvwW F9NYHI LSvw1
40 WnNS 3AHL ANY 00 d0000°0 SI vakvl
00 ao%l¢=2 ddv¥ LI oL 3Fave FONVHI LSyD
40 WNS FHL ANV 00 d0000°0 SI wduvl
00 AE%64°%2 3d¥Y LI 0L 3avid I9NVHI LSy
40 KNS 3HL ANY GO0 d400N0°0 ST vauvl
0G a098¢°¢
40 WNS 3IHL anv 00 agonov®o

3d¥ LT GL 3avW FONYHI LS
SI vauvn

00 Q6042°2 00 a090%°¢ 3HV LI OL JuvW IONYHI Lsyl
SI SIVYNAISIN 40 SIUVNLS 40 WS FHL dNY Lo=alge0®L SI VYaivl
00 U%LR9°E (00 GRS&Lu*L Jdv LY 01 3avW JONVYHI LSV
ST SAVaarsay 40 S3UVYNBOS 46 WNS IHL anY 20=-dlygé6l®L SI valivi
00 a%z8L*2 00 ds6le°l 34V LT 0L JavW IGNVHI LsvT
SI S7vNQIS3y 40 SIYYNDS 40 WNS IFHL ANV €U=a026L°2 SI yauvi
00 duL0G*G 0L 0%S4e*l 3dv LI 0L 3ave FONVHI Llsvl
SI SAVNaIsS3y 40 SA&YNHS 46 WNS IWL dNY 00 a00C0®*0 S1 vawvn

%0=000°% L= =16d3

SNOILYHOALN]

LLl=a%g2u°L S1
JHL GrY X FLvYILI
JNnd 30 s11vd €L

90=d6slG®e S1
IHL dnv X 3Llvd3dll
Jnnd 40 sSTIvd 24

$0=068%8y " SI
ANL aMY X JLVHILI
Innd 40 ST1v2 LI

L0=0928.°L SI
IHL onyY X JLvHadLl
INn4d 40 STY) 0L

00 a2g9e¢"¢ Ss1
FHL UnY X JlvH3dll
INN4 40 STV o

00 a0LS¢*y S1
AHL ahY X 3JLvH3Ll
INN4d 40 S$T1VD ¢ .

L0 a0£8s°L sI
dRL ALY X FLvdILI
nNnd 40 s11vay L

L0 at2bL®e SI
JHL dnv X JLvHall
INAd 40 S1YD ©

0 daws3% L SI
JHL dnY X FLlv¥3Lll
INN4d 40 S711vY0 S

¢0 avs3%®"L S1
JHL QY X 3ILvd3IlLI
INNd 40 811vd ¢

U d%8s7®L SI
AL Gy X Jlvy3aLll
INN4 40 STV L

A u01J3A 3IHL JO0 WYON 3HL
LivdYund IHL 40 SWHON 3IHL
GNY SNUILVH3ILI LI d3Lldv
A HOLIAA FHL 40 WYON JHL
LNI¥dNd 3HL 40 SWHYON 3HL
UnNY SHUILVYILI 0L H3Lldvy
A d0LJ3A FHL 40 WION FHL
LNd¥ENd FHL 40 SWION 3HIL
GNV SHUILYA3LI 6 4aldy
A d0LJ3A 3HL 40 WYON 3FHL
LN3ddnd 3IHL 40 SWYON 3HL
NV SNOILlVHILI B 43aldy
A w0L)3IA FIHL 40 WHON FKL
LN34¥NI) IHL 40 SWUON 3HL
GNY SNOILVY3ILI £ d3ldy
A w0lJd3A 3HL 40 WYON 3FHL
LHAYEND 3HL 40 SWYON 3HL
UNY SNUILVHILI 9 ERER
A wOLIIA JHL 40 WHON 3HL
LNJ¥YNI dHL 40 SWHON 3THL
dNY SNOILYY3LI S FERRER
A ¥OLJ3A 3IHL 40 WHON 3IHL
LNIYED FHL 40 SWHON 3HL
GNV. SHUILYHY3ILI ¥ ERRER
A dULI3IA FHL 40 WYON 3IHL
Ln3aYEd IHL 40 SWION 3FHL
gNY SNOILYY3LI ¢ 43l4y
A HOLJ3A 3HL 40 wWHON 3HL
LNI¥dNd 3IHL 40 SWHON 3IHL
GNV SNUTILVH3LI 2 LERER)
A w0LJ3A FHL 40 WHON 3HL
LN3YUNI IHL 40 SWHON 3IHL

UNY SNUIlvy3ll | ERER)
0G00°K1L
Quo0 gL 00001
00009l voootYL
goon® ¥t Gooc°2lL
VIVEVIV R VIVIVI R v
00o0° 0l 0000 %
vooo0*g 0000"9
G0Qo*°9 vooo*"Y
wooo*y 0060°2
0ooo*te vooo*o

SLNIUd SNILOOHS Q314133dS Ol

ANTaiid A S3TuVIdYA LNIAn3Id30 IHL ¥04 UNNOE ¥ouy3

LO=0LgRL" =
20=0LLGL ¢~
2U=0682L°1
£0=alg9%" L
70=0602%" L=
Y0=06899° L=
Y0=022¢8° ¢
£0=06892°9
20=uS¥%88°2~

L0=aeg9L5" 2=

LO=00000"g
Llo=a522¢* s
L0-09298° .
Lo=ayvgs2®s
LO~aggge".
LO=-a69%2°2
Lo0=al.%2°2
Lo=dg261L°2
Lo=asi0zes

N0 aecoo=|

MW INTYANIOIZ 40 30TYA a3Lvinave

LO~dgys8° L
Z0=agZLe® gy~
C0=00n9Sy° L=
£0=-02226°2
Y0=0%L08°¢2
Y0=0¢55S" L=
%0=0¢£2¢8°8
£0=00892°¢~
20=Goghg 9=
LO=a2.ig€%"°¢

6L=G2500°5~
20=02826" Y=
£0-GH88Y°¢

g0=aguelLez

70=0994h 9" ¢~
S0=GL9LY7%6=
70~06£55°9=
£0=g2ssL®L=
20=05686°¢

6lL=~0Bggl e~

6l=ulgge"®ye

LO=0ggehy* 2=
L0=0a960L° g~
L0=aglL2et 2=
L0=d626E" 2=
LO=0aLy06° 2=
L0=G02L6" 2~
L0=080L06"2=
LO=GL6LH e
6L=0129%%°2

d3SN 3IYdSNYOM du SQUYOM 9292

0000"
0000°g1L vooo*®
0000°91 0000°
0000°Y1L 0oo0"®
vo00° 2L 0000°
0000°01L 0000°
0000°¢g 0000°
0000°9 0G00°"
0000y 0000°
ooou*z vooo"

gl
9L
71
2l
oL
8
9
v
e
0

SLNIUd 9NILOOHS T¥YNLIY QL

(6000008
(6G0000° 9L
(000000°%,
(000000°2}
(000000"01L
(0000N0"Y
(660000 9
(000000"Y
(000000"2

(c00000"Q

L0=0L6%2°¢

JA 40 S3ANIVA
A 40 s3anva
YA 40 S3nTvA
JA 40 S3NIva
YA 40 S3NIvVA
YA 40 s3nNIVA
JA 40 s3niva
YA 40 S3niva
YA 40 S3IANIVA
YA 40 S3nvaA

a3aLvinayl
a3lvinaevl
a3iv¥Inayl
omh<a3m<+
g3alyingvl
a3Lvinavl
a31vinavl
a3ilvingvi
G3LvYIngvl

a3alvyinavi

