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VORTEX

A 2-DIMENSIONAL HYDRODYNAMICS
SIMULATION CODE
by

J.P. CHRISTIANSEN

ABSTRACT

Program VORTEX is a computer code which simulateés the behaviour of
an incompressible, inviscid homogeneous fluid in two dimensions by follow-
ing the motion of a large number of point vortices. A clarified, documented
listing of the program is available in the Culham Library. The lst edition
of the program was completed in November, 1969, whilst the 2nd edition used
at present was completed in May, 1970.

This report is written in two parts. Part I describes the theory
behind the program and Part II describes the program itself., Part II could

conveniently be read in conjunction with the clarified listing.

U.K.A.E.A,, Research Group,
Culham Laboratory,
Abingdon,

Berks.

July, 1970.
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INTRODUCTION

(1,2)

Although the basic equations of hydrodynamics have been studied for many years
their complexity sets a limit to the types of problems that can be solved analytically.
In some cases relatively simple non-linear stationary flow patterns can be realized, in
which the parameters that describe the physical systems are independent of time. In other
cases the interest lies in the stability properties of such a stationary flow pattern,
that is, whether or not it is able to sustain itself against small variations in certain
of the characteristics parameters. To solve this type of problem one normally applies
perturbation theory, in order to predict whether or not the original equilibrium is linearly
stable. A theoretical analysis of this kind can follow the history of a fluid system in
the linear regime, when the perturbation amplitudes are small, but because the equations
of hydrodynamics are non-linear it is of considerable interest to study its history in the
subsequent large amplitude regime. One way of doing this is to simulate the time behaviour
of a mathematical model of the fluid on a computer. This report describes one of the

various alternative methods by which a computer simulation can be carried out.

PART I: HYDRODYNAMIC MODEL

1. HAMILTONIAN EQUATIONS OF MOTION

The basic equations governing the time behaviour of an incompressible, inviscid,

homogeneous fluid in purely 2-dimensional motion are

V.u=0 _ (1.1)

VP (1.2)

%y

+u-u=- 2,

where u is the fluid velocity, P, 1s the density and P the pressure, It has been
(10) 6)

, and more recently by Morikawa(l , that these equations can be
expressed in Hamiltonian form, with the spatial coordinates x ,y playing the part of

pointed out by Onzager
conjugate coordinates and momenta q, p. To see this we write

VxH (1.3)

1=}
1}

f=Yxu (1.4)
where the Hamiltonian H is the usual stream function, and f is the vorticity. Then
eqs.(1.2) and (1.3) combined with (1.4) give

VH = - T (1.5)

ar o N
-5—E+g-\7f_at+[f,ﬂ]_o (1.86)
Eq.(1.6) is Liouville's equation in Poisson-bracket form*, and the Hamiltonian H is to

be obtained by solving Poisson's equation (1.5).

*For any two functions A, B, the Poisson bracket is defined by
oA oB dB oA



2, INVARTANTS OF THE MOTION

Because the fluid system we are considering is not interacting with any other physical
system there are no dissipative phenomena. Hence the total energy E is an invariant of
the motion and this energy is purely kinetic

E=}% ﬁ)./ u-u ds (2.1)
R
or if we integrate by parts using (1.3 and (1.4)

E=—!§p0/f‘HdS (2.2)
R

The expression (2.2) is valid provided that

H ds =0 (2.3)

C

on

where C 1is a contour bounding the region of integration R.
Because the scalar vorticity f is convected with the moving incompressible fluid, there

is an infinite number of other invariants
A(f) df (2.4)

expressing the area between moving contours of constant f, f + df. In most of the cases
which we study, only part of the fluid has vorticity different from zero, and then this
fluid has constant total area.

oo

= /. A(r) df (2.5)

Tmin

Real space acts as a phase space for the system with the coordinates (x,y) or (q,p)

conjugated through

. . OH _oH - 3H M
R=U=gg=9p ¢ F=P=~gg=—g (2.6)

Hamiltonian notation will be used throughout this report to emphasize the true
structure of the equations, but another simplication that should be pointed out is that
the Hamiltonian is invariant under rotations and translations of the (q, p) plane,
which are of course just rotations and translations of the real 2-dimensional space. This
degree of symmetry is unusual in Hamiltonian mechanics, and should introduce simplification,

(as compared to Vlasov's equation in plasma physics, for example).

Our present understanding of the significance of this Hamiltonian formulation of 2D
fluid dynamics may be explained in the following way. There are two great independent

classical formalisms which involve the motion of incompressible fluids:

I. Hamiltonian theory, (phase fluids)

II. Vortex theozx,(1’18) (real fluids).



Hamiltonian theory is intimately related to statistical mechanics, (both Maxwell-Boltzmann
and Lynden—Bell(Is)L vortex theory is related to the theory of fluid turbulence. Any
connection between the two theories would be of great interest, however, and while the
ideas of turbulence theory are currently being applied to phase fluids (e.g. in plasma
physics), those of statistical mechanics are being applied to hydrodynamic turbulence.

(a) In the case of Vlasov's equation for particles interacting in n-dimensional
configuration space, it is useful to study the incompressible motion of a
self-interacting phase fluid(18)
2, 3. The distribution function f is always a scalar, and m must be even.

Classical statistical mechanics can be applied to the particles, and Lynden-

Bell theory(ls) to the phase fluid.

in an m = 2n-dimensional phase space, n =1,

(b) In fluid dynamics, one can have incompressible inviscid motion in any number

of dimensions m= 1, 2, 3, and the vorticity plays a significant role.

(c) For the particular case m = 2, the two types of formalism are in close
correspondence, with the scalar vorticity f playing the part of the distri-
bution function. Lynden-Bell theory can be applied to continuous distributions

of vorticity, and Maxwell-Boltzmann theory to collections of point vortices.

(d) For the physically more significant case m = 3, ordinary Hamiltonian theory
cannot be applied, because the number of dimensions is odd and the vorticity
is a vector; one is studying the interaction of a collection of vortex tubes,
rather than point vortices. Nevertheless it would be interesting to look for
some generalization of Hamiltonian dynamics to this case, and the rewards might
be great if statistical mechanics could also be successfully generalized.

3. POINT VORTICES

One way of following the motion of the fluid is to compute the time behaviour of two
functions, the vorticity f (q,p,t) and the Hamiltonian H(q,p,t). These can be
represented on a discrete mesh, as in the method of Fromm and Harlow(s). Another technique
is to calculate the motion of a limited number of point vortices, interacting with each
other via their individual 2-body velocity potentials. This was done by Abernathy and
KrOnauer(ﬁ) in their study of the formation of a von Karman Vortex Street. A third
possibility is to follow the motion of contours f = constant. This has been done success-—
fully in plasma physics for the analogous case of the 1-dimensional Vlasov equation by

Roberts and Berk(7) who used the 'waterbag' model earlier adopted by de Pack(s) and

?
Dory(g), in which f is everywhere either a constant f,, or zero, An assumption of a
similar type, (vorticity constant or zero), has been made by many workers in hydrodynamics.
Extensions of the Roberts-Berk method in the vortex case would involve changes in their

program, but would be an interesting problem to try.
The method used in the VORTEX program, and reported briefly by Christiansen and
Roberts(ll’izj is more analogous to the particle methods used in plasma physics. It

approximates f by a large number of point vortices:
N

f = Z f; 8(a-q) ﬁ(p—pi) (3.1)

i=1



where £y = +1 or -1, interacting via a self-consistent velocity field. Each set of

coordinates (dq;, P;) is called a point vortex and satisfies the equations of motion

oH cH
q; = =— p, = - — (3_2)

where H is the solution of Poissons equation (1.5) with f obtained from eq.(3.1);

N N
H= - Z Z f‘if‘j log rij (3.3)

i=1 j:1
i*J
with
2 2 2
| e - - . 3.4
ij (qi qj) + {py pj) (3.4)

The infinite 'self energy' of a point vortex is excluded. The problem is thus reduced to
solving egs.(3.1), (3.2) and (3.3).

4, THE REGION OF CALCULATION AND ITS BOUNDARY CONDITIONS

For practical reasons we shall restrict ourselves to considering a square region in

(qy,p) or (x,y) space. Three types of boundary conditions are of interest:

A, H constant along a bhoundary, i.e. the boundary is a streamline.

5
B. 3% = 0 along a boundary, i.e. the boundary is perpendicular to

all streamlines.
C. H 1is a periodic function.

These three conditions can be imposed separately on the x and y boundaries and
therefore combine to give 9 possible sets of boundary conditions. The square region is

covered by a square mesh of size 64 x 64,

A hydrodynamic fluid which is incompressible, inviscid and homogeneous is not entirely
realistic in a physical sense, but it is mathematically convenient for two reasons;
firstly because it provides a model for turbulent flows in the limit of infinite Reynolds
number, and secondly because (in 2 dimensions) the system obeys classical Hamiltonian

dynamics, so that a good deal of existing dynamical theory is likely to be applicable,

The basic hydrodynamic system, which obeys the partially differential equations (1.5)
and (1.6), is a classical Hamiltonian system with an infinite number of degrees of freedom
because of the continuous nature of the fluid. Such systems are well known, (the most
familiar example being the classical electromagnetic field), and when interacting with
systems with a finite number of degrees of freedom they give rise to interesting phenomena
such as the ultra-violet catastrophe. By itself, however, a classical system with an

infinite number of degrees of freedom behaves in a self-consistent way.

Compared to the exact physical system, the numerical model which is used to approxi-

mate it has three principal limitations:



I. The finite number of point vortices used to approximate f (eq.3.1).

II. The use of a discrete mesh.

III.The choice of boundary conditions.

I and II are of a practical nature and can be improved upon by increasing N (the
number of point vortices) and M (the number of meshpoints). The simplified boundary
conditions which are used facilitate the coding and speed up the program, but because of
the square region of calculation, small m = 4 perturbations are produced in rotationally
symmetric problems. A physically more realistic choice of boundary conditions would be
problem dependence, more difficult to code and more time-consuming in execution.

The computer model described in this note has been used at Culham to simulate some 10
different problems, and there seems to be no reason why many other interesting hydrodynamic

problems could not be solved in this way.

5. DIFFERENCE FORMULATION OF THE EQUATIONS

Since the calculation takes place on a mesh we approximate all space derivatives by

finite differences. |
Suppose that f 1is given at all the meshpoints T
(section 7). Instead of solving eq.(3.3) we P c R L
solve Poisson's equation according to: 5
q
Fig.1.
+ H, - 2H My + Hf - 2
Hp + Mg g B ”c=_f (5.1)

{bp)? (Aq) 2 e

where the suffices are explained in Fig.1. Equations (5.1) is solved by the

(13,14)

"Hockney-Poisson solver" program using a fast Fourier transform and recursive

cyclic reduction technique and will not be dealt with further here.

Equation (3.2) becomes

. Hp-Hg . H oW
qc o -——Q-E-— pC = qu (5- 2)

6. LEAPFROG TIME INTEGRATION SCHEME

In order to integrate eq.(5.2) in time we simply write

q(t+-At)2£tq(t-Atl = q(t) (6.1)

and similarly for p. (A first-order integration would be too inaccurate, as explained

in Section 11A). Thus if f, (and hence the Hamiltonian H and the velocity fields

oH SH
Fp‘! E,
positions from t - At to t + At. This is done by introducing 2 sets of point vortices

as well as vortex positions q,p are known at time t, we can advance the

whose positions are defined at even times t = 2nAt and odd times t = (2n+1)At
respectively, Each set of vortices determines the values of f(t), H(t) and hence the

velocity fields which are used to move the other set.



Referring to Fig.2, we can write t+At

eq.(6.1) for the even coordinates q., as |
follows, (and similarly for Pe:; and for o :
. I
Ay s Pyl |
1

8% 9c q
Fig.2.

do(t +At) = qu(t -At) + qo(qc s Do t) . 25t (6.2)

where q s Do are the vortex coordinates at the 'central' time t.

However, there are several ways of finding Ao and P in order to obtain a time

and space - centred approximation,

The most straightforward and best known method is the leapfrog scheme, in which Ae

33 are simply the coordinates of the odd set of particles, from which the velocity fields
Ay s Py themselves are determined. Another method used in program VORTEX (Section 9) is

a Taylor-expansion scheme, in which qé’ P, are computed from the even particle coordinates

at time t - At, by the preliminary calculation

qc(t) = qe(t—At) + qo(qe(t-—At), pe(t,—At.), t) At (6.3)

The leapfrog method is normally used in VORTEX, but the more elaborate Taylor-expansion

scheme can be embedded in the code without difficulty. Both schemes are weakly unstable
because the odd and even vortices gradually get out of step. This problem is studied

in Section 8, and a 'matching' procedure used to remove incipient instabilities is described
in Section 9,

7a AREA-WEIGHTING OR NEAREST-GRID~POINT APPROXIMATIONS

From the vector N containing N sets of particle coordinates (q,p) we construct

qp

a mesh or grid function fi To do this, the 'charge' associated with each point vortex

j*
must be allocated to the surrounding grid points in a prescribed way. Two standard methods
are mentioned here:

Nearest-grid-point approximation

The region is divided up into square
cells (Fig.3). All the charge belonging

to a point vortex is allocated to the grid-
i tre of the cell in which the
point at the centre whic X X X

vortex lies. P

Fig.3., All the charge associated with a X X X
vortex V inside the cell 1234 is credited
to the grid point C.




Area-weighting approximation

The point vortex is imagined to be replaced by a space vortex of uniform vorticity,
whose size and orientation are the same as those if the grid cells. It will then overlap
1, 2, 3, or 4 grid cells. (Fig.4). Its charge is allocated to the centres of the cells
which it overlaps, the weighting field

being given by the areas of overlap. If the

A B
cells have unit dimension and (a,B) are X X
the coordinates of V relative to D, then
the weighting factors are: oV
A (1-a)p [>)< X
G
B =k (7.1)
c a(1-p)
D (1=<)(1-p)
Fig.4.

Program VORTEX uses this second method which provides a higher accuracy, although at

an increased cost in computer time. D‘?‘H- 3AL
8. STABILITY OF THE DIFFERENCE SCHEME -—-'O;

Care is needed to prevent the odd and even D * A y\a

t t t+ 40t
vortices getting out of step. Fig.5. shows +2 *
oy 6%\ t + At
a streamline on which the '"correct" position <
of point vortices are marked. © 1is an “even" * t
point, i.e. at a time t + 2nAt.
; 1 " 3 3 3

g is an "odd" point, i.e. at a time t- At Fig.s.
t+ (n+1)at. e correct even o correct odd

0 calculated even * calculated odd
In order to examine the numerical stability of the calculation we write eq.(6.1) for both
the odd and even positions and form the limit At = 0. Setting r = (q,p) we get

e b)) R-i(r) (8.1)

where e is the position at which the velocities are evaluated. This IC is assumed

to deviate from the correct value RC.

Leapfrog scheme

Suppose Ee:_r_{c+§ and _I:O:gc—f)_ (8.2)

and consider the motion in a specified velocity field, independent of the vortex particles.

Inserting (8.2) in eq.(8.1) we have:

5 -d
d(Bg;__) - (Ro-5), ﬂ%—ﬁ;)_z r (ECJ._E) . (8.3)



Subtraction gives

T=-3 8 (8.4)
or
g 3d(Re) g 34(Rg)
dt 3q 4T T3p P
(8.5)
by BRE)  b(Re)
dat aq d 3 P
Setting u_ = a, u, = p, and using eqs.(1.1) and (1.3), eq.(8.5) becomes
du du
e« (P S |
= 3 &q = ép ,
(8.6)

g
dt

dé cu au

£ _ _ e

It = <f+ p)&q+ ép .

At this stage we must specify the kind of velocity field which is being studied., If we
assume a stationary state, eqs.(8.6) can be integrated in time. We can set

& = Sq =0 ei‘s’t, the eigenvalues being given by

P
au
52— _ (JMaY _ (Xay T (8.7)
aq P “op ‘
Numerical stability requires 622 0.

As an example we look at a rotational flow where u = (uq ) up) = w(r) xr, w= (0,0,w)

being the angular frequency of rotation, and r the radius vector.

Since f=2aw()+ |£[ —gz% » €q.(8.,7) gives
1, de] 5 bl N
l:l +=r d[‘:] 20 or r el 1 (8.8)

Hence for w(r) varying as r" the stability condition is

n?— 1 (8.9)

corresponding to

=+w /n+1 , n?—l,
(8.10)
§=+w|n -1, n< §

The amplification of & during one rotation is exp(2x v |n| = 1). From this we conclude
that since in regions where f =0 w will very often vary as r"z, whilst in regions
where f #0 w will predominently vary as r? s numerical mguabllul;l_;es will occur at
the border between these regions over a time period in which ?q_ ’ a_p and f do not
change significantly. It is therefore necessary to prevent numerical instabilities from

dominating the motion of the point vortices.



9. THE MATCHING PROCEDURE

Figure 6 shows, (in an exaggerated way), t+At- o
how the odd and even positions can 'get out t - P
of step". t- At 4 o
To prevent this from becoming too serious we é

stop the integration periodically, and

readjust the positions of the vortices, r
® even time

0 odd time Fig.6.

If the calculation is stopped at time t we know (t) and r,(t - At). We form

r,
r(t - &5 k(e (t) + r.(t - At)) (9.1)
=C 2 —a =0 °

We then calculate f(t - %} as explained in Section 7, and solve for H(t - Jl\z_t) using
the potential-solver. From eqs.(5.2) we find un(t - -Az—t) and define a new set of positions

at time t - At and t respectively:

i At . At At
%(t-ﬂt):zc(t—? - EC(t_?’EC)? (9.2)
2 _ At At At
ra(t) =rplt -5 + uolt - 5,10 5 (9.3)

So that the positions are displaced symmetrically about I, as shown in Fig.7.

We notice that the procedure is only t A

correct to second order in t, because

the chosen central velocity U is not

the space-time averaged value over the

x At

interval < -

We can illustrate the use of this pro- :r

cedure by estimating the number of timesteps

* new positions

M between successive "matching of positions" Fig.7.
which will achieve adequate accuracy. We O calculated centre position

noticed in Section 8 that amplification during one rotation using the leapfrog scheme was

exp(2rn / |n| - 1) = exp(2r)

for n = - 2. As an example we consider a circular cloud of vorticity of radius R, so
that the time for one rotation is 27(R/VR. For reasons of accuracy we require &M At = 1,
so that the time between successive matchings is = R/VR. Typically VR is chosen to be
MAt where A =% -% the mesh spacing, and R is say 8, so that M is of order

(9.4)

>|m

M =

or say 16-32.
In the second edition of VORTEX the centring and matching procedures have been

improved to reduce the amplitudes of computational modes.

. At At
Suppose as before that at time t we know EC(t) , l‘o(t - T) and u(t - 2).

We then form:



At

e -5 - -5 vue -5 ) & (9.5)
corresponding to a motion along the tangent at t =t - %; .
As before we fom
ot - 89 - 5@ (0) + rye - ) (9.6)

having preserved the set positions t - %;). As a centre position we then average

g P2

" :
r, and r. according to
Aty _ g AL ' At
Loyt - ) =5t - 39 + gl - ) (9.7)
At At At
From r we calculate foy(t - jr), Hon(t - jr) and ECN(t - :r). To separate odd and

even positions from Loy We now use the Taylor-Expansion scheme (eq.6.3), that is we find

ro At bt st st

=2t - ) = oyt - F) +ug (t - Ty - 5 (9.8)
sbty _ bt s Bt

Lot - 559 = roy(t = ) - ugylt - ooy 3 (9.9)

The new set of positions at t =t (even) and t =1t - %; (odd) are then in turn found

from
e At At At
Ee(t) = 'I:CN(t - T) + u : (t - 7 ’Eﬂ.'T (9.10)
~ At At At At
Lo(t =3 = ooyt - 3P - ul(t - 5 )3 (2,11)

These two improvements have proved useful when testing the program on a single circular
vortex. Because the positions found from eqs.(9.2), (9.3) are correct to first order only
they will introduce an expansion 61 of a circular vortex when applied for the first
order time (EC being the initial position). For a circular vortex (see Fig.8) this

expansion is approximately

” 1 At 1 42 ; _
8 * R.% (u 4.-——m) . With R = 7.2,

u. At = 0.6,(the values used in the numerical
experiment), we get &; =~ 1.4- 10™%, which
is in agreement with the measured value

1.45 « 10~*, The new centring (eq.9.7) puts

however 51 = 0.

Fig.8.

10. INACCURACIES IN THE DIFFERENCE SCHEME

Although the time integration can be made sufficiently accurate for At - 0, the

integration of eqs.(3.2) and (3.3) as approximated by eqs.(5.1) and (5.2) introduces a

- 10 -



significant overall inaccuracy.

Consider a vorticity distribution

f = cos% (10.1)

where N 1is the number of meshpoints in the q-direction. The analytical solution to

eq.(3.2) is

N \*? 2nkq
H = <2 l) cos = (10.2)
Inserting (10.2) in (5.1) we get for Aq = 1,
-+ < : )2 ( <_ ) . ))
= cos + cos - =f (10, 3)
(Aq)z onk N N A
Comparing f and fA we see that
f 2
A N 2nk
N g\ - = . 4
D=—= (2 ]> 2 (1 - cos = (10.4)

Program VORTEX uses N = 64, From (10.,4) we can calculate the truncation of a mode and

as examples we get

k-value ratio error
k=1 D = 0,999 -

k =4 D =0.99 1%
k=28 D = 0.955 4,5 %
k=16 D = 0.815 19.5 %
k = 32 D = 0.405 59.5 %

The approximation (5.2) will truncate the higher harmonics in a similar way.

of 2
The truncation errors become significant in regions where X’ 3% are large. In

program VORTEX we nomally consider distributions in f which are Heaviside functions.
This means that at the borders where Vf 1is very large (theoretically infinite) care must
be taken to observe whether or not '"diffusion' occurs because of the numerical instabilit-

ies which are likely to arise there.

11. TEST RUNS WITH VORTEX

It is important to carry out controlled numerical experiments on simulation codes,
both to eliminate programming errors and also to determine the accuracy of the difference
approximations. Testing a computer simulation code is often very difficult because of the
number of parameters involved, as well as the range of values which they can take., A
meaningful series of tests would comprise a suite of "like" runs in which each parameter
is varied independently. It therefore seems appropriate to record our experience with the
VORTEX code, for a number of successful and unsuccessful runs. This section will deal
with a number of numerical tests, and the starting point is a very simple problem.

= 4 =



One Circular Vortex

Consider a circular vortex of radius R. R
The velocity field due to this vortex is
V, =% Er, ¥ =0, (0<r<R), ‘:E %I
\"A
R? < I\
= 7 =~ - @ I
Vo =% BT, V. =0, (RS r <) i I
I 1
\ 1
where F0 is the total vorticity defined by ._‘\\¢//
F, = ﬂR2fo, f, being the constant vorticity |

density. This system is in stable equilibrium.
Program VORTEX has simulated this situation Fig.9.

in a variety of ways.

A, First order time integration, nearest grid point approximation

The vorticity distribution is set up by distributing point vortices at random within
a circle of radius R. After approximately 200 timesteps with At = 0,50 the circle has
expanded to twice its original radius, thus showing the necessity of using a better scheme.

B. Second order scheme, (Taylor-expansion scheme), nearest grid point approximation

The vorticity distribution is set up as in A. After approximately 250 timesteps with
At = 0.25 (2nd order) the original circular shape is still retained. However the energy
has decreased by 6%, and the enstrophy (vorticity squared) by a similar amount., The nearest
grid point approximation cannot conserve energy sufficiently well and it introduces fluctua-
tions which can be interpreted as "numerical viscosity'". Particle trajectories are not

exactly circles.

C. Second order scheme (leapfrog), with area-weighting

The vorticity distribution is set up as in A. The circular shape is still retained
after 100 timesteps with At = 0.25. The energy shows a variation of about 0.6%, a con-
siderable improvement on B. The random distribution however still introduces fluctuations
although the area-weighting implies a smoothing of the distribution, (truncation of higher

harmonics).

D. Second order scheme (leapfrog), area-weighting

In this case a uniform fo is set up by distributing points on equidistantly spaced
concentric circles. 1000 timesteps with At = 0,25 have been calculated. Energy varies
by ~ 0.02% between its maximum and minimum values, an improvement from C, while the
enstrophy varies by 0.06%. Each circle of points retains its shape virtually unaltered
until 600-700 timesteps have elapsed. The area and circumference of the outer circle have
been examined by an analyser program. The result is that the area as function of time
oscillates with an amplitude of order 10™° and a period of order 0.1 - 0.2 T, where T
ﬂE). The circumference as a function of time

F
0 .
oscillates in a similar way. The conclusion is that a number of "false" m modes (eimO)

is the rotation time for the vortex (T =

are being superimposed by the approximations which have been made. Because of the square
shaped region of calculation (see Fig.I) the equilibrium streamlines will not be circles.
All modes m= 4, 8, 12, 16, +e.... will therefore be present as false modes and a quanti-
tive estimate by an analysis program (MODANA) reveals that the amplitudes of these modes
grow from 0.02 (t = 0) to 0.3 (t = 2T) in units of one mesh cell. Other modes m =1, 2, 3,
5, 6, 7, 9 have amplitude less than 0.001. A comparison between the initial state (Fig.II)
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and the state after 750 timesteps (Fig.III), which is approximately 5 revolutions of the
circular vortex, shows how the circumference has changed. Since the amplitudes of a mode
m varies as " the effect should be more pronounced at larger r values. A boundary
particle will be displaced 52 from r = R because the hodograph for the present problem
is not a circle. &r is initially of order 0.002 if R = 7.2, i.e. 'R-Ez 3 107%, &r will
however increase with time (Section 8) until matching is applied. If this is done every

16 timesteps ©& r/k might on average be of order 107°, After 10° timesteps a particle
is therefore likely to have arrived at a position which is off by an amount up to 1 mesh
cell, Experience with this run, as well as with a number of related simulations, suggests
that the code can be run for 500 - 750 timesteps with < u- ‘.5.213.> = % before accumulation
of errors become too significant. In other words when a particle on average has travelled
a distance of the order 2 - 3 period the accumulated errors can be of the order of cell-
length. In the example with the circular vortex < u- %) = 0.3, so that (g-é—;‘)max = 0.6
at the boundary of the vortex.

Two Circular Vortices

A more complex problem is the flow generated by two finite vortices of the same or
opposite polarity, both being initially circular. Depending on parameters such as the
relative polarity, radius, separation distance etc, a situation can arise in which the
system takes up a stable large-amplitude oscillatory state. Such a case has been
simulated by setting up a distribution of vorticity similar to that of D. It is found
that, while energy is conserved to within 10™% over 700 - 1000 timesteps, the enstrophy
and the energy of the point vortices oscillate with a definite period, the period of the

system. This latter effect is due to the finite number of point vortices

12. CONCLUDING REMARKS

Program VORTEX has at present simulated 10 different hydrodynamic problems with a
variety of data. These problems are being examined analytically and results generated by
the program as well as by a suite of analyser programs are being studied to explain the
behaviour of the computer model used. The outcome of this work will be published elsewhere,

but it may be mentioned that the following physical situations have been studied:

1. Kelvin - Helmholtz instability.

2, Formation of a Karman Vortex street.

3. Interaction between two circular clouds of vorticity.

4, Simulation of turbulence problems.,

5. Kirchoffs elliptic vortex.

6. Mode - mode coupling on the surface of a circular vortex.

The program has also been used by J.B. Taylor and B. McNamara to simulate the diffusion

of plasma in two dimensions using the guiding centre model.

PART II, THE COMPUTER CODE

13. INTRODUCTION

This second part is best read in conjunction with the clarified documented listing
which is available in the Culham Library, or from the author. Lists of subroutines and

variables as well as numbering of routines will not be given here. It is thus assumed that



the reader is familiar with the notétion of the program, and names and symbols will be
used without any further explanation.

In the following two sections the structure of the program is explained by diagrams
which should not need further comments.

Section 16 explains the printed output which is nommally produced by the program,
while Section 17 explains briefly the input required. Section 18 discusses the techniques
used for coding, mainly the Usercode portion of the program (KDF9 assembler language), and
Section 20 describes a suite of analyser programs some of which have been clarified.

Listings are available in the Culham Library, or from the author.

14, BLOCK STRUCTURE

Broadly speaking program VORTEX can be divided into 8 blocks or sections as shown on
the next page apart from Block VIII. These blocks are centred around subroutines with the

following names:

I MAIN

I1 F DATA
II1 INITAL
Iv CHECK
v START

Vi COTROL
VII CONVEC

Block VIII includes several segments.

15. FLOW DIAGRAMS

On the following pages we show the logical structure of each block by means of flow
diagrams. On the left are written the names and numbers of the routines concerned,
together with the page number of each routine in the clarified listing. Routines are either
written in FORTRAN, ALGOL or KDF9 USERCODE. Two segments need further explanation. POT1
is the Hockney-Poisson solver program which is described elsewhere(Fg. MOVIE is the high-
speed movie-making package written by J.P. Boris and P. Hodges. Neither of these are
included in the listing of the program. At the end of the clarified listing there is a

subroutine map or 'program tree' which will help the understanding of the flow diagrams.
16. OUTPUT FROM PROGRAM

The clarified listing includes a test run with typical output generated by the code.

This output can be divided into 2 parts:
I. Diagnostic comments during initialisation, starting, and closing down of a run.
II. Diagnostic results as the simulation proceeds.

Part I consists of labelling the job, checking the number of point vortices and checking

the value of the timestep DT. S5 pages with results from initialisation, a test run
(automatically performed) and the starting conditions follow, and a page with the values

of certain common variables completes the first part of the output.

Part II consists of information which is printed before and after each matching has occurred.
This printout is performed by routine MPRINT which also produces the 5 pages mentioned above.
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III. INITIALIZATION

I1I IN
SECTION Set array Set scale Set the
21 INITAI ENTRY dimensions factors logic variables
7 /
Set constants
and arrays
for
3 SETPT1 potertial solver
Set velocity
and density
31 NILL malries tozero

Distribute

Che point vortices
on the mesh

2l SOURCE
Build the
32 LOCATE position word
Extract the
vorticity from
L5 DPLACE the positions
Convert and re-
arrange the
vorticity matrix
L6 FIXFLO
)
No motion
of fluid
velocity = 0
Initialization
finished
1 MAIN
22 CHECK
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CHECK ‘v’
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FLUID MOTION
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VIII.

MATCH

v
OR - IN g ~- out
VI Vi
START
.............. ENTRY SECMENT "MATCH™
COTROL
Set density and
velocity matrices Set the extracted
31 NILL to zero density to zero
Print all
30 MPRINT results
Find vortex
Lo KINTIC ENEergy
* Evaluate the
sum of squared
3h gIcMA velocities
Change from
37 NEGATE =Vl to +V/h
‘“‘k___
Extract center Move odd Move even
density without vortices from vortices from
67 SEPART moving points centers centers
Convert and Convert and
rearrange the rearrange the
46 FIXFLO vorticity matrix vort icity matrix
Evaluate
L1 NSTROF the enstrophy
Preserve the
28 KEEPZ vorticity matrix A
Solve Poissons
5 POT 1 equation
Multiply
39 PSIZET vortricity and
Convert and
L3 FLOFIX scale velocity
Take the curl
L, SPEED of the potential
Change =v to
36 RIGHTV =Tt
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The information comprises the positions of selected odd/even vortices and selected
velocities, Printing can be done in octal or decimal format according to whether the
common variables LPRINT is .,TRUE, or .FALSE. respectively. The fluid energy has been cal-
culated at each timesteps prior to the matching and an array with these values is printed.

After the matching process, the fluid energy, the sum (zeta x psi), mean fluid
velocities, vortex energy, enstrophy, and mean vortex velocities are printed. These are

calculated as follows:

Fluid energy E,

]
£
5!::

Sum (zeta x psi)

1]
]
=
="
I

I
=

Mean fluid velocity

il

§ )

Mesh

Z{: upt -upt = L

particles

Vortex energy

Enstrophy =

==
—
E]
E"‘J
1}
o)

N

particles

Mean Vortex velocities & ;{: upt =V

where M is the number of meshpoints (4096), N is the number of point vortices,

subscript 'm' indicates a value at a meshpoint, subscript 'pt' a value for a point vortex.

In order to convert to physical values, i.e. to find the scaling, we imagine a system

of units as follows:

Quantity symbol value computer model value

length L 1 Mesh spacing

vorticity =t 1 1 vortex particle

density ML™2 1 Mass of fluid within a cell.

If a particle is meant to simulate a charged particle in a plasma, (electron, ion), then

that particle possesses a unit charge which is either positive or negative.

In order to calculate the value of the timestep in physical units we assume that the
average velocity of the particles is known denoting this by ( n > (in the right units)

we get
peo i M
T2 <w N°
where L is the vortex energy as printed. This relation will give At in physical units,

which can be compared with the value of At in program units.
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In addition to the printed output program VORTEX can produce 4 magnetic tapes. 3 of
these tapes contain information to be processed by analyser programs. The 4th tape is an
IBM-tape which when run on the Benson-Lehner microfilm recorder will produce film or hard-

copy showing the motion of the point vortices.

17. INPUT REQUIRED FOR A RUN

The input required by program VORTEX is the vorticity distribution f as approximated
by eq.(3.1). This approximation is made by specifying the coordinates (q,p) of each
point vortex. All coordinates are initially calculated in floating point form such that
0. < (q,p) <64, 0. The (q,p) positions of a point vortex are then packed into one
fixed-point word in the array NXY. This array has to be filled up as indicated in Fig,10
assuming the number of point vortices to be NREAL.

NREAL + |

| 1
f NREAL 2xNREAL
| odd positions even positions |

=

I- P

Fig.10.

The array is to be filled with position words starting from the lst element. Element i
and NREAL + i represent the positions of the same physical vortex and initially they are
identical. The program checks this as well as the number of positions filled in and if

there is an error an abnormal exit will occur.

In the clarified listing as well as in the User Manual (Sec.21) an example is given
showing how to distribute points uniformly within a circle. The routine which the user

supplies is called SOURCE.

The data for program VORTEX is supplied by the user in a routine called FDATA and the
reader is referred to the User Manual.

In case an experienced user wants to change part of the program while maintaining the
basic structure, a dummy routine called EXPERT is called for frequently from the routine
CONVEC, which does the actual simulation sequence. By introducing his own version of
EXPERT, the user is able to control the run or introduce new facilities,

18, PROGRAMMING TECHNIQUES

The most prominent feature of the VORTEX code is its vector integration technique;
integer arithmetic has been used wherever possible. The (q,p) components of the positions
and velocities are packed into one word NXY as illustrated (NPSI is the velocity word).

E;lbitsl I8 bits Iéobits:': I8 bits
¥ T T T

] ~ NXY
o P I q
24 bits 'r 24 bits ! ~ NPSI
Up At Ugq Ot
Fig.11.
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With this structure most of the coding is done in KDF9 usercode. The 6 bits in a position
word containing the mesh coordinate are easy to extract by shift operations. The most
obvious advantage of this packing is the simultaneous time integration of (q, p) by adding
the two words shown in the figure.

The potential-solver program POT1 works in floating point form, however, so that con-

version routines FIX FLO, FLO FIX are used as indicated in the structure diagrams.

A careful study of the execution times for different instructions in KDF9 usercode
has led to optimum design of the high speed loops in the routines which perform the time

integration.
Tae next section briefly describes how a relatively simple routine is coded.

19. EXAMPLES OF OPTIMUM CODING

Suppose that the 2N positions of the odd/even point vortices are stored in an array

called NXY. The first half of NXY contains N values of r,, the second values of Lot

Suppose that we wish to find r, = 3 (Ié + Eo) the socalled centre position encountered

in Section 9.
The following three criteria have been set for this subroutine (CENTER):

. - 1 . :
1. Although we write I = % (ge + Eo) it is necessary to calculate

i 1 s i 3 >
Lo=% Lo+ % Lye Referring to Fig.11 we see that if IY0 s 32 the

?

y-interval will be lost because of over flow if addition is done before
division.
2, Furthermore as each component has 24 bits we must make sure that division

does not involve "flow" of bits from Y to IX.

3. To optimise the speed we examine the actual times for KDF9 instructions.

Integer addition or division take 1 or 47 psec respectively if done in the

nesting store. A shift instruction (~ x 2" or /2") takes 5-6 usec.

A loop which scans over all N = NREAL point vortices must be as fast as

possible.

The routine which performs this calculation is called CENTER. When the call occurs
the addresses of its 2 arguments are left in the top two cells of the KDF9 nesting store,
N1 and N2.

CENTER (NXY(1), NREAL)

= Mi5, (Put address of NREAL in modifier of Q15 )
MOM1 5, (Bring value of NREAL to nesting store Ni )
DUP, (Make a duplicate in N2 )
= RC15, (Put NREAL in counter of Q15 and 1 in )
(incrementer, O in modifier )
= RM12, (Put the other value of NREAL in the )
(modifier of Q12 )
DUP, (Make a duplicate of the address of )
(NXY(1) in N2 )
= M15, (Put one copy of the NXY(1) in the modifier )
(of Q15 )
= + M12, (Add the other copy of the address of MXY(1) )

(to the current contents in the modifier of Q12)

- 26 -



This section of code takes about 55 pusec and it is only executed once for one call of

CENTER.

It results in the following contents of the Q-stores

Counter
Qi2 0 1
Q15 NREAL 1

Incrementer Modifer

Address of NXY(1+NREAL)
Address of NXY(1)

THE LOOP IN CENTER

Exegution time Commani Number of‘used cells Explanation
in psec in nesting store

9 1,MOM12, 1 Bring value of NXY(JE) (evenvortex) to
top cell of nesting store

2 DUP, 2 Make a duplicate of this value

9 3 Bring value of NXY(JO) (odd vortex) to

MOM15,

top of cell of nesting store

1 -, 2 Make NXY(JE) - NXY(JO) ~ Ni

5 SHA-1, 2 Shift the bit pattern in N1 arithmetic
1 bit down preserving the sign bit

7 SHC-23, 2 Shift the bit pattern in N1 (cyeclic) 23
bits, i.e, y-part into x-part and
vice-versa

5 SHA-1, 2 Shift the bit pattern in N1 arithmetic
1 bit down, i.e. x-part/2

6 SHC-24, 2 Shift the bit pattern in N1 (cyclic)
24 bits, i.e. y-part/2 into old position
and x-part/2 into old position

1 - 1 Form NXY(JE) - (NXY(JE)-NXY(JO))/2
This gives o

2 DUP, 2 Duplicate the value of ra

10 = MOMI12Q, 1 Store this value and update address to
NXY(JE + 1)

10 = MOM15Q, 0] Store this value, update address to
NXY(JO + 1) and subtract 1 from counter
in Q15

11 J1C15NZ, 0] Jump to label 1 if counter in Q15 is
not zero

VR, 0 Reset overflow register.
EXIT1,END, 0 Return to the calling routine

We notice that the total execution time for the instructions in this loop is 78 usec

for one vortex particle.

(0.4 sec ~ for 5000 particles).

The most "expensive'" commands are the fetches and stores.
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The 4 shift instructions are necessary because the first shift, SHA-1, may result in

the flow of a non-zero bit from Y to IX.

(Dlob

The number of instructions words for this loop is 3 % 3
the 6 syllables in one word. (1 syllable = 8 bits). Written in FORTRAN or ALGOL the same

m=aning 4 syllables out of

code would be rather complicated, time consuming, but perhaps easier to interpret.

20, SUITE OF ANALYSER PROGRAMS

The analyser programs developed so far are:

A, MODANA, mode analyvser program

B. SPECTRUM, spectrum values of matrix

C. TELESCOPE, examine Vortex structures under magnification

D. FERMI , statistical properties

E. MARKER,, exhibit the fluid motion

F. SURFACE, 3-D surface plots

MODANA examines m-modes excited on the surfaces of a vortex. It

produces either phase-plane diagrams or growth rates.

SPECTRUM evaluates the frequency distribution of a mesh function
and is meant to explain clustering phenomena occurring

during simulation.

TELESCOPE magnifies the pictures produced by MOVIE thus enabling

the user to see how a given distribution develops in time.

FERMI evaluates the functional relationship between f and H,
and is used for examining the statistical properties of

the computer model.

MARKER shows the motion of the physical fluid by introducing
dummy particles moving with the velocities calculated by
VORTEX.

SURFACE was written by Dr J.P. Boris and is able to produce

pictures of 3-D surfaces for either f or H.

21, USERS MANUAL FOR PROGRAM VORTEX

Contents of Users Manual

20.1 Input deck

20,2 "Default mode" as opposed to "users mode"

20.3 Comments on Group I: '"Control Cards"

20.4 Comments on Group II: "Formulation of Problem"
20.5 Comments on Group III: '"Data"

20.6 Epilogue

20,7 Table of Default Values

20.8 Comments on table

20,9 Users control of program VORTEX

20.10 Conclusion
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21.1 Input Deck
The input deck for the Culham KDF9 is quite simple. It can be divided into 3 groups

of cards:

I. Control cards
IT. Fortran cards which formulate the problem
IOT1. Data cards, (including Fortran data)

In order to illustrate this an example is given below, in which we assume that the
problem to be solved is that of a single finite circular vortex placed in the centre of a
square region, the boundaries of which have no normal component of the fluid velocity. To
set up a circular region of constant vorticity we distribute point vortices in equidistantly
spaced rings.

In the job deck listed below all cards underlined are necessary for any problem, that

is they are independent of our particular example.

GROUP I
1s %  JOB ..ceoices
2. ¥ 10D TAPE 1/COMMON/SAVE % FOR USER
3. % IODTAPE 2/ " / " wooa
4, % IOD TAPE 3/ " / " L
5. % _ SUBSTITUTE VORTEX // CHRIS J
6. ¥ SUBSTITUTE DELSQPHI // CP GROUP
GROUP II
Ts % ___ IDENTIFIER SOURCE
8. % __ FORTRAN
9. X___SUBROUTINE SOURCE
10. % SUBSTITUTE VORCOM
1. I0DD = NINDXY
12, DR = 0.3
13. NDR = 24
14. NPR = 10
15, XC = 32,0
16. YC = 32.0
17. DO 102 JR = 1, NDR
18. R = FLOAT (JR) % DR
19. NTHETA = JR % NPR
20. DTHETA = 2.0 % PI/FLOAT (NTHETA)
21, DO 101 JJ = 1, NTHETA
22, THETA = FLOAT (JT) % DTHETA
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75, X = XC + R % Q0S (THETA)
24, Y = YC + R % SIN (THETA)
25 CALL LOCATE (X,Y, NXY(1), I0DD)
26. IEVEN = I0DD + NREAL + 1
27. NXY (EVEN) = NXY (I0DD + 1)
28, 101 I0DD = IODD + 1
29. 102 CONTINUE
30. NI_NDXY = I0DD
Fhe RETURN
32, END
GROUP_III
33. * IDENTIFIER FDATA
34. * FORTRAN
35. % SUBROUTINE FDATA
36. % SUBSTITUTE VORCOM
37 NRUN = 192
38. RETURN
39. END
40, * DATA
41, TH.T8: ‘T:H:B: LulBiBulsbh,I.NG: O.F.
42, A S.P.E.C.I.A.L. T.E.8.T. RN, T.0.
43, D.E.M.O.N.S.T.R.A.T.E. T.H.E. U.S.E.
44, 0.F. L.A.B.E.L.S.
45, R.U.N. 1.2.(3).2 9./.1.2./1.9.6.9.
46, % END JOB

21.2 'Default mode" as opposed to "users mode'

The inclusion of cards 2-4 and 7-39 constitutes a deviation from the default mode,

which comprises for the three parts:

I.  Cards 1,5,6 SUPPLIED BY USER

I1I. Cards 7,8,9, 31 and 32. DUMMY SOURCE

III. Cards 33,34,35, 38 and 39. DUMMY FDATA
Cards 40-46. SUPPLIED BY USER

The program initially sets all common variables to default values (section 21.7), some
of which are overwritten by the user in Groups II and III. Unless this is done, the
default mode runs without any formulation of the problem to be solved, and so abnormal exit

from the program will occur,
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It is thus necessary to deviate from the default mode. In the following three sections

we shall briefly describe the consequences of the deviations which have been made in our
example., (DM 'Default Mode").

21,3 Comments on Group I: "Control Cards"

A, Card 1 is an obvious necessity

B. Cards 2-4 supply the program with three magnetic tapes,

because DM requires this.

G Card 5 calls in the following cards:

47. * SUBFILE FLUID // CHRIS J

48, 3 SUBFILE OF LIBRARY // CP GROUP
49, % SUBFILE EG 3 LIBRARY

50. * SUBFILE CUL LIB

51. %  TABLES

52, %  CARD LIST

53. £ STORAGE /6912

54, %  IODTAPE 101/IBM-SC/SAVE

55, ¥  XEQ

56. ¥  PRELUDE

57 % RLB % ...... 3/12/1969 .. PRELUDE
58, * CHAIN 1

59. x RIB % ...... 3/12/1969 ... DUMMY. MAIN. PROGRAM
D. Card 6 calls in the Hockney-Poisson solver program,

21.4 Comments on Group II: "Formulation of Problem"

In the example discussed here, the particle positions are defined in loops. No matter
how the user formulates the problem, the card 25 is used to define each single set of
coordinates (x ,y) in floating point form, with 0.0 < (x, y) £ 64.0, and cards 26, 27
and 28 must follow immediately after,

21,5 Comments on Group III: '"Data"

In this example we have accepted all DM values except NRUN, the number of timesteps.

On cards 41-45 we have labelled our run by symbols starting in column 1 and proceeding

in every other column until column 55.

21.6 Epilogue

Because we have accepted DM data it seems appropriate to explain what this is. In
the following section the name of a variable, its significance and its DM value are shown.
For logical variables the value ,TRUE. causes action, the value ,FALSE. causes the

opposite. The table also shows the range of values;
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A-B

I11/12/13

Blank

meaning that the variable varies continuously from A to B.

I1 to I2 in steps of I3.
meaning no variation and

meaning arbitrary variation.

21,7 TABLE OF DEFAULT VALUES

meaning that the variable varies discontinuously from

NAME STGNIFICANCE RANGE e
DT Value of delta t - 1.0
HX Mesh spacing in x + 1.0
HY Mesh spacing in y + 1.0
IBCX Parameter for boundary conditions in x 1/3/1 1
IBCY | Parameter for boundary conditions in y 1/3/1 1
KTAPE | Channel number of tape containing the velocities 3
MTAPE | Channel number of tape containing the potential 2
MTRY Frequency of printing/matching 2/32/2 16
MVELOC | Number of bits representing V (average) 1/23/1 17
NHDPY | Frequency of hardcopy production 2/NRUN/1 16
NMINUS | Number of negative vortices 0/3200/1 0
NP1 Starting point of position printing 1/3199/1 1
NP2 End point of position printing 2/3200/1 8
NP3 Increment between NP1 and NP2 1/3200/1 1
NREAL | Total number of point vortices 1/3200/1 3200
NRUN | Number of timesteps to be done 1/200/1 2
NSKIP | Number of blocks to be skipped for restart 0]

of program from NTAPE 2/
NTAPE | Channel number of tape for restarting program 1

NV1 Starting point of velocity printing 1/4224/1 1820
NV2 End point of velocity printing 2/4225/1 1827
NV3 Increment between NV1 and NV2 1/4225/1 64
POTCON| Potential value on boundaries + 0.0
ZAD Switch for adjusting the charges 0.0/1.0/1.0" 0.0
ZFAC Scale Factor + 64.0
LANA Potential/vorticity to MTAPE .TRUE,
LBEGIN| Start from initial conditions . TRUE
LCOPY | Make hard copies -TRUE.
LFIIM | Make film .TRUE.
LMATCH | Stabilise the numerics .TRUE.
LPRINT | Print diagnostic results in octal or decimal .TRUE.
LRECOR | Record history on NTAPE .TRUE.
LTROL | Control DT .TRUE.
LVELOC | Eulerian velocities to KTAPE . TRUE.
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21.8 Comments on table

T, The two magnetic tapes MTAPE and KTAPE contain information dumped from core

during simulation. They are meant to be used by a suite of analyser programs.

II. The tape NTAPE contains all the information required for a restart of the

program from a problem time Tp

where Tp = N x MTRY % MIRY*DT , N arbitrary

At time Tp the tape NTAPE has recorded 2N blocks. A restart from time

TP is thus implemented by the following two cards (if N is say 30).

FALSE
2 ® 30

LBEGIN
NSKIP

1l

If a tape is not required the appropriate control card can be omitted.

III. The variables IBCX and IBCY determine 1 set out of 9 possible sets of

boundary conditions in (x,y) according to:

IBCX = 1 VX 0 at x-boundaries
IBCX = 2 VY

IBCX = 3 (VX,VY) are periodic in X,

0 at x-boundaries

1

and similarly for IBCY at the Y-boundaries.

IV. The variable DT is automatically changed by the program accordiﬁg to
the value of MVELOC, if LTROL = .TRUE.

With LTROL = .FALSE. the value of DT is not changed. MVELOC is equal
to the mumber of bits occupied by the average velocity, that is 17 ~ %,
18~%, 19~ 1 etc.

V. The indexes NP1, NP2, NP3, NV1, NV2, NV3 can be set by the user
according to which particles/hhich meshpoints he wants to examine with
diagnostics.

VI. POT CON is the potential value at the boundaries. It is only required
if either IBCX or IBCY or both are equal to 1.

VII, ZAD.iis a switch for adjusting the charges in double periodic geometry
in such a way that the total charge is zero. ZAD is normally equal to
0.0, but if IBCX = IBCY = 3 (doubly periodic geometry) and if
NMINUS # NREAL/2, then ZAD must be set to 1.@ by the user.

21,9 Users control of program VORTEX

The users control of a particular simulation consists of 3 distinct parts:
A, He has to define the problem concerned by setting up a distribution
of point vortices in routine SOURCE (Section 21.1 and Section 21.4).

B, He has to provide the program with data relevant to his problem in

routine FDATA (Section 21,5 and Section 21.7).

C. He can if he wishes interrupt the simulation cycle at 14 stages in
the program, at which a routine EXPERT(I) is called. EXPERT(I),
I =1,14 is a dummy routine in the DM mode, but the user can write
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his own version, allowing for the appropriate entries. EXPERT(I)
is called at stages 1-9 from subroutine CONVEC, at stage 10 from
subroutine START (Section 2.6) and at stages 11-14 from subroutine
MATCH.

21.10 Conclusion of manual

Timing shows that a timestep performed by program VORTEX when run with appropriate
DM - DATA takes approximately 20 secs. By cutting out all options this figure can be
reduced to 12 secs. Relocation, initialisation and implementation of 300 timesteps for a
typical run with appropriate DM - DATA takes 70 minutes.
22, CONCLUSION

A number of different goals have been aimed at in project VORTEX. In order of import-

ance, these are briefly:
Ly Production of physical results
II. Experience in programming and numerical technique
ITII. Documentation

It is left to the reader to judge the success of III and the author will welcome

criticism of this topic.
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THE PICTURE IS PRODUCED BY PROGRAM TELESCOPE
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Time =0 Time = 40.0 Time = 80.0 Time = 136.0

Two vortices coalescing because of sufficient initial proximity

Time = 0 Time - 48.0 Time - 96.0 Time = 160.0

Two vortices precessing around each other. Large amplitude oscillations on their surfaces

Uy

Time =0 © Time - 144 Time = 232 " Time - 328

The onset of the Kelvin-Helmholtz instability

Time = 120 Time = 200 Time = 280

Time = 0
The formation of the von Karman vortex street

Fig. |V Flow problems simulated by program VORTEX
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