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ABSTRACT

Any externally produced changes in the magnetic field between a discharge and a
metal torus must enter through slits in the torus wall. These slits also admit
stray flux due to currents flowing along flanges surmounting the slits. The ampli-
tudes of resulting field perturbations at the discharge surface are here expressed
as functions of the ratio (e¢/\), where (c) is the clearance between discharge and
torus (assumed much greater than the slit width) and (A) is the wave-length
measured parallel to the slit.

A rectangular approximation is used to avoid the complications of curved
geometry. Appendices discuss some of the errors and some unsolved problems in

toroidal geometry are posed.
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1. Introduction

A stabilised gas discharge in a metal torus has two main magnetic fields: an
azimuthal field produced by axial currents in the gas and an axial field produced by
currents in external conductors. In order to produce rapid changes in these fields
outside the discharge it is necessary to split the torus shell. These splits admit,
not only the desired changes in the main fields, but also perturbations due to mal-
distribution of supply current or feeder cables along flanges surmounting the slits.

It is assumed that the fields change so rapidly that penetration into the
discharge and conducting torus is small and yet slowly enough to neglect displace-
ment current (and wave-propagation effects) in the space between discharge and torus.
Conduction currents in "pressureless plasma" in this field space are also ignored
and the discharge is treated as a rigid toroidal current sheet concentric with the
metal torus. (If, in fact, this current sheet moves to a new stable equilibrium
position, the field perturbations considered here are likely to decrease).

Because of the complexity of toroidal geometry (discussed in Appendix I), the
toroidal field space is first replaced by a cylindrical annulus and then developed
into a rectangular "box".  Appendix II estimates the errors in this second stage
of approximation, showing that reasonable accuracy should be obtained for small
pinch ratios, when the disturbances are likely to be greatest.

As in (Ref. 1), the field perturbation is doubly periodic and expressible as a
double Fourier series in co-ordinates parallel and perpendicular to the slit
direction. Selecting a single harmonic variation parallel to the slit, the field
perturbation at points on the discharge surface directly opposite the slit may be
found by summing a single Fourier series as in (Ref. 1). However, the greater the
ratio of width of the box (Fig. 2) to the clearance (c), the smaller are the terms
of the series and the more slowly do they decrease. This computing difficulty is
overcome by imagining the width, perpendicular to the slit, to be indefinitely
extended, thus ignoring periodicity in this direction. The series (3.6) is thus
replaced by an integral (8.8) which can more easily be evaluated.

It is shown in Appendix IV that the integral method agrees well with the series,
when applied to the former example.

The exact nature of the errors introduced by straightening a torus into a
cylinder are by no means clear. Appendix I offers some suggestions for further

work.

A basic assumption of this analysis is that the flux linking the flanges is
governed only by their own profile and by disturbing currents flowing along the
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flanges only. This assumption is reasonable as long as the flange spacing (a) is
much less than the clearance (c), between discharge and torus. In an exceptional
case where this is not so, the resulting over-estimate of the disturbance can be
largely corrected for by reducing the "equivalent inductance" of the flanges to take
account of the proximity of the discharge.

The main results are given by equations (8.14) and (3.18) together with the
curves of Figure 8. Rationalised M.K.S. units are used.

2. Geometrical transformations

(Fig. 1) shows the principal dimensions of the system.

Ry major radius

Ty minor (bore) radius of metal torus

4 radius of discharge

b =3 (r, + rq) mean minor radius

¢ = (ry, - rgq) clearance between torus and discharge
R distance from axis of symmetry

For preliminary discussion of the field problem it 1s convenient to use a
system of "concentric-toroidal" co-ordinates:

e an angle defining a plane through the axis of symmetry
r, 6 polar co-ordinates in this plane, referred to the centre of the
torus bore

Because (¢) and (8) are cyclic co-ordinates, the true expression for the fields must
be periodic in both. The scalar potential for the whole field is multi-valued but,
by subtracting out the main fields, one is left with perturbing fields whose
potential is single-valued and periodic in both (8) and (¢).

However, Laplace's equation is not fully separable in these co-ordinates (See
Appendix I and Ref. 2). The simplest, (but rather drastic) distortion of the
system geometry which would turn it into a separable system is to straighten it into
a cylinder. In doing so, the geometry of any cross—section should be unchanged and
the question arises, what length of cylinder is to be taken as representing the
torus.



The element of arc length in the (¢) direction in the torus is
R dp = (Ry + r cos §) dp

and, after straightening the torus, two planes previously at an angle (d¢$) become
parallel, at a distance apart, say:

dz = R, d¢

where (R,) is a constant, which should be taken as a suitable mean value of (R) over
that part of the toroidal system in which the field perturbations are of most
interest. This give two cases:

(A) For the axial field, with perturbing flux entering the system on the mid-plane,
the locus of points half-way between the slit and the discharge is a circle of
radius:

R, = R, - b, for an "axial" slit on the inside, (as shown in Fig. 1) or
(Ry = Ry + b) for a slit on the outside. Thus, for the axial field problem the
length of cylinder equivalent to the torus is (2rR,), with R. chosen as above.

The Laplace equation is solvable in the cylindrical system, by separation of
variables, but the radial solutions - modified Bessel functions of all orders - are
inconvenient for later numerical work. By taking a mean value (b) of (r) the
problem is simplified to one in a rectangular "box" of height (c), length (2nR,) and
width (2rgb) as in (Ref. 1). Appendix II shows that the relative over-estimate of
axial (or azimuthal) field perturbations will be of order (¢/2b). When replacing
the series (8.68) by the integral (8.8), the width of the "box" is taken as infinite.

(B) For the azimuthal field problem, and wave-lengths much less than (2rR,), the
length of equivalent cylinder, which becomes the width of the "box", may be taken as
(2nR,), but the exact value does not matter after the change from series to
integral. The length of the box is now (2rb).

The dimensions of the rectangular box are illustrated in (Fig. 2) which also
shows a slit surmounted by flanges of height (h) and effective spacing (a), in order
to introduce a result from (Ref. 1). The extension to other than plane parallel
flanges is given at the end of (Section 3).

The wave-length (\) which appears in the final results (Fig. 8) is measured
along one of the circles in which the plane through a slit cuts the "mean torus"
(r = b). Thus, for the (kth) harmonic in the axial direction,

A = 2nR, /k (2.1)



while, for the (mth) harmonic in the azimuthal case,

A = 2nb/m (2.2)

3. The field problem in the rectangular box

In order to be axle to treat the axial and azimuthal field perturbations
separately, it is convenient to assume that no flux entering the system through one
slit leaves it through the other one. This condition is met if the feeders
supplying each field system are symmetrically placed about the slit associated with
the other field. It appears, from consideration of the inductive distribution of
currents, that slight asymmetry will in any case tend to be suppressed by a shift in
the current distribution.

Taking the axial field case first, the arguments of (Ref. 1) show that, for a
slot surmounted by plane-parallel flanges of effective spacing (a) and height (h),
the "radial" field in the slot at a point where the current along the flanges is (i)
is:

H. = i/h amp/metre (8.1)

(provided (a << h) and the distribution of current over the height of the flange is
unaffected by proximity of the discharge, i.e. ¢ >> a).

Assuming that the flange profile does not vary along its length, the double
Fourier series for the normal field at the torus wall, given by (8.1) in the slit
and zero elsewhere, was shown (in Ref. 1) to reduce to a product of two single
series of the form:

Zn Zi 8p by cos me sin ko

where the (ap) are Fourier coefficients for an "aperture" of width (a):

a, = a/lnb A
_a sin (ma/2b)
ag = gl '_""'“_"_'—""""(ma/zb) , m#o > (38.2)
and by = Iy/h

v

Here we have introduced the Fourier coefficients, (Iy) of the current along the
flanges. It will be sufficient for present purposes to consider one sinusoidal



component of flange current, since the -effects of these on the field are additive:
= I sin k¢ = I sin(2nz/A). (3.3)

- The poténtial (V) for the field perturbation, derived in (Ref. 1, Section 8), then
reduces to a single Fourier series in (8):

~ap cosh yp x.

I
=—, sin kg . E : . cos md (8.4)
h — Yk sinh yp, ¢

Where the (aj) are as in (3.2) and

R (8.5)

(See also Appendix II of this report).

Of major interest in the present analysis, is the variation of the field
component parallel to the slit as one moves along the discharge surface directly
opposite.  Calling the amplitude of this (AH; ), one has:

AH,, cos k¢ = - o tx=86=0
I R, = % e B

[834]

. cos ke L Z::

"R, ° “h E— Yk s1nh Yule ©.

or, using (8.2)
w / / /b
a k sin (ma/2b) - Am
H =—.1. ST :
A-ll h nR, 2 (ma/2b) Eﬁ +.Ei;sinh c EL.+ k (8.8)

|- - d ¥  R*

where the dash on the summation sign signifies that only half the term for (m = o)
should be taken and (Am = 1) has been inserted as a step in replacing the sum by an
integral. Writing:

a k
AH“ - 'E I . ;R—— . F’_ (3-7)



and introducing a variable,

p=m/d 3 Ap=1/b

one has

Po- sin % pa B Ap .
' : pa ., K 2, K

p +-§—; gsinhc | p~ + T2
N 1 N

which is the expression given by the Trapezoidal rule for the integral

o]
sin % pa d
e[ e

= pa o k ) 5 k2
0 2 p? + —, sinh ¢ l p? + —
. R12 R12

the errors decreasing as Ap = 0 (i.e. as b —» ®)-

This result would also have been arrived at if we had originally treated the box as
indefinitely extended perpendicular to the slit, i.e. neglected the (6) periodicity
and so replaced the Fourier series in () by a Fourier integral. This would make
little difference if we knew that the field disturbance was negligible at (8 = £ r).
To test this assumption would require the evaluation of a more complicated sum than
the one here treated. However, (Appendix IV) compares results obtained for a
specific example by the series method in (Ref. 1) and by the present method, with
fair agreement. (Appendix IIT) shows that, provided

2nR,
8 e

>> 4a

it is reasonable to omit the "aperture" factor, in (8.8).

Then:
ne | — %
0 | o +-§:; sinh c \ B ¥ R




Defining

k
c 2ne (8.9)

and introducing the substitution:

p =-§;'sinh t

the integral becomes:

03]
Jﬁ sinh (C cosh t)

[o9]

2 Jﬂ dt {eCs cosh t , ¢=8C, cosh t 4 )

(The series, being uniformly convergent for (C, > 0), may be integrated term by

term).

In (Ref. 8) page 51, it is shown that
. .
K,(z) = Jn e”% cosh t ooch(nt)dt
0

so, putting (n = o) and (z = C,, 8C, etc.), the required integral is
F,(C,) = 2{K,(C,) + K,(3C,) + I (8.10)

where Ko(z) is the modified Bessel function of the second kind, of order zero and

is tabulated in the last reference.

Evidently similar arguments apply to the azimuthal field perturbations, by
interchanging (m, ) and (k, ¢) etc. and making other obvious changes, as in (2.1)

and (2.2).

The expression (8.7) now becomes:

a I ck
H,6& =—~.—. [ . P (C
By h ¢ (an) (G,



or, using (8.9) generalising and to include the azimuthal case,

where: >

F(e/N\) = 2(c/AN)F, = 4(c/)) {kb E;S) + K, (§%2> *-....}- (8.11)
J
The results may be extended to flanges which are not plane-parallel, as
follows. In applying the boundary condition (8.1) at the torus wall: (H. = i/h)
over a slit of width (a) and (H, = 0) outside this region, one is essentially
specifying that a flux per unit length of flange,

¢ = ula/h)i , (b = B/H) (3.12)

enters the torus at a point where the flange current is (i). But the details of
its distribution across the slit are later ignored (in neglecting the "aperture
factor", as discussed in Appendix III). The same final results would follow from
the assumed relation above between (Y) and (i) for any slit sufficiently narrow
compared with (A/4). In particular, the use of Dirac's "6-function" would give the
same final result but the limitation (a << A/4) would not have been noticed. In

general, one may write
Y/i =1, (8.12)

an "equivalent inductance" per unit length of flanges.

(Note that initially, when all the flux links all the current, (L) = (lLy), the
"infinite frequency" inductance per unit length of flanges. Later, after
appreciable field diffusion produces flux linking only part of the current, the
appropriate (L) is somewhat greater than the true inductance per unit length.

For a "step-function" current, (L) initially increases as:

I, + const . It .)

Thus, for flanges of any profile whose characteristic spacing << (A\/4), a
current along the flanges

i=1sin (3:—2-) (8.18)



produces perturbations in (H) at the discharge:
LI
My = — . F(e/N) (3.14)
ue

where (F) is given in (3.11).

One can also express results in terms of voltages applied between flanges,
varying from point to point. If the voltage between flanges has a peak to peak
variation (Av) with wave-length (A), the total flux (¢) entering the system in a
half-wavelength is

¢ = [Avdt (8.15)

A2 A/2
ydz = L f idz by definition (8.12) of (L)

but, ¢

=-é-LI (using 3.13)

n

Thus, substituting in (8.14)

(8.18)

where G(e/An) = (me/N). F(e/A)

4, Results

In evaluating the function F(c/A) in (8.11), the sum:

n

S
SEZ KO[(Zn—1)01] , {C, = 2nc/N\) - see Table I. -
n=1

needs a large number of terms (s) for small (C,) in order to give a good estimate of
the sum to infinity. When (C, = 4) the second term is only (0.2%) of the first and
can be ignored for larger values of (C,). Also, for (C, = 4), the asymptotic

expression:

K (C,) = (2’5 ) . e G [Ref. 8]



is only 2% high, so the computed results (Table I) stop at (C, = 5). The values of
F and G (equations 8.14 and 8.18) are plotted in Fig. 8. This shows that although
the disturbance due to prescribed flange current becomes progressively worse as the
wave-length increases, the disturbance due to impressed variations of volt-seconds
applied across the flanges is worst at a wave-length in the range; (1.0 < C, < 2.0).

From Fig. 3, the maximum is near c¢/\ = 0.225 or C, = 0.45x = 1.41. The
nearest value for which the tables in (Ref. 8) can be used is:

C, = 1.40, for which (c¢/A) = 0.223 or (A/c) = 4.48 = 4.5.

This gives F = 0.286 and Gp,, = 0.158, i.e. the worst wavelength, for impressed
voltage variations, is 4% times the clearance between discharge and torus. For this
case (8.16) gives
AB, = L X 0.158 ,
Il o2
which is the field one would have had if the flux (¢) were uniformly spread over an
area of height (c) and width:

e/0.158 =« B.8¢c

Thé reduced disturbance at other wavelengths may be understood as follows: for
longer wavelengths, the lateral spread of field lines inereases while, for shorter
waveélengths more of the perturbing flux entering the slit leaves again before
approaching the discharge. The writer is indebted to Mr. D. L. Smart, whose
qualitative prediction of -this effect suggested the transition from (3.14) to (8.16)
as an alternative expression of the results.

b. Application notes

Use of the curves in this report requires a knowledge of the variation of
current or voltage along flanges. In general these are related to each other
through circuit parameters, including the inductances of flanges and the supply

cables.

In the case of (HS) perturbations due to lumped supplies to a "main gap", the
flange current may be worked out by the methods of (Ref. 4).

For (HZ) perturbations, (Ref. 1) showed how to work out the flange current due
to currents from lumped coils or cables re-distributing themselves to meet a demand
for uniform (B) current inside the torus. In some cases (where the fast field
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coils are surrounded by "clamped" initial field coils, i.e. a "B, reversal"
experiment), additional (@) currents on the outside of the torus are called for.
However, with a layout as proposed for I.C.S8.E., with "reverse" coils immediately
under "forward" coils, most of the demand for external (8) current is concentrated
at the supply points and only small additional flange currents would be called for
to compensate for this effect and for unbalance in supply currents or local non-
uniformities such as bolted flanges or pumping pipes.

The curves given here could be used to find the field disturbance at a
discharge surface due to a flanged slit of length (1) short compared with the radius
of curvature in its own direction, by considering it as part of a longer one in,
which the flange current happens to be zero outside the length of the actual slit.
This requires a harmonic resolution of flange current, reference to the curve in
(Fig. 8) for F (c/\) and a summation over the resulting harmonic disturbances.

These results could be expressed in terms of a parameter (e/1), for each value of
which a separate computation is required. Such a programme is therefore not
attempted here, but could readily be carried through if there were a demand for it.
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APPENDIX I

Concentric toroidal co-ordinates; Laplace's equation

Since current in the region between the torus and the discharge is neglected,
the magnetic field here is expressible as the gradient of a scalar potential, which
satisfies Laplace's equation.

From the expressions for the differentials of distance in the three
co-ordinate directions: (r, 8, ¢ in Figure 1), i.e.

dr , rdé , Rdey

(where R = Ry, + r cos )

and the general formula for the Laplace derivative (Ref. 7, page 49), one has:

oy o |2 I
vv“er:ar (R ) rae ) :’ ¢ )

Evidently periodic variations in the (¢) direction can be separated.
Assuming solutions: '

VplE, B) (C?S) k¢ , one has:
sin

BVk }_i oVk T )
Ef( )re( ) kV];] 0 ()

which is not further separable, but could, if toroidal treatment were considered
essential, be solved numerically by relaxation methods.

The obstacle to further separation is the manner of variation of (R) with both
(r) and (8).

Replacing (R) in (2) by a constant (R,) immediately turns the equation into
one of cylindrical form, This was the method adopted in (Section 2), where the
only concession to the toroidal nature of the problem was the choice of (R,) as a
suitable mean value of (R). However a less drastic simplification can be made to
give a separable equation preserving some toroidal effects. For a thin annulus
between concentric tori,

& 1+ 8 cos 6 + ' cos B
-— = —_— s —_— s
Ro RO R0
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in which the ratio of the third to second term is never greater than (c/2b).

Dropping the third term and putting

b
s (reciprocal aspect ratio)
0
R
.._=p=1+ECOSe (3)
Ro

Making this approximation in (2) still does not make it separable, but, using (8) in
the first two terms and (R = R, = const) in the third gives:

19 vy, 1 o CUAN
r"ar(’ar 7?( ) it =0 (4)

Assuming Vi = F(r) . G(e) one has

G d G K
= = ——.——— =Z)-2.r.a-
rr( )* pde) R,* ¢

so that

a modified Bessel equation (further simplified in Appendix II) and

ﬂ
}_ij:_( )+m =O
p d6
(8)
d%G il dp dG 2
(= 228 w0
or d92+(p aw Ja "

The simplest case is (m = o), for which

— = 1,
3 - ooms /o

which implies (He(n 1/R), as might be expected from physical arguments.
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In considering what toroidal bending does to the higher harmonics of the
cylindrical case, it is convenient to write (8) as

d®G dG »
% + K(g) E + m“G

]
o

Murray (Ref. 5, page 115) shows that the substitution:
1
G=Uexp. -3 J K(e)de

i.e. G= Up ? (7)

removes the first derivative, the coefficient of (U) becoming:

dk 1
mﬂ--lz-—é-—zxﬂ (8)
Here K=p'/p
dK n — ] 2
d—e-—p/p (p'/p)
1d8 1 il “
S0 —2'5§+ZK2=Z;;[200 - 0'%) (9)

Now, from (3)

p;Q 62 - (l - p)2
and p" = 1-p

so the expression (9) is:

1
4p*

[(p+1)(p-1)+¢e®]

which, to first order in (e), gives (8) as
m? + L cos 6
5 €

That is, the differential equation for (U) is

d2
deE + (m? +i§ gcos B) U = 0 (10)

_15_



‘which can readily be converted to Mathieu's equation.  In (Ref. 6) it is shown that
periodic solutions are possible only for special values of (m) which depart more and
more from the nearest integer as (e) increases. However, for a reasonably small
value of (g/m?), the solutions will have approximately a frequency - or phase-
modulated form: '

cos . E ".
e.gc U a . l'ﬂe + - 31N e ¥
sin 4m

whose zeros are displaced towards (6 = 0) compared with those of (cos m@) or
(sin m@). The "shift" in the (nth) zero, (8,) is approximately:

€
-A ]
(én) e

sin 6y

Now, the gpacing between zeros is roughly that for (cos m@), i.e. (m/m). By
neglecting a maximum shift in the zeros, which is < 10% of this, one can simplify
(10) by neglecting (e) whenever:

Zﬁ; < 0.1 n/m

i.e. when 7

m > 0.8 b/R,

which is always satisfied, except for (m = o) (already treated).

Thus, the main effects of toroidal geometry on the (6) solutions for a thin
cylindrical annulus appears to be:

The term with (m = 0) ‘is multiplied by a factor (R,/R) while higher harmonics
are multiplied by the square root of this factor and have their zeros shifted a
little towards (6 = 0). '

If a more precise treatment of (10), using Mathieu functions, were attempted,
evidently the resulting non-integral values of (m) should be used in the Bessel
equation (5). It is not known to the writer whether (2) can be made separable
with any approximation in the third term less crude than the one used here.

(R = R, = const). '
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APPENDIX II

Error in a plane approximation to
a_function defined in a cylindrical annulus

After separating Laplace's equation in cylindrical co-ordinates (r, 6 and
7 = R¢), choosing solutions periodic in (6) and (®), one has a modified Bessel
equation (App. I (5))

df 1dfF [m® k°
(;‘5*@"5 F=0 (1)

L &

(=]
-
i

= ry
s (2)
o

(A) being a constant depending on (m) and (k).

The solution of this system may be given exactly in terms of modified Bessel

functions:

F- R

krg f kr krd kr

(=) 1. (=) -1(= )%, |+

A, | ‘m\g, / m\R, R, R,

Plr} = k K K K

g [d) 10 (o) - v (Hd g (Lo

" Rl m Rl n R:. m R'l.

L

(3)

v

dashes indicating differentiation with respect to the arguments in brackets.

However, these functions are rather inconvenient when one has to sum a series
over a large number of values of (m). One therefore attempts a plane approximation
and later assesses the error involved.

1 dF
Suppose, in (1) one ignores the second term (-; a—;) and replaces (r) in the
third term by its mean value:
1
b= E-(ro + ry) (4)

_17..



- m?  k®
Defining y® = el ﬁ:b

and writing (f) for the resulting approximation to (F), one has a simple r equation:

d?f
qo VPO
where =~ X =T - Tg

Introducing the "clearance",

0, x=o0

c

i
»
n

The solution of (B8) and (9) is readily found:

h
£(x) = A c?s YX
y sinh yc

Defining the errors:
Esf-F

subtracting (1) from (8), one has:

%8, 1dF (1 1
dx? YE__I:I‘ " (r2 b2 !

The second term on the right passes through zero in the middle of the range
(at r = b) and, on average, should cause less error than the first term.
error is small (as one hopes!) only second-order errors should occur if one
replaces (F) by (f) and (r) by (b) on the right-hand side:

d’E 3 1 df

= vE-T o

dx b dx
_ A sinh yx
b sinh yc
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(6)

(7)

(9)

(10)

(11)

(12)



Since both (f) and (F) exactly satisfy the same boundary conditions,

:E—x = 0, both at (x = 0) and at (x = ¢) (13)

By standard methods (Ref. 5) one finds the.-solution of (12) and (18) is

A

E =
2yb sinh yc

{(c - x) cosh yx + E-sinh Yx } (14)
Y

dividing by (f) from equation (10),

the relative error is:

B 1 1
Pl - e 2 ; 5
7 {(c X) .+ - tanh Yx} (15)

which is positive, since
0O £ X £ ¢cC.

tanh
Now bl L
YX

the equality holding at x = oy Hence:

- & == (18)

Thus, for a radial clearance less than 20% of the mean radius, the relative error in
a plane approximation to the cylindrical solution is, in the current example, only
about 10%. (One should be wary of applying this result, without checking, to
unmodified Bessel functions or other boundary conditions).

dr
Since the approximation satisfies the boundary conditions on (— ) , the

relative error in (H,) will probably be much less than given by (16).r On the other
hand, a positive error in the radial function will tend to produce an over-estimate
of the same order as (16) in the other field components, (Hg and H¢), so that a
design based on the approximate field perturbations given hére should be on the safe
side.
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APPENDIX TII

Conditions permitting neglect of
"Aperture Factor" in the integral (8.8)

in &
This factor: (-S—l—i—-g——E-a-') falls from
2 Pa

=

unity (at p = o) to

4 . )
ﬁ = 0.9, i.e. by only 10%
when p =p, = n/2a

The other factor in the integrand is, say: 1/D(p) where

2 k2
s : _
D(p) = | p* + R smhc\‘p9+ﬁ:-2
k? k? ' k?
? o+ inh 2 p— |2 2+
Now _D(p) = i R,” (Sm o A RJQ) = 'p R,*
D(o) K® o Ok . ck
R,® SR, TR,
> 1 + p2R12/k2
inh
[since (sm x) is an increasing function of x, x > ol.

so the denominator of the integrand, D(p), has more than doubled its initial value

when
P =P, = KR,

Thus variation of the épert.ure factor can reasonably be neglected if
P1 >> Po

Ry A
2k 4

i.e. if slit-width: a <<

which is likely to be satisfied for the wave-lengths of most interest in practical

systems.
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APPENDIX IV

Comparison with a previous method

The question arises, what errors are likely, due to the replacement of a
Fourier series by an integral. If the restrictions assumed in Section (1) are met,
neglect of periodicity perpendicular to the slit should have little effect. As a
check, one may quote the result from the example in (Ref. 1).

Taking c = 0.1m

RI"—“RO = 3.0m
k = 16
ck
= = 0.085
50 o/ 2nR,
From Fig. 3:
F(e/A) = 0.382

Thus, a flange current of the form:
i = I sin 169

gives a field perturbation (from equation 3.14)

LI
M,, = —x0.382
pe

It was shown in the arove reference that for sixteen equally spaced coils, whose

angular spread is equal to the space between them, the peak value (I) of the

fundamental component of flange current is related to the main axial field (H,) by:
n Ry H, 8 Ry Hy

] = F==res=gx =g
382 n’ 4¢

and inserting this in the previous equation, together with the equivalent inductance

for plane-parallel flanges

L = pa/h (a = spacing and h the height of flanges)
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e has T

(o]

The numerical coefficient (0.914) is only 2.8% lower than the value (0.940) obtained
in (Ref. 1) by a Fourier series method.

Some, at least, of this discrepancy can be attributed to the earlier method,
where the first ten terms of a series were directly computed and the remainder
deliberately over-estimated. Actually, a true value of the sum should be glightly
higher than that of the integral, because it is, in fact, an approximation to the
integral by the "Trapezoidal Rule" - referred to just before equation (3.8).  This
rule for numerical integration always gives high results, if the integrand is
"'concave upwards" throughout the range.

In view of these remarks, it is likely that the integral is, in fact, within
about (1%) of the sum approximated by it, for the ratio (c/A) taken in this example.

For longer wavelengths, neither method can give a very good approximation
because the essentially toroidal effects will be important. For shorter wavelengths,
(relative to the total length of slit) the convergence of the Fourier series of
(Ref. 1) is so slow that a prohibitive number of terms are required. Here the
present method should be both more accurate and easier to apply

...22_



3

(SWIT908d G131 40 NOILNIOS AdIMdANIS OL

INVId V OLNI G3J0T3A3d Y31V SI SNYOL NVIN 3HL)

SINY3L TIVOIYLIWOID ONILVYLISNTII']I 'O1d 14-N1D

| "SQISNI
NO L11dS 3INVId NVIQ3aW HoA

(@3LvyisniTl V) 9—°y=Iy

,SIXY
¥V IN2YID

[N

IAIONYHVY3TD
aviavyd —

— oy

AHL3IWIWAS JO SIXY

?

39dVYHOsIa
vaiodo.l

40 32vidns

SNYOL
NV3W
»

SNYO.L
AV L3 40
IIVM H3NNI

9 NV3W
P4:394dYHOSIQ 40

‘L:sndoL 40
:1avd HONIW




LENGTH.
AXIAL CASE.2TR,
AZIMUTHAL ! 2MTb

h

lal/ ( AMPLITUDE OF |
/-t PERTURBATION |
/ EVALUATED HERE

l_ wioTH -.‘

AXIAL : 217 b,
AZIMUTHAL : 2TF Re

= )—=
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CLM-=RI!. FIG.2, APPLICATION OF RECTANGULAR
APPROXIMATION TO AXIAL AND AZIMUTHAL
MAGNETIC FIELD PERTUBATIONS.




F or G

0-5

CLM—R! FIG.3. VARIATION OF FIELD
PERTURBATIONS WITH RATIO (C/\)
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