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HEATED BY HIGH ENERGY ION BEAMS
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M.J. Houghton

ABSTRACT

A detailed analysis is made of the electrostatic
instabilities associated with the heating of a confined
plasma by means of a high energy, tenuous, neutral beam
ionized in the plasma; particular emphasis is laid on
toroidal reactor parameters.

It is concluded that high growth rate instabilties
may lead to faster heating of the background ions than
expected classically, but only at low electron tempera-
tures, i.e., T < TE—WH [WH = directed beam energy]. The

L

non flute modes grow faster than the flute modes, but are
more easily stabilized by both shear and finite energy
spread in the injected beam. The shear requirement, for
stability of all modes, is
27 AB
L

S

where Ls = shear length, and AB = effective Debye length
of the injected beam component.

The above criterion is unlikely to be satisfied in
future toroidal experiments or in a reactor; however the
presence of these electrostatic instabilities may not be

very serious from the containment point of view.

UKAEA Research Group,
Culham Laboratory,
Abingdon, Berks.

August 1971 SBN: 85311 004 2
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I, INTRODUCTION

Previous work(!) at Culham Laboratory on neutral injection
concluded that heating confined plasma by an energetic beam
of some transiently ﬁeutralized species [e.g. D,'T} could be-
come an important feature of the next generation of toroidal
experiment s, and eventually of reactor systems. In par-
ticular it considered injection into a stellarator type
reactor to produce temperatures ~ 10 keV in a plasma with
density ~ 10" cm 3. The beam is required to heat a cold
dense plasma from an initial temperature ~ 100 eV wup to
the point at which alpha particle heating takes over (1)
~ 10 keV. In this report we study the electrostatic
plasma instabilities associated with the ionized and sub-
sequently trapped beam with particular reference to the
above reactor system, but also with an appended calcula-

tion appropriate to an ORMAK type experiment.

The ionization cross-sections and ionized beam pro-
files were studied in reference (1) and indicated a
suitable directed beam energy of about 1 MeV., Typical
relaxation times for a charged test particle undergoing
small angle Coulomb deflections have also been calculated,
from the Fokker-Planck eguation, and used to estimate the
time scale for thermalization of such a beam. For example,
an injected 1 MeV beam will heat a typical reactor plasma
in two stages under the action of dynamical friction;
firstly it will heat the electrons which should reach
10 keV on a time scale of ~ 1 sec, the heated electrons

relaxing to thermal equilibrium with the plasma ions on



a rather faster time scale [see Fig. 5]%.

We expect that collective effects, associated with
the injected beam, may be important both from the heating
and containment point of view. In this report we make
a detailed analysis of possible microinstabilities and
leave othzr plasma effects, such as the generation of

large scale electric fields, to a further report(zl.

The detailed working has been divided into six
separate sections, i.e. II through VII. Firstly, in sections
(IT) and (ITI) the form of the ionized particle distribu-
tion is considered and hence the dispersion relation for
the electrostatic modes derived. Certain basic assump-
tions are made and the dispersion equation reduced to a
more elementary form. Sections (IV) and (V) contain
details of the growth rate calculations for the infinite
uniform media case, section (V) contains a discussion of
electron Landau and ion cyclotron damping with particular
reference to background plasma heating. In section (VI)
the stabilizing effect of finite energy spread in the
injected beam is studied, while section (VII) contains
the analysis of finite geometry effects, In particular,
plasma boundaries, non-uniformity and shear of the
ambient magnetic field are shown to be important and
shear stabilization criteria are derived. A summary,

conclusions and appended examples then follow,

*It is assumed that injection is at right angles to the
ambient magnetic field, that the resulting ion beam is
monoenergetic ~ 1 MeV and the accompanying electron beam

gives negligible heating.



I1. PARTICLE DISTRIBUTION FUNCTIONS

~AND THE GENERAL DISPERSION EQUATION

Particle Distributions

The model for the plasma injected beam system consists

of a uniform Maxwellian plasma

N .2 2 2
o = (VS vyt) vt
T ) P — T(i,e) (1)
3 3
~f Vg
(i.e)
(in which T ~ Te) in a uniform magnetic field B = (0,0,B),

into which a neutral beam is injected. We assume the
neutral beam is injected, with velocity Vg5 , at right
angles to the ambient magnetic field B , consequently for

the resulting ionized beam we take

2 2
4 n_ - (vi/bvpg) - (¥4, = VO)Z/ (Avrg) '
f (V) = s €

27:2(AVTB)EV

(ions only) -

(2)

General Dispersion Equation

We shall consider stability against electrostatic

waves of the Harfis(s)type. Thus the wave electric field

is of the form

E(r,t) = - V¢ = E_ o (¥t + kuy + kiz) )

[the notation is standard throughout] .

Using well known techniques(aywe find the dispersion

relation

k?® = D; (w,k) + Dz(w,k) (4)



where

: oo
: v D 2 3 _
Dy (w,k) = Z ‘(:%3 [% Zl:- Z(-t )n [e 7\In(?t)]:'

species (i,e) = Nn=-o0
A co
T
?Z[Z(t)[ ]]},(Sa)
2
_ w+n2 WA,
t = 2 h- = E )
" kv | Q
and
+ oo 2
e nfl. —‘(VJ_-VO)/(AVT )2
i o B g 3

Dalw,k) = jr\ f dv) v “——[“-~e E—Z(-t)

f)t(AVT H__, vy [Ovye I n

B i '0
- (va= V )%/ (Bvp ) ® mom km
+ e T ‘-t ) .
_ Tp
(5b)

B w4+ nfl. ‘
t = ———— , and Wy = ion plasma frequency associated with
n k“AvTB

the injected beam, the electron contribution being ignored.
Z(t) 1is the Plasma Dispersion Function tabulated by Fried

and Conte(4) i.e.

s —y2
dy e / dZ
ZiE) E —= /‘ _ 2 (t) = 5+
V7 y-t dt

- oo

IIT. SIMPLIFICATION OF THE DISPERSION EQUATION

The general dispersion equation (4) can be reduced to

a more elementary form under the following assumptions.



Basic Conditions

(i) @ =~ ml, , unstable modes at or near multiples of

the ion gyrofrequency.

(ii) Ae <1 . In general the uastable modes have wave-
lengths which are larger than the electron gyroradius, i.e.
-1
ki > pPg - The unstable modes for which this condition

can break down are discussed.

W

kjvy »> 1 .Unstable modes which are not electron Landau
e

(iii)

damped. Plasma heating, arising from beam driven modes

which are heavily Landau damped by the background electrons,
i

is discussed in section (V). The condition Taﬁaf—é» 1
i

]

is, of course, implied by fi} and (iii) [for T, ~ Te

and the imaginary contribution from the cold ions to
equation (5a) is dominated by the Z , as opposed to the
2z, function. This imaginary contribution implies ion
cyclotron damping. The onset of this damping of the beam
driven modes is also discussed, in section (V), as a

possible heating mechanism for the background plasma.

(iv) « 1 . This condition [in equation (5a)]

is distinct from the pure flute modes, consequently the
dispersion equation for thz flute modes has a different,
but simpler, form and can =zasily be incorporated in the

general analysis.

|w - m; |

» 1. This condition implies that the beam
k”AvTB

(v)

is monoenergetic and is practically equivalent to using

the delta function form of (2) for the injected beam



distribution. Consequently only the high growth rate
réactive instabilities, in which all the beam particles
take part in driving the unstable modes, appear in the
analysis. The weak fesonant particle instabilties, which
may appear through tﬁe imaginary contribution from the Z

and Z’ functions, are discussed in section (VI).

For conditions (i) through (v) the general dispersion
equation (4) reduces to:-

co

— Bt & D, + 6
1+_kl2eF(w)+L { e ?_n nzsz,
ky © (n £ m)[0?- (22y)?] [w? - (nQ;)2]

n=1
+ i : )
' $1;2 Mg ki, [w2- (m;)2%]  [w?-(m2;)?]
(6)
where
=i
00Pez wPez kj) 5 - w 2 n2 [e In(li)l
~ ) = Ypj :
Fe(w) = mz-_ﬂ.ez + a2 <k1> n i 11/2
- 2' k” & 2 2 "'-A.l
Dn = pri <H> [w +(nﬂ.i) ] [e In(?xi)] .

The pure flute mode dispersion eguation takes on the simpler

form [ see (iv)]

Wy 2 =
Pe ! En+8n

S ——— + ——
w? -0 ? [wz“(nﬂi)z]
e n-=1

1 = (7a)

The beam contribution to (6) and (7a) is through the terms

kj\?
2 2 2 _ 2/ 21 2
e, = sz % E‘:1E T (b):} ; &, = wB(lq) 2[w?+ (nQ;) 174 (b)
kLV
where b = _O (7b)
13

- 6 -



Further Simplification

Since w = mfl; the dominant beam terms are those
with numerators g, and &, . It can be verified [using

(18)] that provided

B<_ﬂ.1

w
all neighbouring bean terms, e.g. those whose numerators
are €m + 1, O3 + 1, can be neglected in the dispersion

equations (6) and (7a).

Similarly the contribution from the neighbouring

background ion terms, e.g. those at n =m * 1 , is of
2 o -
Wp - 11 A
order -ﬁgﬁ-ﬂlLEmuilﬁLill . The asymptotic form of
i

[e 1Im(li)] for the beam driven modss is found in

section (V) and it is always exponentially small [sec

(31)].

The above considerations reduce the dispersion

equations (6) and (7a) to the general form:-

T YN S S

\27 2
ky [w2 - (m2;)2%] [w?- (m0y)7
(kipi)?
where for the 'long' wavelength modes Ay = — & 1
2 2 2
w 2 @i,
Alw) = _Pe P (ﬂ) +_PL_2 + 0 [hgs 2]
wz_ ﬂe?., U.)z ky w -ﬂi (Bb)
and for the 'short' wavelength modes M\; > 1
2 2 2 — '
w w k| 1
P Pe A (8c)
rwre e 0 (YL o[, L]
e = 02 w? \ ki . Vg



[For example in (8c) the dominant background ion term is

where n, = N&: .
on [0? -, 077 vV

approximately

; Kl
Notice that in equations (8b) (8c) the value of T

may be taken as a zero or finite quantity. However when

k) . ; .
— > 0 imaginary terms can arise, these are discussed

kL

fully in section (V).

IV. ANALYSIS OF THE UNSTABLE MODES

We take k; £ k; throughout and then simplify the
analysis by treating (8a) in two distinct limits. In the
first limit

ege> [1 - A(w)] 6 (9)

the resulting dispersion equation then describes what are

. ki _
0 if Ty - 0] .

I

essentially flute like modes [e.g. Om
The second limit is
er« [1 - Alw)] 6 (10)

m °

Flute-like Modes

The inequality (9) reduces the dispersion equation
(8a) considerably and the unstable modes then arise only
at very specific harmonics of ({l;. That is, the unstable
harmonics mfl; are those defin=d by the condi tion
A(m;) =~ 1, [ see Fig. 2], and their growth rate 7Y; 1is

given by

El'lﬂ
L Jmﬂi A'(mﬂi) 480



where  A'lw) = %% . Using (11) the inequality (9) redices

to the more convenient fori

R _
lem|® » | =L | (12)

Clearly equation (11) defines the growth rates of the
k
pure flute modes, E% =0, i,e. through the condition (12).

However a stringent requirement for instability of these
modes [at the given harmonic ® = m ﬂi] is that Ej + €p< 0
in the dispersion equation (7a). This requirementis very clear
from Fig. 2 and also has a simple interpretation in terms
of positive and negative energy waves. Thus, in principle
at least, there exists a critical beam density defined by

B > |&m| , that is 2=
-\

1 () w gia
e n V] B
h? g [jwpi mqbﬁJ 3

below which the pure flute modes become stable. It is

shown in section (V) that the stability condition (13)

is of no practical consequence for realistic beam densities

[see (31)].

Non Flute-like Modes

The inequality (10) reduces (8a) considerably and the
fastest growing waves occur at harmonics m again defined
by A(ml;) =~ 1 , at which point the growth rate ¥, s

[mﬂi Sm ]Vﬁ (1%]
A(m; )

1
YBEm.ﬂ.i



the inequality (10) now, of course, reduces to

(15)

5. % A/ .
enl® « | B ““‘ﬂl”

ml j

Thus given that the modes are non flute-like, i.e.
condition (10), the peak growth rate is defined by (14)
and occurs at the harmonics defined by A =~ 1 ., However,
under condition (10), all harmonics n for which
A(nQ;) > 1 are unstable; the requirement A > 1 for insta-

bility is very clear from Fig. 3. Consequently given that

g2 5 06

. n and A(nf;) » 1 (16a)

the growth rate <y reduces to

o ] _G_E__ . 16b
Y nfl; fA(nﬂi) ( )

The growth rates (16b) are smaller than (14) but can appear

at lower harmonic numbers and have thus been included for

completeness.

Beam-Wave Resonance Condition

Since all growth rates vanish in the limit & = Op =0
the magnitude of the Bessel function J,(b) is important
[see (7b)]. Thus Jn(b) transforms from an exponentially

(s)

small to a rapidly oscillating function as b increases

in magnitude through the value m [m » 1 is characteristic

of the analysis]. That is, the growth rates maximise
when
k) V
ma~b = — (17)
13

- 10 -



in which case

213 1
Jm(bJ] g[ 2] ] U, (18)
330 (%)] m's
m=>b

The condition (17) reduces g, and &, to the form

2 2 2
) W~ . k \
€p = - Wy and O =~ _Ez_l__ m —~IL ) . (19)
m/S \ 1L 7

[More precisely, it can be verified that the peak value

1
2 /3
of - é% Tes (b) is gqﬁg- and occurs at b ~ m + 1.6{%) 1.

The unstable frequencies w = mil; are defined by

A(nfl;) ~ 1 , while the condition (17) —%1 ~ V determines
the unstable wave number k| , thus
hy E gEiELlE z‘ﬂi. L (20)
2 & g
where WH = directed beam energy.
Clearly ﬁ% ~ V, implies a resonance between the

injected beam ions and a natural mode of the background
plasma, i.e. an integral number m of unstable wavelengths

fit inside one gyroradii of the injscted beam ions.

Detailed Results of the Growth Rate Calculations

Since the unstable harmonics m are defined by
A(mfl;) ~ 1 there are two unstable frequency regions for
the dispersion eguation (8), one below and one above the

electron cyclotron frequsncy flg -

The unstable 'low' frequency harmonics, W < {lg , are

defined by



T )
L |:1 +ﬂe/ 2 ]12 (21)
e

< 1
where A =~ 1 for k| o pi and A = O T ] for

kL-1< Pi

Similarly the high frequency harmonics, w > {lg »

are defined by:
% 1
m; T “pe ﬂ‘z 72 (22)
"o [( 2/ * ni2 Lt +(:kL> : .

Under typical reactor conditions, wp, > . , the modes (21)

2|
[

are essentially electron cyclotron modes(sl,V.ﬂiﬂe S w o< g »

while (22) are electron plasma waves, ® ~ W,
e

K
he growth rates Y plotted as a function of -Ei

have the qualitative form sketched below.

Fig. 1

7

a
0 ki
o, o 1 (W,



separates the flute like region

ab , where ¥ = Y1, from the non flute like region bc ,
K| 1 W, m_

where ¥ = y,. Modes for which % TE \/fﬂ —&  are

] ° m,

e 1

'stabilized' by electron Landau damping [see section (V)].

Thus for the 'low' frequency modes (21)

wrll 1
Y {B e } = < (23)
1 2 1 )

Wp . L' , e J /2

2
Ll)pe

Y ~q, (9B X ' (g)&}/s Yo
1 wP- kl. ﬂez 1/2 lTle m
' 1o —Ey (24)
Pe
and the line a, , of Fig. 1, is :-
1
[(”B (mi )1"{? ' ] 2
A, = "—— p— 1 'L" L]
° ¥pj Te [1-+ R /2 m *®
. L wp 2
Similarly for the 'high' frequency modes (22)
W
Y, ~ wg —= (25)
w
2/
k /3 1
. - wB Wp, u] = (26)
2 sz k| m’9
and
(“B “’pe)/’3 1
a &=
0 [y] m23



2| T, m

[Since K > LWy m; the condition Ag < 1 can

break down for the electron plasma waves (22) especially
at high electron temperatures; however it can be verified

that this simply introduces the factor N'Ae into the

equations and does not significantly alter the main con-

clusions.]

Clearly, for a monoenergetic beam, the fastest growing
modes are non flute like, their growth rates are represented

by the line bc in Fig. 1. For example, taking wp, > {lg ,

Ty ~ Te ~ 102eV  and Wy ~ 108ev , the line dc occurs at

*1. 5

& 1-, in which case the fastest growing electron cyclo-
AL

tron and electron plasma waves have growth rates

w
B
2 1< V54

2/ Ui 1 20 \ s
3 m: 3 2 /3 k @
° _l d ~ W (0 n ¥

e

respectively.

Given that wp, 2 1, , all the above modes arise at

: m .-
. . . | 2
very high harmonics, i.e. m 2 == However weaker

growth rate modes arise at all harmonics n for which

s =
A(nf;) > 1 [see Fig. 3], thus for -%% »\/m? ‘and n <, [
1

m me

[i.e. w <N ;04 ] we expect to find unstable plasma waves,

k|
W = Wp Ef— » which have growth rates <y of the order

wp . %
Y = [ (f 1—] n
Pe

[where we have used (16a) and (16b)].

s 4 =



V. PLASMA HEATING .

The tims scale for collisional heating of the back-
ground plasma by the injected bzam can be calculated from
the well known test particle model(v)- However, since ths
beam behaves in a collective fashion and drives electro-
static modes of the background plasma unstable, we
investigate the overall consequence to background plasma
[ion] heating of either electron Landau or ion cyclotron

damping of these beam driven modes.

Collisional Heating

Applying the test particle mode1(7) to estimate the
time scales T(iB - ep) and T(iB 2 ipJ by which the ion
beam (iB) energy decreases due to long range Coulomb
collisions with the background plasma electrons (eP) and

ions (ip) respectively, we find

. 1
- M-E Te . S— . (27)
T g(io i) Wy Wy m
B P Tr b
e 1

The function Y¥(u) is plotted in Fig. 4 together with its

asymptotic forms, clearly T] < 1 for electron temperatures

T < W (me >1/3 ( 2 7‘3 { 6
e H| — — > 10 keV given W.. ~ 10° eV and
M NT g H

m; = 2mProton } °

Similarly L
T [ | Wy m 1
AL S - 2 e (28)
2 T e 1 3N TC :
T m
e i



where Teq (ep —* iP) is the Spitzer equipartition time

for the background plasma electrons to relax to thermal

equilibrium with the background ions. Clearly

w. /2 m
4 H e e
- —= — £ &« — W 2
T, et [ T om 2 1 dor T, m; WH (29a)
P
T, = ¥ for Tg 2 E;'WH . (29Db)
Since Feg (ep “¥ ip) < T(ig ep) < T(ig 7 ip) we expect

the ion beam to lose energy primarily to the background
electrons which in turn relax to thermal equilibrium with
the background ions on a faster [or similar] time scale.
Consequently from purely collisional considerations, the

background ions should heat up on the time scale T(ig ~* ep)

while T3 ~ Te throughout the heating process.

lon Cyclotron Damping

In principle modes for which kj > 0 can be 'stabil-
ized' by electron Landau or ion cyclotron damping; that
is if A(w)takes on the complex form AR(w) + AI(m) the
) AI(wR)

corresponding damping decrement b is Yp = or

!

A R((DR )

w = Wp + iYD . Thus damping should stabilize those modes
for which D dominates the beam driven instability.

It can be verified that the ion cyclotron damping decre-

>
ment is given by [for Wpg ~ ﬂe]

5, kmewﬁj [ (h ] } [electron (30a)

Yen & Wy [ W &y

e cyclotron modes |

- 16 =



and '
3 ‘K.
2 —a -
e o Tklill:emil_m(_hl_)— (30b)
Cb Pe |i ﬂiz' kyNTy A .

[electron plasma waves]

=T . .
The above function e I_(A;) has a peak value of e

(approx.) at NAj; ¥ m , that is, when T; ~ Wy [usinz (20)],

a condition which is clearly never satisfied in practice.

However (°) for m < Ny % m?2
2
L Eﬁ
_7\_1 - 2?\.1 - T':'"
e Im(?‘i) — *x € 1 (31)
N 2T Aj

consequently jon cyclotron damping is never an effective
mechanism by which the background plasma [ions] are

heated.

The exponentially small asymptotic form (31) also
implies that the stability criteria (13), for flute mode
stabilization, is of no practical comsequence for these

beam driven anstable modes.

Electron Landau Damping

Electron Landau damping is included in the analysis

kll

by replacing the electron term in equation

(8) by --3—- [ )}
4 A K kHVT . The form of Re[Zl(x)]

4,8 ; ;
is well known ’]in particular the previous expansion 1is
valid provided x > 2,5, while for x < 2.5 its value

increases rapidly [until x ~0,9]. Consequently we expect

= 17 =



' w
very strong electron Landau damping when -EWVE—g 2.5 i,e,
: e

Kk 1 [ wy mg
=1 2 = = (32)
k_L 2105 e mi
For example at W &~ 2,5 the damping decrement Y1, is
kyVp
e
[ taking wp, > {le ]
Y, ® ml . [ 2 5J%t6‘] [electron cyclotron
1 (Me ©*P modes |
o/ Wp.\° _2.5V%
P 2.
Y = W {(‘——ED ““‘*“T‘] [electron plasma
L P ol p
© ﬂe he er[D] waves

Ky
Thus . taklng Te ~ 100 eV and wH il 1068\( we have E ~ 1

for marginal electron Landau damping; in which case the

time scale for energy exchange between the beam and the

1 1
background electrons may be ~ o . g
a £ growth rate {szwpgsﬂfﬁglh

The '"Landau' heated electrons will presumably relax to
thermal equilibrium with the background ions, through

.. R . o s
collisions, at thsz rate defined by Teq (ep 1P) , and

1 :
since & T(lig T e.) 27T__ (e, 7 i ) we can
growth rate B P 8g B P

expect that T (ig ~* ip) o ’Eeq(ep =3 ipl . However (29a)

and (295) imply that electron Landau damping will also
lead to faster ion heating at low electron temperatures

m,_ m,

Te <-ET-WH , while at high values T, >—== Wy , the rate

of ion heating is unchanged. Unfortunately, since
3/ ; ; ”
Teq o« Tg/2 , the overall time scale in a typical reactor



for background ion heating, i.e, from 100eV to 10keV, is
not much reduced, This latter point is most clearly

illustrated in Fig. 5,

VI BEAM ENERGY SPRZAD

The instabilities studied so far have been of a re-
active kind, similar in nature to the two stream; the
effect of thermal motion of the beam particles is to
reduce the growth rates presumably by '"dephasing' the
bunching process in some way(gﬂo}.ln fact the assumption
that the beam is monoenergetic, i.e. AVTB = 0 ,arises at

two points in the simplification of (5b). Firstly it

[w -mi |
appears through the condition (v) i.e."EﬁEvE——'» 1, and
B

secondly through the approximation

0 2 s 2
P s e “lva - Vo) Mgt g 2l FL
= ’J-?_'C-‘AVTB / d'V_'L e ° BVL m _7 ﬂl . rn_ﬂ_l
o]
(33)

Clearly condition (v) must always remain valid for the
flute modes while the approximation (33) will remain valid
provided the Bessel function J  does not oscillate before
the integrand in (33) becomes exponentially damped. This

latter requirement reduces to the condition

Bp, W g - (34)

m 3
which is clearly most likely to break down at high harmonic

numbers. Conversely finite beam energy spread is defined



Vo
by AVTB > 2 in which case (33) reduces to

1

I = 2/,
NK Vg m

(35)

and consequently the flute mode growth rates Yt are
then reduced according to the prescription

v
Yoy, | —— | . (35)
AVTB m73

The stabilizing effect of spread in the injected beam
energy is even more marked for the non-flute modes since
both (v) and (34) can break down independently. Firstly

the two basic conditions (v) and (iv) are mutually consis-

EVTB
tent only provided that —— « 1

v
T

, consequently the
condition (v) breaks down when

AVTB 2 vTi . (37)

Formally one then reverses the inequality (v) and the in-
stability,arising from the imaginary contribution of the
\)

Z function in (5b), is of the Rosenbluth-Post loss cone

type. That is, the dispersion equation (4) reduces to

oo 2 2
<k“ 2 i wB 2 W 1 = (VJ_'Vo) /AVTB 3 i kJ.V_L
1+ —> ~ Af{w) + = |dv, e , J ( T
k 2 TAV dvy m i

k [AVTBVDkLku] Tg-o

(38)

where A(w) is unchanged [the real contributions from the

2
beam are again typically of order _ , 4; « 1 and are
1;“m /3

neglected].

« 20 =



Equation (38) predicts instability from regions of
velocity space where the beam distribution has positive
slope when plotted against wv;, as for the loss cone

(29

s provided a wave exists with suitable phase velo-

modes
kiV
. : w - —_—
C]_ty' 1.6.—1(-1- ot VO A\TTB [C.f. Inﬂ] o 1--(1?)]. Clearly

by comparison with the monoenergetic beam case these modes
are very weakly unstable. For example the growth rate ¥y
of the high frequency modes (22), which propagate across
the magnetic field at an angle for which electron Landau
damping is just becoming dominant [ see Fig. 1] is now

reduaced to

. 2 2
Wp = W VT
Y = wBal:__VEe—] { L“ ] o iB E :l for {.Ope > .Q.e
Nty J[w2- 0212 Pe L vy,
(39)
[where, of course, AVTB 2 vTi ] . The above growth rate
Vo
(39) is further reduced by the factor —————— ghould the
; AVTB m73

inequality (34) also become reversed,

-Thus there is clearly an advantage from the overall
stability point of view from injecting a beam with finite

thermal spread, such that both

(a) the inequality (34) is reversed, the flute mode
growth rates T1 are then reduced according to the
prescription (36)

and

(b) thes condition (37) is satisfied, Under the condition

(37) the fastest growing modes become the flute modes,
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since the non flute mode instabilities are of a weak

resonant particle type; Le.g. see (39)].

VII MODIFICATIONS IMPOSED BY FINITE GEOMETRY

The analysis so far has been confined to an infinite
uniform plasma. We now study the effects of boundaries,
nonuniformities and shear on the unstable modes. Clearly
the group velocities are of primary importance in any system

of finite size.

Group Velocities

For Wp & {le we have:-
2 2 ; ki
2w oy (ﬂj Spims | le ,_g_f‘ﬁ_g-[%ﬂ}r (40a)
aky O\ ky w? mg Pe 0 L Il
[electron cyclotron modes |
and
(kn) oM
Vol %k, 2 k
B ky w ) ow " [_é&i } Ei R (40b)
dky 1 +<ISH_>2 ok ak.. ll
ki [electron plasma waves |

The non-flute modes thus propagate energy towards the
boundary but it is easily verified [from (8b) and (8¢c)]
that ki < 0 as wPe‘+ 0 , consequently we expect reflec-

tion rather than absorption from the boundary region.

Non Uniformity of the Ambient Magnetic Field

It is also guite easily shown that unstable modes
which are extended any distance along a given field line
are essentially stabilized [their growth rates being dras-

tically reduced] by field line non-uniformity. This result



stgms from the fact that the resonance condition ® = milj
can only be satisfied locally in a non-uniform magn=tic

field. This implies that the fastest growing waves are
essential ly wave-packets highly localized along the field

lines.

Thus we imagine the ambient field strength to vary
along a field line as B = B(s) where s is distance
mzasured from some arbitrary point. First order W.K.B.
analysis replaces the flute-like dispersion equation by

its local approximation form

€m
1 - Alw,s] = .
L S] [wz— (mﬂi)z] (41

Given that the unstable mode is of finite extension L
along the field line we have:-
ds Bm/fmﬂi)z (42)

[1-A(w,5}]Lalf o ——
© 2 1Y, /mf; - {s - 55)B"(s0)/ B(s,)}

[where the integration is along thes length of the normal

' ~ 9B(so)
mode; w ~ mf; (sg) + iy, and B/(SD) = — ]

aso
/
the extension L 1i1s such that -Eji o~ »_EL_ , then we
B mﬂi
can easily solve (42) for ?1 ta find
2
o T Yi
Y = 3 ; (23)
! mil;

i
Similarly the non-flute mode growth rates vy, are reduced

as
3
- T Yy

- 44 )
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by non-uniformity of the ambient magnetic field.

Variation across the magnetic field is similarly

effective and is quite likely to stabilize the lowest

Wy
. H

frequency modes [1.6. m < \/Tg :l since these have wave-
1

lengths greater than the mean ion gyroradii of the ambient

-1
plasma ions i.e. ki 2 pj [see (20)]. Clearly these

modes are most likely to 'sample' significant magnetic
field variations in any system of practical interest. How-
-1

ever the modes (22) are all short wavelength k) « P

and field variation is less effective against these modes.

Shear Stabilization

We study the effect of shear by analysing the slab

12
model )in which the magnetic field is given by

B = Bo[z-+£i ; ] and the perturbation is of the form

s

i(wt+ kL y+ k2z) .
¢ = ¢ (x) e , where Lg = shear length;
the plasma density is assumed constant. In order(1%®s 14)

to investigate the effect of shear it is essential to
include the X dependence of ¢1(x). Without loss of
generality we take k -B = 0 at X = 0 ; the equation

determining the potential ¢1(X) can then be written in
2

2
operator form by replacing k)® by k;a- ax2 and k| Dby

fg ky wherever they appearUS)in equation (5a); the
S

equation as a whole then operates on ¢, (x)

a2
Using first order W.K.B. theory ,_éLéfl reduces to

ox

kx?(x) , the criteria for shear stabilization is then

w P w



established by studyung the unstable x region. The most
difficult modes to stabilize are the flute modes since they
have zero group velocity %%x [ - %EL g;i = 0, see (40a, b)J i
Thus a localized wave packet, growing in the unstable
region, will not convect into the surrounding stable region.
Consequently the shear stabilization criteria is derived
from the condition that a suitably localized unstable wave

packet cannot be generated, i.e,

-1
27 k > Ox (45)
xX

where ©Ox = width of the unstable region.

"The unstable harmonics m are defined by the condi-
tion A(mQ;) =~ 1 [see Fig. 2]. The range of frequency ow,
near to the value w = mfl; , over which the instability

Em

3 In a sheared
(m2; )% Af(mQ2; )

arises is given by Ow =

magnetic field the frequency spread Ow defines the width

6x of the unstable region. Thus for the high frequency

§ 2[’ ki \?
modes ® = g™ + Wp, 1'+(k1) «ew (22) we have
[_ .

N2w 6w

Ox = LS—~7;———. Using (20) the stability requirement
Wp,

(45) reduces to

¢ w R i B 1T W
§_I:I> _1_[]3[&) -ﬂ-e]] ~_—— B for wp, > fle (45)
L, 7 2®m i wp 2 21 0 .

y

i T the ion gyroradii of the injected
i

> flg , the criteria (46) can

27 KB

particles. Clearly, for Wp
e

be written more concisely as

> 1 , where KB =

s
effective Debye length of the beam component.
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Similarly the 'low' frequeacy, (21), shear criteria is

' w m. 1 w
p_H>_l_[@ _J moog . B, (47)
Lig 2 Lwp; Sl Me 2% Wpj

The non flute modes are more easily stabilized by
shear since they are convective in nature [see (40)] ;
their stability criteria are estimated from the require-
ment that a wave packet does not exponentiate more than a
given number of times n, before it convects into the

stable region. That is

X3

Yy (x)

/ dx =2— < n (48)
x, Ug(X)

where the unstable region ©O&x = x, - x .

The shear requirement (48) is in general much less

stringent than (45). For example, taking wp_ = > Ne »

Ty ™~ 102eV  and Wy ~ 10%eV the shear requirement is

very rougnly of the order

2
P 1 w
'—ﬂ>~— 2 > G (49)
Ls n, ﬂe
where /
Yo W2 W 3
G = — and Y, “l: E 5 Pe:
m/3 ﬂl m/:S



VIIT SYUMMARY

e

We have studied the electrostatic instabilities
associated with the injection of a tenuous [i.e. wg & ﬂi],
monoenergetic [AVTB = 0], neutral, but subsequently ion-
ized, beam™ into a background plasma. Particular emphasis
has been placed on the reactor requirements: beam energy

Wy ~ 10%eV, 100eV S T; ~ To S 10keV, and wp, 2 fe .

The main conclusions are summarized below:-

Growth Rates and Frequencies

High growth rate instabilities arise in two frequency
ranges which, for wp_ > fle , are NI M, $ ® < Q. [elec-
tron cyclotron waves] and w ~ Wpg [electron plasma waves].
The growth.rates, wavelengths, etc, are calculated in
section (IV). For a monoenergetic beam,in a uniform plasma,
the fastest growing modes are non flute-like and the elec-
tron plasma waves tend to be marginally faster. Thus,
taking Te ~ 10%eV, wg ~ 10°Hz , Q; ~ 5.10%Hz, wp; ~ 10'°Hz,

then at w ~ Y, (peak value) ~ 10%Hz [see (26)] ;

Pe’
while at w S fle; Y2 (peak value) ~ 107Hz [ see (24)].

Plasma Heating

Plasma heating, which arises through collisional

relaxation of the injected beam, is briefly summarized in

%

Injection normal to the ambient magnetic field was
studied, but in practice a beam velocity component given
along the field lines may introduce additional instabili-

(2)

ties of the two stream type
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section (V) [see Fig. 5].

Ion cyclotron damping is not an important mechanism
for background ion heating since the number of ions in

resonance is very small, i.e. the ion cyclotron damping

decrement is proportional to exp -[i%ﬁ-} . However
i
ky 1 WH TE

modes for which EI < 3.5 T, are strongly electron

3

i

Landau damped, conseguently the time scale for electron
heating may not be classical. That is, in order of magni -
tude at least, the relevant time scale may be as short as
the inverse of the beam driven growth rate. The relevant
time scale for ion heating then becomes the Spitzer equi-
partition time, but because reactor ignition occurs at

m
T >'EE'WH the integrated time for background ion heating

e

is only slightly reduced [see Fig. 5].

Stabilization Criteria

Beam Energy Spread

There is an advantage from the overall stability
point of view from injecting the beam with a finite energy

spectrum [AVTB # 0] such that both :-

Vo

AVTB 2 Vr (a) and AV » (b} .

i B w3
Thus under condition (a) the non flute mode instabilities are
reduced to a weak resonant particle type [e.g. see (39)] and the
flute modes should then dominate. Condition (b) implies

that all growth rates [including the flute modes| are



Vo
reduced by ths factor 5
. ‘ A'\TTB m/3

Finite Geometry Effects

The non flute modes are convective but reflect from
the plasma boundary where Wp, = 0, Thes effect of non-
uniformity_of thz ambient magnetic field is to cause the
unstable modes to grow as localized wave packets since
these will not sample large field variations. The shear
requirement

2% Ap
T > 1,

s
where Ap = effective Debye length of the beam component,
is sufficient to stabilize all modes although the non

flute modes are much more easily stabilized [e.g. see (49)].

Threshold Densities

A finite beamn density threshold does exist, in prin-
ciple, for the flute mode stabilization but is of no
consequence in any real system [i.e. see (13) and (31)]
but clearly all unstable modss vanish for very tenuous
background plasmas where Wpg < 4 [a condition never

satisfied in any reactor system].

IX CONCLUSIONS

It is concluded that the high growth rate instabili-
ties which are associated with the injected beam may lead
to more rapid heating of thz background electrons and ions
than expected on classical grounds. However the rate of

ion heating is only increased at 'low' electron temperatures

w 28 o



m
T < == WH ;7 consequently it appears that, although useful

e m.
1 ; :

during the initial heating stage, the instabilities are only

marginally useful in the overall heating of a reactor to its

ignition temperature [ see Fig. 5].

The non flute modes are faster growing at least for a
monoenergetic beam injected into a uniform plasma; however
in any real system the flute modes are likely to be more
dangerous since they are non-convective, require greater
shear for their suppression and are not much affected by
finite thermal spread in the injected beam. The requirement
for stability of all modes is

27 A

B
L
s

> 1

We have applied the above results to reactor systems, and
also to the next generation of toroidal experiments such as
(1

5
ORMAK )[see appendix|. Thus complete stabilization of all

electrostatic modes can scarcely be achieved in a typical re-

actor since the shear requirement is LS $100cm and stabilization
of all modes in ORMAK is not possible since the shear require-
ment is LS 5 10cm. Enhanced plasma [ion] heating, which can
arise from the beam driven modes, is not important at any
stage of the heating process in the ORMAK experiment.

The suppression of electrostatic instabilities may not be
vital from the containment point of view since rather crude
estimates of the confinement time TC[N(plasma radius)?/D, ] are

~ 1 sec. for both the reactor and for ORMAK [see appéndix].
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APPENDIX

Application to Proposed Experimental Devices

Examples can be given of immediate interest to
toroidal experiments, such as the Oak Ridge tokamak ORMAK,
In this experiment“s)it is proposed to heat the toroidal
plasma in a field B ~ 30kG, by means of neutral beams of
8 amperes equivalent, whose directed energy Wy is ~ 25keV.
If the period of injection is several milliseconds and the
plasma volume ~ 1 metre®, the beam componesnt density is at
least ~ 10'%cm® hence wg ~ 10% sec™'. Using Tokamak
T3-A as a guide(]slthen, 10eV 5§ To S few keV and the
background number density S 190! /em®. It is easily veri-
fied that with the above parameters all unstable modes
[i.e. electron cyclotron and electron plasma waves]| have

growth rates Yy within the range

=1 -1

5,10 sec Sy 2 5,10%sec

Collisional theory alone predicts that the ion beam

loses energy preferentially to the background ions only if

m\Ys , 2 s
Ts > wH(:;T) < 3#&?) ~ 1 keV [see (27)] . However since

i
electron Landau damping should lead to very rapid electron
heating the relevant time scale for plasma [ion] heating

is the Spitzer equipartition time Teq (ep - ip). However

(ep-% ip) ~ T(iB = ep) since T, > E%Wﬁjﬁ 6 ev
i
throughout [see (29)].

The shear requirement, for stabilization of all modes,

in the ORMAK experiment is Lg 5 10 em [see (46)] and is

clearly not attainable [c.f, Lg S 100 cm for the toroidal
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reactor discussed within the text]. Stabilization of all
modes implies that the electrons are heated preferentially if

T, < 1 keV while the ions again heat at the rate

e Teq

[~ T(ig — ep) for Tg > 6 eV ]. Consequently the instabili-
B P e q

ties appear to be purely detrimental in such a device.

A good estimate of the cross field diffusion would
require a rigorous non-linear treatment. However if we
assume that a turbulent spectrum of waves develops we can

use the conventional random walk expression for Dy , this

1 <EL>2 <El>

reduces to 5 B2 At , where o)

is the drift velocity

due to the r.m.s. turbulent perpendicular electric field,
At is the fluctuation time of the field seen by the par-

ticle.

The resonant particle diffusion of the 'Landau heated'
background electrons is almost certainly dominant (since

At is maximum for this particular component). We take

B

ok k1 (EL)

the time for a resonant electron to E A.E

drift a perpendicular wavelength (alternative characteristic

17 -1
times can be considered, such as( ﬁtﬂ'(linear growth rate) ,

B
however simple numerical estimates verify that ;IZEI} is

the smaller).

Assuming an equilibrium situation between the energy

input from the beam and the electron Landau damping of

_ 1 [4% Wy ng
the unstable modes we find Dy NYEIE — = = where
T .

Tinj = period of beam injection, 1Yj = electron Landau



damping decrement. Thus Dj ~ 10° cm®/sec in ORMAK i.e.
containment time ~ 1 sec [while D, ~ 10* cm?/sec in the

above typical reactor].

Non-linear effects are discussed in more detail in a

further report(z)-
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Fig, 4

Plot of ¥(u) and its two asymptotic forms

- ,‘,Luz; [u>>1]

[ .
¥lu) ‘5|~ 2U ;[U«l]

~ 7 =



Eig, B

_ ) .
Plot of T(lB ep) and Teq(ep 4_1p) against Te

[We take the typical reactor parameters:-

Directed beam energy Wy ~ 108 eV,

Background plasma density = 10'* em % and log A ~ 15,

where A = Debye Shielding Distance ]
Impact parameter for %/ scattering

+

r

_T(ia"'ep,

Te (eV)

(eP =¥ ip) < T(iB > ep) only for

m
¢ Zey
mq

~ 103
. 'H

eV. Thus rapid electron heating,

e
which may arise from electron Landau damping of the
unstable modes, will result in more rapid ion heat-
~ 102 eV, Hoﬁever

ing only in the initial phase Te

the time for ion heating from 102 to 10%*eV is clearly

not much reduced.
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