CLM-R 118

G3

CLM-R 118

UKAEA RESEARCH GROUP

Report

DATA ORGANIZATION FOR 3-DIMENSIONAL
CALCULATIONS ON THE IBM 360/9I
USING HIGH-SPEED DRUM TRANSFERS

G KUO-PETRAVIC
M PETRAVIC
K V ROBERTS

CULHAM LABORATORY
Abingdon Berkshire

(973

Available from H. M. Stationery Office
PRICE £1

CLM-R118

DATA ORGANIZATION FOR 3-DIMENSIONAL CALCULATIONS
ON THE IBM 360/91 USING HIGH -SPEED DRUM TRANSFERS

by
G Kuo-Petravic”

M Petravic®
K V Roberts

ABSTRACT

Mesh calculations in 3 dimensions require that several Mbytes of fast
scratch storage should be available to hold the physical variables that
must be updated each timestep. This report discusses the general
principles that govern the data organization for such calculations, and
describes a subroutine TRANSF which uses the EXCP macro to transfer
data between the main store of the IBM 360/91 and two IBM 2301 drums in
synchronism with the physical calculation, thus securing efficient CPU
utilization. An initialization subroutine SETDRM is also described.
Both subroutines can be called from Fortran. The listings have been
carefully documented, together with page references to the relevant

IBM manuals, and program commentaries and indexes are also provided.

*Dept of Engineering, University of Oxford

UKAEA Research Group
Culham Laboratory
Abingdon, Berks.

September 1973 SBN: 85311 016 6

CONTENTS LIST

1. Introduction

2. Organization of 3-Dimensional Calculatioms

e Optimum Choice of Hardware Configuration and Operating System
4. Technical Characteristics of the IBM 2301 Drum

5 Initialization of Data on Drums

6. Reading and Writing Data using the EXCP Macro

T Timing Measurements

8. Acknowledgements

References
Appendix I. The TRINITY MHD Equations
Appendix TI. Generalized Data Organization in Fortran

Appendix III. Program Commentary for Subprogram SETDRM

Appendix IV. Program Commentary for Subprogram TRANSF

Appendix V. Listing of Subprogram SETDRM

Appendix VI. Listing of Subprogram TRANSF
-Appendix VII. Documentation Conventions

Figure 1. Explicit Leapfrog Difference Scheme

Figure 2. Data Organization

Figure 3. IBM 360/91 Computer Configuration used at Garching
Figure 4. A Machine Configuration for Large Calculations
Figure 5. Control Blocks for Subroutine SETDRM

Figure 6. Control Blocks for Subroutine TRANSF

1.7 Introduction

A necessary requirement for 3-dimensional mesh calculations in hydro-
dynamics, magnetohydrodynamics (MHD), plasma physics and other fields of
classical computational physics is that there should be at least a few
Mbytes of scratch storage available to the problem programmer in order to
hold the current values of the dependent variables which must be updated at
each timestep. A basic 3D MHD program using a mesh of size 64x64x64 with
8 dependent variables at each mesh point requires 8 Mbytes of scratch storage.
Most large computer systems, however, possess only around 1 Mbyte of main
core store available to an individual problem programmer. Therefore most of
'the data have to reside on some form of fast backing store, and they are
transferred to and from the main store as required, usually in a regular
cyclic fashion as the scan proceeds across the mesh, in parallel with the

main calculation.

This report describes a scheme which has been implemented by the authors
‘for solving 3D MHD problems on the IBM 360/91 installation at the Institut
fiir Plasma Physik at Garching-bei-Minchen, F.R.Germany. Two IBM 2301 drums
wvere available to the problem programmer, each being connected to a separate
channel, with a combined nominal data transfer rate of 2.4 Mbytes/second.
The full resources of the computer are to be dedicated to this single large
calculation whilst it is in progress (i.e. no multiprogramming), so that in
order to maintain high CPU efficiency it is necessary to ensure that the two
druﬁ transfers and the CPU calculation proceed simultaneously so far as
possible. This is achieved by the use of Channel Command programs to control
the drums directly, a program being initiated each time it is required by an
EXCP (execute channel program) macro which contains the necessary Supervisor

Call.

An IBM 360 Assembler Language subprogram was written to control the
drum transfers and this is reproduced in Appendices V & VI in glightly modi-
fied form, being now divided into two subprograms SETDRM and TRANSF which
can be called from Fortran. Numbered section-headings are included together
with references to the specific pages of the six IBM manuals (references 1-6)
where various points are explained. Appendices III & IV are Program
Commentaries which explain the operation of the code, and these include
alphanumeric indexes for all the identifiers that are employed. Some changes
may have to be made in the coding to use these subprograms with other types

of direct access storage device, but it should be fairly clear from

Appendices III to VI and from the references how to do this. It is believed
that many of the general principles outlined in this report should also
apply to the use of rotating storage devices on other types of computer

system. Conversion for the ICL System 4 should be fairly direct.

Care has been taken to make these assembler language subprograms as
intelligible as possible. The documentation techniques which have been
employed should also be appropriate for other types of software including

major systems programs and are therefore briefly examined in Appendix VII.

2. Organization of 3-Dimensional Calculations

The 3D MHD calculation TRINITY[s-]'l] typically employs a mesh of size

64x64x64 with 8 variables p, V, T, B at each mesh point, representing the
density, velocity, temperature and magnetic field respectively. If we
assume that each variable occupies 4 bytes, the total amount of storage
needed to hold the main physical variables is 8 Mbytes, to which must be

added that needed for auxiliary variables, instructions and the Supervisor.

(9]

alternate points located at even and odd timesteps (Fig.l), and is organized

The TRINITY calculation uses the explicit leapfrog scheme , with

in such a way that the updating of the alternate points in each k-plane is
completed before moving on to the next. Let O denote the plane that is
currently being computed, and N (north) and S (south) the two planes on
either side that are needed for the formation of z-derivatives. These 3
planes are held in a quadruple core buffer (Fig.2), the fourth section

M (move) being used to transfer the data to and from the drums. The FS (far
south) plane is transferred from M back to the drums while the first half of
0 is computed, and then M is refilled with the FN (far north) plane during
the computation of the second half. The quadruple buffer is then 'rotated'
by 90° by resetting the appropriate indexes and the calculation moves on to
the next plane. A similar technique can be used for any explicit 3D calcula-
tion that can be expressed in terms of first space derivatives. The main
calculation routines of TRINITY are coded in automatically-generated assem-

11]

bler language , but Appendix II explains how the required indexing may be

[10]

done in Fortran. Appendix I contains the MHD equations in Symbolic Algol T .

This method of handling the data always employs & resident core planes

_ so that the amount of main storage needed is reduced by a factor 16 from

-2 -

8 Mbytes to % Mbyte, in addition to that required for the instructions and
data. The factor is likely to increase as computers grow larger and faster.
The accuracy provided by 64 mesh points in each space difection is hardly
adequate since only some 16 Fourier modes or less can be described without
serious error. Machines now under construction will enable a mesh of size
100x100x100 to be used, thus giving a substantial improvement in accuracy

and a reduction factor of 25.

In the case of a 3D particle code we may envisage keeping the single
array that holds the charge and potential values[12 on a 100x100x100 mesh
permanently in main storage, while the 6N coordinates and velocities of the
N particles are transferred to and from the backing store as they are
neededElB]. If we assume that the size of the triple buffer[l3] is small
enough to be neglected and that there are 4 particles on average in each
mesh cell, we again find a similar reduction factor of 24 between the total

data and that held in-core, although in this case it does not depend directly

on the mesh size.

A Optimum Choice of Hardware Configuration and Operating System

Careful planning is required if this type of calculation is to work
efficiently. In the case of a second generation, batch-processing system
such as the ICL KDF9 or IBM 7090, it was possible to use magnetic tapes as
the backing store, and the scheme devised for the GALAXY 2D particle code
has previously been published[13]. The IBM 360/91 discussed in the present
report has a CPU speed which is of order 50 times faster than that of the

KDF9, and a first requirement is that the data transfer rates of the channels

and of the direct access storage devices (DASD) which are used should

increase in proportion. Let
m = number of words of data for each mesh point
r = data transfer rate (bytes/second)
n = number of instructions used at each point
T = mean instruction time.

Then
r > 16 m/nT (3.1}

A factor 4 comes from the number of bytes per word, 2 from the fact that
only half the points are recomputed at each step, and 2 from the fact that

each point must be transferred both in and out.

Fig.3 illustrates the type of configuration that was used at Garching.
Tt is believed that this is likely to be a good arrangement for most large
3D calculations and for most types of computer system. In designing an
installation to be used for this type of work a careful distinction should

be made between the three classes of DASD equipment A,B,C which are used

respectively by user files, by the system, and for scratch data storage.
The technical requirements are in fact quite different, and strictly random
access is not in fact required for class C since the data transfer takes

place according to a methodical pattern, e.g.

write plane k-2
read plane k+2
write plane k-1 (3.2)
read plane k+3

read plane k+4

.......

As CPU speeds increase it may be that this simplification will enable special-

purpose DASD equipment to keep up.

The scratch backing storage C available at Garching consists of two
IBM 2301 drums with their associated IBM 2820 control units[sj, each drum
holding 4 Mbytes of data and having a nominal transfer rate of 1.2 Mbytes/
second. Two independent channels were used to communicate with the two
drums simultaneously, giving a combined rate of 2.4 Mbytes/second which
adequately fulfils condition (3.1) for the TRINITY code. Two additional
drums and other I/0 devices on separate channels were available to meet

requirements A and B.

It is noteworthy that many of the facilities which are built into
current hardware and software are either irrelevant or an actual embarrass-
ment for this type of calculation. It has already been explained that random
access is not strictly necessary. File protection is not needed when an
entire device or set of devices is dedicated to a single program. In fact
it is really not necessary that data transfers to scratch files on dedicated
devices should be made via the Supervisor at all. Although the facility was
not used by the EGDON operating system[lqj, the hardware of the ICL KDF9 did
enable specific I/0 channels and areas of core store to be allocated[14] to

an individual program by hardware registers set by the Supervisor, and the

w B o

program could then itself control the peripheral devices and transfer data
by means of single machine instructions without the use of Supervisor Calls.
Moreover the core areas currently allocated to this data were protected from
the calculation until the transfer had been completed, and were then auto-
matically unlocked. Similar arrangements might be of great advantage for the

large 3D calculations of the future.

It is sometimes argued that paging and multiprogramming facilities make
it unnecessary for problem programmers to concern themselves with the details
of data transfer, since while this is taking place some other program will
gain control of the CPU and no time will be lost. It is not clear that this
view is adequately supported by quantitative information-engineering measure-
ments for the type of calculation which is envisaged in this report. Because
of the severe requirements on storage which are inevitably made by 3D
calculations it seems preferable to run production jobs at night, with a
single region of maximum size, a cut-down Supervisor, and multi-access
probably switched off. (Under these conditions, 1.5 Mbytes of main core
storage were available at Garching to the individual programmer). It is
then important that the program should be able to keep the CPU busy by over-
lapping the calculation with data transfer as described in this report. One
might try to use an automatic paging algorithm, but since the exact algorithm
is quite straightforward and is known to the writer of the program there
seems ,.no good reason to do so, and by careful design it is possible to reach

almost 100% utilization.

Three-dimensional numerical solutions of the initial-value problems of
classical physics are of interest to scientific disciplines ranging from
geophysics to cosmology as well as in technology and environmental studies.
It seems worthwhile to adopt a unified approach to such problems, and per-
haps to design hardware, software and computer installations specifically to
handle them. Attention must then be paid to the need for program modifica-
tion, compilation, linkage editing and testing as well to the major
production rums. It will also often be desirable and economic to monitor
such runs dynamically from one or more display consoles, suspending a run as
soon as any difficulty is encountered and replacing it by the next job in
the queue. Fig.4 illustrates a scheme that could be used for this purpose,
in which all the auxiliary duties are carried out by a smaller front-end
machine. The bulk storage device D is needed to store the data which defines

the 'current state' of each job which is currently suspended and may later be

recontinued. (Evidently this amounts with a 100x100x100 mesh to > 32 Mbytes
for TRINITY and > 96 Mbytes for the particle code discussed in §2). Device E
preserves an 'historical record' of the programs of each job for subsequent

analysis and here again there are extensive data requirements[13].

_4. Technical Characteristics of the IBM 2301 Drum

(3]

An IBM 2301 drum contains 200 usable tracks each capable of storing
up to 20430 bytes of data. The rotation period, which also governs the
data transfer rate, is 17.5 msec. Optimization dictates that there should
be one record (of ~ 20 Kbytes) per track, and that several tracks should be
written or read consecutively with no rotational delay between them, other-
wise alternate revolutions are likely to be missed and the data transfer
rate consequently halved. The Command Chaining facility of the IBM 360
enables this to be achieved provided that all the tracks that are to be

chained together lie within the same 'protection domain' or 'cylinder',

which on the IBM 2301 consists of eight tracks.

Because part of Track 0, Cylinder O is used by the system to hold the
volume label [ref.2 p.75] and must therefore be protected from damage by the
problem programmer, the Supervisor alwafs issues a Set File Mask command
which forbids the chaining of a Write or Seek command across a cylinder
boundary [ref.3 p.13]. We found it convenient to fit in with thié scheme by
using a 60x80x48 space mesh. Only 24 cylinders = 192 tracks are then used,
so avoiding Cylinder O altogether, and each cylinder holds half of each of
two K-planes, the other half being held on the corresponding cylinder of the
other drum. Thus four tracks are chained together, lying entirely within a

cylinder and starting or ending at a cylinder boundary.

Within each K-plane there are eight records each holding ten rows of
the mesh, i.e. 60x10 mesh points = 19.2 Kbytes. The first four records
(i.e. the first half plane) reside on Drum 1 and are chained for reading
and writing, while the remaining four records reside on Drum 2. Evidéntly
the structure of the hardware and software plays a considerable part in
determining the optimum mesh configuration and this will probably often be

the case.

5. Initialization of Data on Drums

A subprogram with the standard Fortran-Assembler interface [ref.6 p.92]

SUBROUTINE SETDRM (RW,STASTO,DIM,VAR,TABLE)

- i =

is used for writing all the 48 K-planes on the two drums at the beginning of
the calculation. This process does not need to be particularly efficient
since it is only done once, and data transfers are therefore not overlapped.

Table I defines the meaning of the formal parameters.

Table I. Formal Parameters used by SETDRM

Name Type Mnemonic Comments

RW integer Read-Write | RW=1 Read records
RW=2 Write records

STASTO integer Start-stop | STASTO=1 First call: open data sets
STASTO0=2 Last call : close data sets
STAST0=0 Intermediate calls

DIM integer array, | Dimensions | DIM(1)=KCORE Number of K-planes in
dimension 4 core at once
DIM(2)SNREC Number of records in
% K-plane

DIM(3)=RECLEN Record length in bytes

DIM(4)STNREC Total number of records
in one drum

VAR Real array Variables | Holds the core buffer. In the example
quoted in the text, its size is
60x80x4x8 full words.

TABLE integer array Table Table which holds the relative addresses
‘ dimension 192 of the 192 records which have been writ-
ten to drum. Each is 4 bytes long

Although it would be possible to declare these parameters as variables in

Fortran COMMON, for the sake of generality this has not been done. By set-
ting RW=1 it is possible to use SETDRM to read records. This is a useful
facility which allows one to check that the calculation has been initialised
correctly. The listing is given in Appendix V and a program commentary in

Appendix III,

6. Reading and Writing Data using the EXCP Macro

A subprogram with the standard Fortran-Assembler interface

SUBROUTINE TRANSF (CHOICE ,MESHCR,RECNUM,NN,VAR, TABLE,DIM)

is used for readiﬁg and writing K-planes using the EXCP macro [ref.4 p.66].

The very first time TRANSF is called it performs two special functions which

are later by-passed.

These are:

(a) Open the data sets on drums 1 and 2 for EXCP.

(b) Convert the relative addresses of records into absolute

on drums in the form CCHHR(cylinder-track-block,ref.4 p.

ready for use by the Channel Command Words (CCW's).

Table II defines the meaning of the formal parameters.

Again it

addresses
101)

is assumed

Table II. Formal Parameters used by TRANSF
Name Type Meaning Comments
CHOICE Integer Type of |1. Wait for completion of previous read,then read
Call 2. Wait for completion of previous read,then write
3. Wait for completion of previous read
4. Read
5. Write
6. Wait for completion of previous write,then read
7. Wait for completion of previous write,then write
8. Wait for completion of previous write
MESHCR| Integer Mesh point| The first main storage word to be transferred,
in core |relative to the base address of VAR; i.e. the
origin of the current move area within the buffer
RECNUM| Integer Record | Starting record number on Drum 1 to be trans-
Number ferred.
NN Integer Number |NN=l means first call (see (a) and (b) above)
of Call
VAR Real array {Variables | See Table I
TABLE |Integer array| Table See Table I
dimension 192
DIM |Integer array| Dimen- |[See Table I
dimension 4 | sions

that they are not in COMMON, although some CPU time would be saved if they

did not have to be passed and decoded each time the subprogram is called.

Whenever the calculation proceeds onto a new K-plane, TRANSF is called
with CHOICE=2. This means that two WAIT macros are first issued to check if
the previous Reads on Drums 1 and 2 have been completed. If not, the CPU
Waits until their successful completion is indicated in the Event Control
Block (ECB). After this, two EXCP macros are issued to Write the first

half of a K-plane onto Drum 1, and the second half on Drum 2, simultaneously.

When the calculation has reached the half-way mark in the K-plane, TRANSF is
called again with CHOICE=6. This now first Waits for the completion of the
previous Writes, followed by two EXCP Read macros which will bring in a new

K-plane.

The major part of the subprogram is amply documented in Appendixes IV
and VI and does not need further comment here. The exception is the
channel program, composed of CCW's. Table III exhibits the structure of a

CCW, which is a double word divided into 6 fields [ref.5 pp.19,99; ref.3 p.10].

Table III. Structure of a Channel Command Word

Field Bits Name Purpose
1 0-7 Command Code | Operation to be performed
2 8-31 Data address | Base Address in core
3 32-36 Flags 32 Chain Data (CD)

33 Chain Command (CC)

34 Suppress Length Indicator (SLI)

35 Skip

36 Program Control Interruption (PCI)

4 37-39 Must be zero, except for Transfer in
Channel (TIC), where ignored.

5 40=47 (Not used)

6 48-63 Count Number of bytes to be transferred

The order in which the CCW's should appear is very difficult to decipher
from the 2820 hardware manual . and in the present case has been arrived

at ‘after a certain amount of trial and error. Reference 3 does however
fully explain the meaning of the individual CCW's and should be consulted.
The chained channel program for reading is comparatively simple and consists

basically of 3 kinds of CCW's

1) CCWRL CCW X'31', IOBR1l + 35, X'40', X'05"
2} CCW X'08', CCWRL, X'00', X'00'

3) ARl CCW X'86', ¥, X'40', 19200

4) BR1 CCWw X'86', t, X'40', 19200

5) CR1 ccWw X'86', t, X'40', 19200

6) DRL ccWw X'86', t, X'00', 19200

Statement 1 is a Search ID Equal CCW. This causes a comparison to be made
between 5 bytes of data transmitted by the CPU from the core (the address
being specified by field 2, in this case IOBR1+35, and the number of bytes
by field 6), and the record identifier portion of a count area from the
2301. X'31' is the Command Code for Search ID Equal, while X'40' sets bit
33 to 1 and thus indicates that the CCW's are being chained together in
uence. Control passes to Statement 2 if the comparison is unsuccessful,

but skips to Statement 3 when agreement is found.

Statement 2 is a Transfer in Channel (TIC) CCW, as indicated by the Command
Code X'08'., This is simply a branching instruction to allow for chaining
between CCW's not located in adjacent double words in main core store. 1In
this case it can be read as 'branch to address CCWRL', since the correct
record has not been found, i.e. loop back to the previous CCW. However if
the correct cylinder, head and record number has been found, then a status
modifier bit is sent to the channel by the 2820 and the channel automatic-

ally slips over Statement 2 and gives control to Statement 3.

Statements 3-5. These are Read Data CCW with Multi-Track Mode (MTM) :

X'06' indicates Read, and X'86' Read with MTM. When MIM is specified and
the index point is passed, the track address is automatically updated so
that the Read operation can continue on the next track. The position
indicated by T has been previously filled with the address in main core
where the record is to be placed. The flag field '40' specifies Command
Chaining, hence the next CCW is to be chained. The Count Field 6 containing

19200 specifies the number of bytes to be moved; this is set in TRANSF by

- 10 -

the value of RECLEN.

Statement 6. This differs from 3-5 only by having a zero in bit position

33; i.e. no Command Chaining so that the sequence is terminated.

The corresponding channel program for writing records is more com-
plex (Appendices IV and VI). In this case although the Write Data CCW

contains X'40' in the flag field, i.e. Command Chaining,
AWl CcCW ‘a5, +, X' 40", 19500

it is still necessary to do a Search ID Equal on the next track and to veri-
fy its address before writing to the next record. The Command Code 'B1l' in

the Search ID Equal CCW
BCCWWL CCw 'B1', CCHHR1+5, X'40', X'05'
specifies multitrack mode which means that the next track can be used auto-

matically in the search.

ri Timing Measurements

By means of a model program we have been able to prove, in collabora-
tion with Mr H Fisser, that the above method does indeed access the drums
synchronously. The real problem set-up was timed with a module which com-
bined SETDRM, TRANSF, and the generated TRINITY equations in assembler
language. The space loops were in assembler language, as were the border
point resetting routines. It was found that together with the transfers on
two drums, the TRINITY equations on a 60x80x48 mesh took 17 sec. of CPU

time/step.

It is possible to establish, from a timing experiment without drum
transfers on a smaller mesh, that the CPU should take ~ 13.6 sec to run
through all the computations at every alternate mesh point for one timestep.
In other words, the time needed by the CPU to calculate one K-plane is
283 ms.. The minimum time required to write one K-plane and read one K-plane

from drums can be estimated as follows

Table IV, Drum Transfer Times

Rotational delay for 2 unrelated drums 17.5 ms

Time taken to write 4 records synchronmously 4 x 17.5 ms

Rotational delay for 2 unrelated drums 17.5 ms
Time taken to read 4 records synchronously 4 x 17.5 ms
175 ms

T T

the drum rotatiomal period being 17.5 ms. Therefore the CPU should not be
kept in a Wait state by drum transfers. This ensures that the elapsed time

for the run will not be much greater than the CPU time.

However a certain amount of CPU time does have to be spent on drum
transfers. The exact amount will depend on the details of the program and
can only be found by experimentation. When an Input/Output macro such as
the EXCP is issued, a Supervisor-Call interrupt is effected which passes con-
trol to the Input/Output Supervisor. The I/O Supervisor performs many tasks,
such as checking the validity of the various control blocks, scheduling the
I/0 request, and issuing the start I/0O (SIO) instruction to activate the I/0
device. Once the I/O has been initiated, the channel transfers information
to and from main core store simultaneously with CPU activity, with the excep-
tion that if the channel requires access to main store, it has priority over
the CPU. When the channel program has been successfully executed, the I/0
Supervisor once more is responsible for placing a completion code in the

event control block.

The time taken by peripheral activities at each timestep such as
handling the Fortran-Assembler interface, transferring guard planes for the
purpose of resetting the border points, can be estimated to take approxi-

mately 1 sec.

Therefore it has been possible to reach the following conclusions

regarding the time CPU spent on various part of the program:

Table V. CPU Time/Step

CPU time spent on calculation at mesh points 13.6 sec
CPU time spent on peripheral calculations and transfers 1.0 sec
CPU time spent on drum transfers 2.4 sec

Total 17.0 sec
Taking into account initialization and the output of results, it is

therefore practicable to perform 3D calculations on the Garching IBM 360/91

at about 200 timesteps/hour, and therefore at an economically attractive cost.

= LY =

8. Acknowledgements

We would like to thank most warmly Professor A Schliiter,
Dr K Von Hagenow, and Dr F Hertweck of the Max-Planck Institut fiir Plasma
Physik, Garching bei Minchen, F R Germany, for their interest and encourage-
ment and the provision of most excellent computing facilities. We are also
very grateful to Herr F Kdpfer, Herr K Goihl and Herr H Fisser for many

helpful discussions.

= 13 =

References

1.

10.

11.

12.

13.

14,
15.

16.

17.

IBM System/360 Operating System. Supervisor and DatarManagement Macro
Instructions. Form C28-6647-3 (4th Ed.Nov.1968).

IBM System/360 Operating System. Supervisor and Data Management Services.
Form C28-6646-2 (3rd Ed.Nov.1968).

IBM System/360 Component Descriptioms - 2820 Storage Control and 2301
Drum Storage. Form A22-6895-2 (3rd Ed.Sept.1968).

IBM System/360 Operating System. System Programmer's Guide.
Form C28-6550-5 (6th Ed.Nov.1968).

IBM System/360 Operating System. Principles of Operation.
Form A22-6821-7 (8th Ed.Sept.1968).

IBM System/360 Operating System. Fortran IV(G) Programmer's Guide.
Form C28-6639-1 (2nd Ed.1966).

IBM System/360 Operating System. Programmer's Guide to Debugging.
Form C28-6670-1 (2nd Ed.Nov.1968).

K V Roberts and J P Boris, 'TRINITY: Programs for 3D Magnetohydrodynamics',

Proceedings of the Institute of Physics Computational Physics Conference,
Culham Laboratory, July 1969, paper 44. Culham Report CLM-CP(1969),
HMSO(London) . '

K V Roberts and D E Potter, 'Magnetohydrodynamic Calculations', published
in Methods in Computational Physics, Vol.9 p.339, Academic Press,
New York, 1970.

K V Roberts and J P Boris, 'The Solution of Partial Differential Equations
using a Symbolic Style of Algol', Journ.Comp.Phys. 8 83 (1971).

M Petravic, G Kuo-Petravic and K V Roberts, 'Automatic Optimization of
Symbolic Algol Programs, I. General Principles', Journ.Comp.Phys. 10,
503 (1972).

R W Hockney, 'The Potential Calculation and Some Applications', loc.cit.
ref.9, p.135 (and references contained therein).

J P Boris and K V Roberts, 'The Optimization of Particle Calculations in
2 and 3 Dimensions', Journ.Comp.Phys. &, 552 (1969).

International Computers Ltd., KDF9 Egdon System, Reference Manual Vol.l
International Computers Ltd., System 4-50,Fortran Reference Manual.

K V Roberts, 'The Publication of Scientific Fortran Programs',
Computer Physics Communications 1, 1 (1969).

K V Roberts, 'Program Readability', in 'Software Engineering', Infotech

State-of-the-Art Report 11, p.495, published by Infotech Information Ltd.
Maidenhead, 1972.

— 1% -

APPENDIX I

The TRINITY MHD Equations

The TRINITY 3DMHD differential equations are

3D MHD Equations Used in the TRINITY Codc

Continuity equation dpfot = —V - py
Momentum equation 2(pv;)/dt = — 8/9x;(py;) + vVipu;
Magnetic equation aBfet =V x (v X B) -+ nV°B
Temperature equation 0T/ét = —V - (Tv) + (2 — 9) TV - v 4 «V2T
+& — Dnfle + (v — 1) o[(V X ¥)* + (V - ¥)*]
Pressure Py = pT8;; + pvv; + (B%2)8;; — B;B;
Current j=VxB

(r.1)

[10]

and in Symbolic Algol I can be expressed as

3D MHD Equations Programmed in Symbolic Algol 1

procedure INVOKE DIFFERENCE EQUATIONS;

begin '
CONTINUITY EQUATION: DT: = 2 x DELTA T; Cl: = C2: = 1;
Q =14T+14+J+41)xPI+ (K +1) XPI X PJ;
NEW RHO: = RHO — DT x DIV(RHO x V);

MOMENTUM EQUATION: DT: = 2 xX DELTA T/(1 + NU/EPS);
for Cl: =1, 2,3 do
AVIC], Q): = (RHO X V 4+ DT x (—DIV 2(P) + NU x DELSQ(RHO x V)))/NEW
RHO;
ARHO[Q]: = NEW RHO;

MAGNETIC EQUATION: DT: = 2 x DELTA T/(1 + ETA/EPS); (1.2)
for CI: =1, 2,3 do

AB[CI, Q]: = B 4+ DT x (CURL(CROSS(V, B)) -+ ETA x DELSQ(B));

TEMPERATURE EQUATION: DT: = 2 x DELTA T/(1 + KAPPA/EPS); Cl: = I;
ATEM[Q]: = TEM + DT X (—DIV(TEM x V) + KAPPA x DELSQ(TEM)
4+ (2 — GAMMA) X SAV(TEM) x DIV(V) -+ (GAMMA — 1) x (ETA x
SQM(CURL(B))/SAV(RHQO) + NU x (SQM(CURL(Y)) + DIV(V) 1 2)));
end;
real procedure P;

P: = if Cl = C2 then (RHO X (TEM + V x V) 4+ 0.5 x DOT(B, B) — B x B) clse
(RHO x V x V2 — B x B2);

The meanings of the identifiers are given in Table VI. These equations were
written in Symbolic Algol II as explained in reference 1l and automatically
converted into IBM 360 assembler language. An equivalent hand-coded Fortran

version of TRINITY is discussed in Appendix II and reference 8.

- AI.1 -

TABLE VI. Symbolic Algol I Identifiers

Mathematical

Identifier Type BT amE Meaning
B Vector function B magnetic field
CROSS Algebraic vector operator X cross product
CURL Differential vector operator curl
DELSQ Differential scalar operator V2
DIV " vector " div
DOT " " " 5 dot product
DT Scalar dt timestep
ETA Scalar Ll resistivity
GAMMA Scalar Y ratio of specific
GRAD Differential vector operator grad MR
KAPPA Scalar n thermal conductivity
NEWRHO Scalar pnew new value of density
NU Scalar v viscosity
RHO Scalar function p density
SAV Integral scalar operator (dav space average over 6
neighbouring points
TEM Scalar function T temperature
TEN Algebraic tensor operator ? TEN(v,v) = vivj
' Vector function v velocity

- AL.2 -

APPENDIX IT

Generalized Data Organization in Fortran

Mesh calculations require the calculation of centred differences such

as
f(x,y,z+48z) - f(x,y,z - Az)
ha (I1.1)

where Ax 1is the mesh interval. This would normally be coded in Fortran

as (say)
(F(1,J,K+1) - F(I,J,K-1)) * RDZ2 ' (11.2)

(232)_1 . There are however advantages to be gained from

where RDZ2

storing F as a l-dimensional array and coding (II.l) as

(F(N) - F(S))* RDZ2 , (I1.3)

where the integers N and S refer respectively to the two points of the
computational molecule that are situated one step 'morth' and 'south' of

the central point 0. Other points are denoted by E(east), W(west),

U(upper), L(lower), SE(south-east) etc. in an obvious way, while FN(far north)

denotes the point (x,y,z+24z).

Broadly speaking the advantages of this 'compass notation' are the

following:

(a) The code is shorter and more intelligible, so that it is easier to

-write and mistakes are less likely to be made.

(b) Most compilers produce faster code for singly-subscripted than for

triply-subscripted arrays.

(¢c) By suitable definition of the indices O, N, S, E, W, U, L ete. the

variables can be laid out in the main store in any way required.

(d) The details of the layout do not appear in the physical difference

equations.

(e) The layout can readily be changed to accommodate a different type
of machine configuration, without changing the physical difference

equations which are often very complex.

Scanning across the mesh

Prior to the calculation of each new mesh-point the indices are updated

- AIT.1 -

by Fortran statements of the type

0 + DX
N + DX
S + DX
E + DX

(11.4)

H w =2 O
1

(ete)

where the integer DX represents the frequency with which adjacent recomputed
values of the same function are located in the main store. This depends on
the difference scheme and on the method of storage used. For an ordinary
leapfrog or Lax-Wendroff scheme alternate mesh-points are being recomputed at
any given stage, and therefore DX = 2 if the fastest scan is in the
x-direction. An adjustment must be made at the end of each row, depending on
the precise boundary conditions that are being used (e.g. to jump over 'guard'

or 'symmetry' points).

Separation of odd and even points

In certain cases there may be an advantage in separating the storage
locations of the 'odd' and 'even' points, so that all the function values
that are to be recomputed occur together in the store. One application of
this idea is to a vector-processing computer such as the CDC STAR-100, whose
effective speed would drop by approximately a factor 2 if alternate storage
locations were skipped. Another application is to the Lax-Wendroff scheme,
in which a factor 2 both in data transfer rate and also in backing storage
size would be lost if the 'auxiliary' points whose values do not need to be

retained were unnecessarily transferred to and fro.

Such a separation can readily be achieved by making the two sets of
indices (0, NE, NW, SE, SW,) and (N, S, E, W, U, L,) point to

different areas of the main store.

Interlaced variables

For the IBM 360/91 version of TRINITY another form of optimization was
achieved by arranging for the 8 physical variables RHO, VX, VY, VZ, BX, BY,
BZ, TEM corresponding to any given mesh point to be stored sequentially,
followed by the 8 variables at the adjacent point, so that DX in (II.4) now
takes the value 16. This cannot be done with the triple-subscript notation
of (II.2), but with that of (II.3) it is easily achieved by means of equiva-

lence statements :

= ALT.2 <

EQUIVALENCE (CORE(1), RHO(L1))
EQUIVALENCE (CORE(2), VX(1))

: ik ‘ (1I1.5)

EQUIVALENCE (CORE (8), TEM(1))
DIMENSION RHO(1), VX(1), ... TEM(1)

where CORE is an array whose dimension is that of the whole quadruple buffer
of Fig.2. We exploit here the useful fact that most Fortran compilers do
not check for subscript values which lie outside array boundaries, so that
the array names serve only as base addresses and only nominal dimensions
need be given in (II.5). A more scrupulous compiler could however be molli-

fied by inserting the correct dimensions in the declaration.

Interlacing enables all the variables associated with a given batch of
mesh points to be transferred to and from the backing store by means of one
reference to the array CORE, while at the same time the physical difference

equations use the meaningful mnemonics RHO, VX, ... in the usual way.

Quadruple buffer

The array CORE holds four 'planes' of the calculation corresponding to
the four areas S, 0, N, M in the quadruple cyclic biffer of Fig.2. When
one plane has been calculated the indices S5, O, N are updated by 'rotating'
the buffer, and the other indices are then computed from these. A general
prescription might be
NZERO + MCS * MPSIZE
0 = NZERO + MCO * MPSIZE (11.6)
N = NZERO + MCN * MPSIZE

195
]

with
MCS = MOD(MCS+1, NCPLNS)
MCO = MOD(MCO+1, NCPLNS) (11.7)
MCN = MOD(MCN+1, NCPLN3) .

Here MPSIZE is the number of storage locations in each plane, NCPLNS is the
number of planes in the buffer (in this case 4), and NZERO is the relative
storage location of the first point to be calculated. The counters MCS,

MCO, MCN cycle through the values (0, 1, ... NCPLNS-1).
A counter MCM belonging to the 'move' plane is cycled in a similar way,

MCM = MOD(MCM+1, NCPLNS) (11.8)

- AII.3 -

and from this one can calculate the areas of main store to be transferred at
each stage. Similar counters handle the corresponding storage areas on the

drums.

Implementation

Although the logic of this scheme is necessarily somewhat complex,

involving a combination of

Interlaced variables

Leapfrogging across the mesh

Special treatment at the boundary points
Rotation of the cyclic buffer

Computation of the drum storage areas,

in practice it can be implemented and tested very easily if a number of

obvious points are borne in mind
(a) All index computation can be done in Fortran.

(b) Index computation and the solution of the physical equa-
tions are logically independent of one another. The
latter can be tested in-core, using a small mesh, and
can be omitted from the final program until the data

organization has been perfected.

(¢) 1Index computation is also logically independent of the

actual use of drums or of a quadruple CORE buffer.

(d) The logic of the index computation can be tested in the

first instance on a very small mesh.

(e) The initial checks of the complete system can be made
with .core and drum areas of limited size in order to

obtain a sufficiently fast daytime turnmaround.

Using these ideas it was found possible to check out the indexing logic in
runs lasting less than 1 second of IBM 360/91 time, the physics and data
transfer routines being replaced by dummies that printed out a 'diary' des-
cribing the operation to be performed and the values of the indices. Clearly

such tests could readily be made on-line.

Finally, in any future implementation of the methods described in this
report the authors would recommend breaking up the routines SETDRM and TRANSF
_into smaller components called from a main organizational routine written in
Fortran, in order to clarify the logic as much as possible without any signifi-

cant sacrifice of speed.

- AIT.4 -

APPENDIX TII

Program Commentary for Subprogram SETDRM

The references and headings used in the listing correspond to those of
the text. A '+' in the listing indicates that the instruction has been gener-

ated by an IBM system macro.

SUBROUTINE SETDRM (RW, STASTO, DIM, VAR, TABLE)

As described in §5 this subprogram writes the initial values of the
physical variables on to Drums 1 and 2. It can also be used to read them
back as a check., There is no need to employ overlapped data transfers at
this stage and therefore SETDRM uses the Basic Sequential Access Method (BSAM)
(ref.2,p.100) which is compatible with EXCP. Normally a quadruple buffer is
used (82) and therefore 4 planes are initialized at once. However to allow
for other possible applications the corresponding parameter KCORE is refer-

enced symbolically.

Arguments

The arguments (formal parameters) are explained in Table I of §5. Note
that the four components of the array DIM are given individual identifiers.
References

Because the understanding of subprograms SETDRM and TRANSF requires
detailed reference to 6 IBM manuals, page references are distributed freely

throughout the listing, starting in column 64.

1. Storage

All storage other than that organized by macros is contained in this

section.

1,1 Set Constants for Debug

It is a convention of the Fortran-Assembler interface (ref.6 p.92) that
4 bytes from the entry point there should be a byte containing the length of
the subroutine name, followed by the name itself; this name should be rounded
up to an odd integer. The convention is slightly different on the

ICL System 4 (ref.l15 p.A3-5).

1.2 Save Area

- ATIII.1 -

1.3 Arpguments

The values of integer arguments, the array base addresses, and the

values of those components of DIM that are used are stored here for convemience .

1,4 Internal Variables and Constants

CUAD is a marker defining the current address in the array TABLE.

2. Define Data Event Control Blocks (DECB)

The Basic Sequential Access Method (BSAM, ref.2 p.l00) which is employed
in this subprogram uses two blocks which are set up by macro instructions,
namely the Data Event Control Block (DECB) and the Data Control Block (DCB).
The DECB contains a pointer to the DCB as indicated in Fig.5 and it also con-
tains a l-word Data Event Block (DEB) which is used by the system to return

information about the status of an I/0 operation.

The list forms (ref.l pp.267 & 269) of the READ and WRITE macro instruc-
tions are used in this section to set up the 4 DECBs that are needed, 2 for

each drum, and to plant pointers to the DCBs. The section is not executed.

3. Define Data Control Blocks (DCB)

This section, which is also not executed, sets up the 4 DCBs themselves
(ref.l p.49). The parameter DSORG = PS specifies that the data set organiza-
tion is to be physical sequential, while MACRF = (RP) specifies firstly a read
operation, and secondly that the NOTE macro is to be used (ref.l p.127) in
order to return the relative position on the drum of the previous block read.
Similarly for writing. The data set names to be used on DD control cards are
DSET1, DSET2, and these cards must specify the required number of cylinders

and the correct record length.

4, Fortran-Assembler Interface

After the initial branch, execution proper begins at START. This sub-
section contains the standard Fortran-Assembler interface (ref.6 p.92). A
SAVE area is not strictly needed in SETDRM, although care should generally be
taken in using the system macros because they overwrite registers as their

expansions indicate.

4,2 Integer Arguments

The values of RW and STASTO are transferred to locations in section 1,

4.3 Test Type of Call
If RW = 1 the program branches to READING (section 7). Otherwise STASTO

is.tested and unless it has the value 1 a branch is taken to WNFIRST

- ATIT.2 -

(section 6; write - not first).

5. Initial Call

This section stores the remaining arguments and opens the data sets for
writing. Notice that the subprogram should not be overlaid until it is no

longer required, otherwise these argument values will be lost.

5.1 1Initialize Array Base Addresses

The base addresses BAVAR and BADIM of the arrays VAR and DIM are stored
in section 1. VAR is the core buffer and must remain unchanged since BAVAR

is not updated on subsequent calls.

5.2 Store Components of DIM
The three components KCORE, NREC, RECLEN of DIM that are needed are

stored in section 1.

5.3 Open the Data Sets

The two data sets are opened for writing.

5.4 First Relative Address
The current address (CUAD)

6. Program for Writing on Drums

6.1 Specify Program Interruption Exit

A SPIE macro (ref.l p.173) is issued to cause a dump in case of pro-
gram failure. The parameter O used here is relevant to the Garching system;

it should be changed or the macro removed for use at another installation.

6.2 Initialize Registers

Two loops are now initialized; an outer loop over the KCORE planes in
core at one time (normally 4), and an inner loop over the NREC records in

one %-plane (normally 4). Register 5 is initialized to the base address BAVAR

of the core buffer VAR.

6.3 Write Records on Drum 1

A record is written to Drum 1 using the WRITE macro (ref.l p.280). The
address of the record in core is communicated in register 5, and the next
available block on the drum is automatically selected by the fact that we
are using the BSAM method. Since however this access method camot be used
in subprogram TRANSF, we extract the relative drum address by using a NOTE
macro (ref.l p.127) which returns its value in register 1 and stores it in
TABLE for later use. Before issuing NOTE it is necessary to issue CHECK

(ref.l p.37) to ensure that the data transfer is complete. CUAD is the next

- AITI.3 -

available location in TABLE and is updated each time, while the address in

register 5 is incremented by the record length RECLEN.

6.4 Write Records on Drum 2

The WREC records belonging to the second half of a given K-plane are
written to Drum 2 as soon as the NREC records belonging to the first half
have been written to Drum 1. A CHECK macro is issued after each record has
been written to ensure that the next transfer can go ahead, but TABLE need

not be updated since the two data sets have identical structures.

6.5 Prepare for Next K-plane

Register 3 is reset to NREC and Register 4 which is initially set to
KCORE is decremented each time, a branch back to WNEX1 (write next plane on

Drum 1) occurring until the transfer is complete.

6.6 Test for Completion

If STASTO # 2 the program branches to FINISH (section 8); otherwise

all the data has now been set up and the two data sets must now be closed.

6.7 Close the Data Sets

The CLOSE macro (ref.l p.45) is issued for both data sets and a branch
to FINISH is again taken.

7. Program for Reading from Drums

7.1 Test whether Data Sets are Open

The data sets are open if STASTO # 1, in which case the program branches

to RNFIRST (read - not first).

7.2 Open Data Sets

An OPEN macro is issued for each data set (ref.l p.129)

7.3 Initialize Registers

As in section 6.2, registers 3 and 4 are initialized to give an inner
loop over the records in each %-plane, and an outer loop over the planes in
the core buffer. Register 5 is initialized with the base address BAVAR of
the core buffer VAR. ’

7.4 Read Records from Drum 1

NREC records are read, using the READ macro in its execute form (ref.l
p.149). A CHECK is issued to ensure that each transfer is complete before

proceeding to the next.

7.5 Read Records from Drum 2

When the first %-plane has been read from Drum 1, the second is read

from Drum 2.

- AIIT.4 -

7.6 Prepare for next K-plane

As sub-section 6.5.

7.7 Test for Completion

As sub-section 6.6.

7.8 Close the Data Sets

As sub-section 6.7.

Return to Calling Subprogram

This is the standard Fortran-Assembler interface described in ref.6 p.95.

- ATII.5 =

- 9°IIIV -

(@seo TeUWIOU) STTEO 83BIPaWJILlUI=
S135 ®BlEQ 9SOT) ‘TTBO 4SBT = g °*s3os B3Ep uado :TTBO 3S4TJ = T

H-'eet do3s - 3a®as dr ‘1 0ISYIS

8FeqUT] JOTQUWaSSY - UBIGIO] 07 Aaquy T4 weaBoad aTqeqnosxa 3da83S Tsqe] IHYVIS

(PUT3 ® 9B §) °)08Yd ® SE wayj pead pue ‘ssueTd-y TEBTITUT 33Tap H sunJgy 39s LoIso MaTIs

(STT®o oYOVW) weadoad qns STY] UT Posn SI93STBad 9ARS c'l B3Iy 3ABS J8T yI JAYS

SpPI00ad 93TIM = g ‘SPI00ad pEad = T H ‘¢*'T 23 TIN~peaY d dr ‘1 o

SI93sTHad 9ZTTRTATUT ‘uado aJe S385 EBYEQ €l (3satd 30N) DPEeY Toqe] ISYTINY

2 unag woJy aueTd-y Jo JTBY DPUODIS J0J SPJooad peay Gl 2 UnIj ‘pIooad 4Xsu peay ToqR] EXANH

T ungg wolJ aueTd=y Jo JTBY 3SJITJ JOJ SPI0O0AJ PESY oL T ungg ‘pJogad 3xsu peay Teqe] THENY

se3fq uUT y3BusT paooay 1 y33us pIoosy d I NITOFH

Sundp woly SpIooad Butpeas Jof jutod Kajug 12 Butpeey J0J weadold ToqeT DNIAVTY

TR TR SWRU }00Tg ToJd3uo) BEeQ ¢ andyng ‘2. wnag 2o 904 (odovm) 3o0Td [zl
OHOYW £q g8g SWRU }O0Td TOJ3UO) BIBQ ¢ gnd3ng ‘T wnag J0J 40 (odovm) }00Td Ta2aLno
T 7°1 i Ty Jequny d I INO

fr (% ATTensn) ‘suetd-y £ ur spaoosd Jo Jaquny i & sueTd - £ ut spaooay d i OFUN

4 (% ATtensn) ‘aduo 3® sI00 UT saueTd=y Jo Jaquny ¢°T .8J0) UT saueTd~y d I THOOM
woonou aweu o0Tg TOJIUO) BIEQ g qndur ¢z wnag JoJ €24 (o¥ovn) Ho0Tg S4DaNT
odavm £q 98g SWEU }O0Tg TOJ3U0) BYBR(Q ¢ andur ‘1 wnag JoF €2q (oH2VYW) RooTd TIOaNI
90BJISJUT JISTQUASSY = UBIZJI0] BTA Uea3oxd gns BuTITEO 0% uanjsy g PaYSTUT] }SET ToqE] HSINIJ

OFUNT ‘NITOZM ‘OFUN ‘FWOOM BuTproy ABIgE JoF aweu Auumg H suoTsusmIq (d%) dvI g

woouw o SWeU HO0Tq TOJ3U0) JUBAT BIB(Q 4 91TIH ‘g wnag Jog HIHEA (o"ovym) }o0TH Meg03a
wooaom SWBU }OOTg TOJIJUOD JUBAT BIEQ 2 pesy ‘g wnag Jog €030 (cuovm) AooTd ¥egoda
TR TR QUEU ¥J0Tg TOJ3U0D JUBAZ B3BQ 2 83Tay ‘T unag JoJ g03q (odovIn) Ho0Tq MTE03a
oHovW Lg 38S SWRU YooTg TOJIU0) JUSAT B3BQ 2 peay ‘T wnig JoJ g)ad (OHOYW) yooTg yTg0aa
dTdYL UT SSaIPpE juadany 1°T SSJppPY JUSLIND d SSaJIppy avno

sa1qeTJeA TeoTsAyd BuTploy ®Bage JsJJnq 8400 JO SSaJPPE 9Seq el ¥YA JO SSa2Jppy @seg d SSJppY HvAvd

SPJ0DaJ WNJP JO SOSS9JpPR SAT38IaJ JO JIVI JO SSeJppE oseg ¢ 1 719y JO SSaIppy aseq Jd SSaJppy TJIgVIvE

OFUNT *NATOFY OFHN JMODM SPTIOY uy2Tym “WIQ JO SSeJppe ased ¢t WIQ Jo ssaJppy 3sed 4 SsaJappy NIavd

aNTYA TYILINI as0d4nd NOILDES OINOWINW az1s IdAL YITJITINIAT

WHALIS WYYDoHddNsS ¥0d SYITIJAIINIAI JO XIANI

- L°IIIV -

Sutqtan saoyeq dunp e £3Toads ‘usdo age sqes egeg

1°9 (3S4TJ q0Uu) 3Tap Teqe] ISHTINM

g unig o3 sueTd-y Jo JTBY pU0Da S WOLJ SPI0OaT BFTIH %°9 2 UNJg ‘pIooad 4Xsu 3TN Teqe] TXANA

T unig o3 sueld-y Jo JTBY 3SITI WOIJ SPIOIBI SFTIN c*g T UMJIQ ‘pIooad 3XaU 33TIM Teqel TXINM

saTqeTaes TROTSAUd J0F J9JJnq 840D H S9TqRTJIBA (d009¢5T) dvy yyA

c #°T 1Sy Jequny d I OMT
SPI098I UNJDP JO S8SSaJPPE SATIRTAI JO OTqEJ g aTqeL (Je26T) dvI ITavT

JNTYA TVIIINI I50d¥Nd NOIIOIS OINOWINN dzI1s AdXL HITJITINAQT

QLIS WWHD0UdENS H0d SHATJTINAQI 40 XHANI

APPENDIX IV

Program Commentary for Subprogram TRANSF

SUBROUTINE TRANSF (CHOICE,MESHCR, RECNUM, NN, VAR, TABLE, DIM)

As described in §6 this subprogram performs the reading and writing to
and from the drums using the EXCP macro (ref.4 p.66 and ref.3 p.77). This is
the most direct and fast method of transfer of data between main core and
backing store as it issues channel commands to the channel hardware of the
device used, thus bypassing the usual access method interfaces. While the
channel is transferring data at a rate limited by the device characteristics,
the CPU can be carrying on with the main calculation. The use of the EXCP
macro also enables us to take advantage of chained scheduling (ref.l p.125).
This effectively means combining a series of read or write operations in one
step, thus reducing both the CPU time and the channel start/stop time. The

effects of rotational delay are also reduced.

Arguments

The arguments (formal parameters) are explained in Table II of §6.

References

See Appendix ITI,

1. Storage

Data Control Blocks (DCB), Input-Output Blocks (IOB) and Event Control
Blocks (ECB) are located in section 9, and Channel Command Programs in
section 10, Otherwise all storage other than that organized by system macros

is contained in this section.

1.1 Set Constants for Debug
See Appendix III.

1.2 Save Area

See Appendix III.

1.3 Arguments

The arguments (formal parameters) are explained in Table II of §6.

1.4 Internal Variables and Constants

- AIV.1 -

2, Fortran-Assembler Linkage

2.1 Standard Linkage

See Appendix III

2.2 Integer Arguments
The values of the arguments CHOICE, MESHCR, RECNUM and NN are extracted

.and stored.

2.3 Test for Initial Call
If NN # 1 the data sets have been opened (86) and a branch is made to
NOOPEN (now open).

3 Initial Call

This section is used to perform a number of operatioms that are needed
the first time subroutine TRANSF is called, including opening the data sets,
converting relative track addresses to absolute form and storing them in core
areas requested from the Supervisor, and planting the actual record lengths
into the Channel Command Words (GCW). The subroutine must not be overlaid

once this has taken place.

3.1 Initialize Array Base Address
The base addresses BAVAR, BATABLE and BADIM of the arrays VAR, TABLE,

DIM are extracted and stored; they must not be subsequently changed.

3.2 Store Last 2 Components of DIM
Only RECLEN and TNREC are needed.

3.3 Open the Data Sets for EXCP

" The OPEN macro is issued & times, to open each of the data sets DSET1
and DSET2 for both reading and writing (ref.4 p.84). This constructs a Data
Event Block (DEB) inside the Supervisor, and initializes the Data Control

Block (DCB) as indicated in Fig.6.

3.4 Request Storage for Addresses

The GETMAIN macro is issued twice (ref.l p.ll) to request two main core
storage areas of 1600 bytes. Each will be used to store up to 192 double-
word absolute track addresses. The base addresses of these areas are
returned in register 1 and are stored in BADMTABI, BADMTAB2. (Base Address

of Dimension Table).

- AIV.2 -

3.5 Convert Addresses

Conversion from a relative track address which was planted in TABLE by
subroutine SETDRM to its absolute counterpart is carried out by a system
routine IECPCNVT. The entry point of this routine is contained in the
Communication Vector Table (CVT) at byte 28, the address of the CVT itself
being at absolute location 16. Further information is to be found in
ref.4 pp.100-102., The variable CUDA contains the location of the next avail-

able double word in the table currently under comstruction.

3.6 Insert Record Lengths in CCW
As explained in $§6 and in ref.3 p.l0, the 8-byte CCWs contain the
record length RECLEN in bytes in bits 48-63, which is called the count field.

This field is now set up for the 4 channel programs contained in section 10,
and since the flag bits 32-36 which are set in that section will now be over-

written, these are explicitly restored.

&y Prepare for Input/Output

4.1 Specify Program Interruption Exit

See Appendix III.

4.2 Calculate Addresses

ADCORE is the base address of the first record to be transferred to or

from Drum 1, POINTLl is the location of the first double-word absolute address

on Drum 1, and similarly for POINT2.

4.3 Wait for READ if CHOICE = 1,2,3

As explained in Table II, 86, a WAIT macro is to be issued unless

CHOICE = 4 or 5. This subsection tests for the values 1,2,3 and the other

possibilities are tested in subsection 5.4.

5. - Wait for Completion of Previous I/0
This section uses the WAIT macro (ref.l p.205) to check whether or not

the previous Write or Read operation has been completed successfully. The
system waits for completion and then returns a marker in the ECB (ref.4 p.88),

the value X'7F' indicating success.

5.1 Wait for Completion of Read
The ECB addresses are ECBR1, ECBR2.

5.2 Test for Success, Fail if not

The values which have been returned in the two ECBs are compared with
X'7F' (ref.4 p.89). If either read operation has been unsuccessful, control

is given to an illegal instruction in order to force an interrupt, followed
by a dump.

- AIV.3 -

5.3 Test CHOICE (1,2 or 3)

As indicated in Table II the subsequent action depends on the value of

CHOICE, which currently can only have a value < 3.

5.4 Test CHOICE (4-8)
This point WAITW will have been reached if CHOICE 2 4. Table II

indicates that for CHOICE = 4 or 5 no WAIT is issued, and a branch is there-

fore made to section 6 (RD=Read) or section 7 (WT =Write) respectively.

5.5 Wait for Completion of Write

As subsection 5.1.

5.6 Test for success, fail if not

As subsection 5.2.

5.7 Test CHOICE (6,7 or 8)

As indicated in Table II the subsequent action depends on the value of

CHOICE, which currently can only have a value 6,7 or 8.

6. Set up and Execute Read Program

This section sets up the Channel Command Programs in subsection 10.1
for reading 4 records on 4 tracks, and then issues two EXCP macros to execute
them. This involves setting addresses and clearing markers. Minor changes

in the coding would be required if the number of tracks had to be altered.

6.1 Drum Addresses

Subsection 4.2 has already planted the absolute addresses of the first
records to be read from the two drums in POINT1l, POINT2 respectively. These

are placed in registers 4 and 5 ready for use in subsections 6.3 and 6.4

6.2 Clear
The Event Control Blocks are cleared by using the XC (Exclusive OR)
instruction, ready for the return code to be supplied at the end of the

operation,

6.3 Prepare I0B
The first 5 bytes of the Input Output blocks in subsection 9.2 are

filled as specified by ref.4 p.87. Here X'40' in byte 1 indicates that
Command Chaining will be employed, while '75' in byte 5 is the completion
code for a successful operation.

The 8-byte extent + seek addresses afe then filled (ref.4 p.88) with
the values of POINT1l and POINT2. These will be used by the Supervisor to

locate the correct cylinders.

< KTV . b =

6.4 Prepare DCB
Identical information is required in bytes 5-12 of the Data Control
Blocks (ref.4 p.8l).

6.5 Prepare Channel Command Program

The 4 CCWs for Drum 1 are loaded with the addresses of the core areas
to be filled, replacing the Command Code X'86' and incrementing the core

address by RECLEN each time. The same process is then carried out for Drum 2.

6.6 Execute Channel Program

The only parameter for the EXCP is the address of the Input Output Block.

7. Set Up and Execute Write Program

This section sets up the Channel Command Programs in subsection 10.2
for writing 4 records on 4 tracks, and then issues two EXCP macros to execute
them. This involves setting addresses and clearing markers. Minor changes

in the coding would be required if the number of tracks had to be altered.

7.1 Drum Addresses

Subsection 4.2 has already planted the absolute addresses of the first
records to be written for the two drums in POINT1l, POINT2 respectively.

These are placed in registers & and 5 ready for use in subsections 7.3 and 7.4.

7.2 Clear _
The Event Control Blocks are cleared by using the XC (Exclusive OR)
instruction, ready for the return code to be supplied at the end of the

operation.

7.3 Prepare IOB
‘The first 5 bytes of the Input Output Blocks in subsection 9.3 are

filled as specified by ref.4 p.87. Here X'40' in byte 1 indicates that
Command Chaining will be employed, while X'7F' in byte 5 is the completion
code for a successful operation.

The 8-byte extent + seek addresses are then filled (ref.4 p.88) with
the values of POINTL and POINT2. These will be used by the Supervisor to

locate the correct cylinders.

7.4 Prepare DCB
Identical information is required in bytes 5-12 of the Data Control

Block (ref.4 p.8l).

- AIV.5 -

7.5 Store Cylinder/Head/Record Addresses

Since the channel program for writing to drums requires that the
absolute address of each record be checked before writing even when command
chaining has been specified, this section moves the 5 bytes containing the
CCHHR address for each record into a region names CCHHR1 and CCHHR2. These
addresses will be referred to by the channel programs for writing to Drums 1

and 2 respectively.

7.6 Prepare Channel Command Program

The 4 CCWs for drum 1 are loaded with the addresses of the core areas
from which records of length RECLEN are to be written. The operations code
in the first byte is reloaded in case it has been overwritten by the previous

operation. The same process is then repeated for drum 2.

7.7 Execute Channel Programs

The only parameter for the EXCP is the address of the Input Output
Block.

8. Return to the Calling Subprogram

This follows the standard Fortran-Assembler interface for return to

the calling subprogram.

9. Control Blocks

The required blocks are discussed in ref.4 p.68 and illustrated in

Fig.6.

9,1 Data Control Block (DCB)
A Data Control Block is generated for each of the datasets DSET1, DSET2

by issuing a DCB macro instruction with MACRF = (E), (ref.4 pp.77,78). The
data set organization is specified to be direct access, physical sequential

(ref. 4 p.80, ref.2 pp 71 et seq.).

9.2 I0B and ECB (Read)
The Input Output Block (IOB) must start on a full-word boundary (ref.4

p.86): it is filled here with the addresses of

(a) Event Control Block (ECBR)
(b) Start of Channel Program (CCWR)
(¢) Data Control Block (DCB)

space being left for other information explained in the table in ref.4 p.87.

There is one Event Control Block (ECB) for each data set, consisting of
one full word which is used to receive information for the Supervisor (ref.4

pp.88-89).

- AIV.6 -

9.3 TIOB and ECB (Write)

Similar to subsection 9.2.

10. Channel Programs

This section contains 2 Channel Programs for reading, and 2 for writing.
Reference 3 and $6 explain how these are to be constructed. The Write pro-
‘grams require Search ID Equal commands ACCWW, BCCWW etc. whose Data Address
fields refer to 5-byte addresses which are contained in subsection 10.3,

having been constructed in subsection 7.5.

10.1 Read
The structure of the two Channel Command Programs contained here has
been explained in §6. The CCWs AR, BR, ... defined here are overwritten

in subsections 3.6 and 6.5 but their structure is given for clarity.

10.2 Write

As explained in §6, it is necessary to perform a Search ID Equal before

each Write operation, looping until the correct record is found. This

requirement is laid down in ref.3 p.2l.

10.3 Cylinder-Head-Record addresses

This subsection contains the record addresses required by the Search ID

Equal commands just mentioned.

- AIV.7 =

8 AIV -

—

ﬂ € WnJp 03 PI0d3J pdg Jo JuTFTIM TEBNGOR 8yj JOJ MDD SY} S89Bo0T 2°0T C WNJp WOIJ PIODAI PIg SFTIMH a 1998 b1 o)
% T WNJP 03 PJI0Dad pJ¢ JO JUTJTIA TBNYCR 3y} I0J MDD 9U3 53938007 20T T WUnJp WOIJ PIOOBI DPJIg FTJN a Toqe] THD
w GIEVI UT SSaJppR jusaIny 7T SS8J4ppy JuaJgIn) d SSaJppy v¥ano
w € WnIp uody pIOdSI Pdg JO BUTPEAI TENJOR 8U3 JOJ MJ) dY3 Se3B00] 1°0T 2 UNJIp woJJ pIooad pI¢ peay a T2q®T 24
i T UNJIp WOIJ PIODSI Pdg JO BuTpEaI TBNYOR 8U} J0J §J) 2Y] S91BOOT T°01 T WNJD WOJJ PJIOJ3I PI§ PEIY a Teqeq ™)
| II ®TA9E] UT PSUTFap age suoridp H ‘¢t TTe2 Jo 8adToyd d dl ‘I HOI0HD
i 2 unJap jonh Butpead JOF MO) ISITI eyl Jo uot3Tsod ay3 S9jBOOT 1°0T € UnJap wody JUTpEad JOF MID 3SJa1y a Teqe] ZHMDD
! [Wnap woJy BuTpeat J0F M) 1S41F ayg Jo uotjisod ayj sajeoo] 1°0T T WnJp woay SuTpEad JI0J MOD 9SITJ a Taqe] TIMDD
m € ENIp ‘peAcw 8q 0} SPJCOAI f Y3} JOF (¥HHOD) SessaJppe TBN]OR SUTRIUO) ¢°0T ¢ unip ‘seSSaJdppe YHHID IS Tageq 2HHHOD
i T UNJIp ‘pasow 8q 03 SPJI0ORI f Y3 JI0F (MHHOD) S9SSaJppe TBNJ0® SUTBRUO) £°01 1 wnap ‘sa&SeJppe H¥HHID s 12987 THHHOD
! 2 UNJp 0% pIovas pig JUTITIM JOF MDD ISITI 8y} JO uvorjisod 8yj} S93ROOT €°0T |2 WnJIp 03°93d PI¢ SUTYTIA JOF MID ISITJS a Teq®] SHMODD
! | WnIp 07 pIoded pig SUTITIM J0T MOD 1SITI Y3 JO uOTyTSOd ay3 S93BOOT €°0T |T unJp 03°921 pa¢ SUTITIM JOJ MOD 4SITJ a T8q®T MDD
m € UNIp 0} PJIODBI PUODSS JO BUTHTIM TENYOE ayg J0J M) oYj Sa3BOOT 2'0T € WNJP 03 PIO9SI PUCIIS BYTIM a 12987 2ha
m T UnJdp 03} PJOO3I PUOYSS JO BUTFTJIM TENJOR 8y} JOF MJ) 9UY3 S8qBOOT 201 T UNJDP 0} PIOOSI DPUODAS BYTIH a T2qeT ™d
¢ UnJp WOIJ PI0o3I PUOdas JO JuTpeal TBRAOB ayl J03 pmJ) sua S83B00T T°0T ¢ WNJp WOJJ PJOOaJd puodas peay a 12987 g
T UnJp WOIJ pIcORI PUODSS Jo BUTPEAL TENYOR ayj JoJ g9 oyj Seqeooq T°0T 1 UNJP 'OJIJ PIOOAI DPUODAS PEIY a 10987 ™™g
¢ WNIP 03 PJOY®d PUODSS JUTATIM JOF MDD 3SJTJ JO uorytsod ayj sa3eooq €°0T [2°Wdp 03 °03I°09s BUTHTIM IO MDD 35T a TagEq cMMood
T Undp 03 PI0d&J PUODSS JuTiTam JOF W55 3SITI Jo uctytsod ayj S8qBO0T C°0T |T*Wwap 03 "00d°03S BUTITJIM JOJ MDD 9SITJ a T9qRT TMm00g
safqetaea [eo1sAyd BuTploq eale Jajng 8100 JO SSaJppe aseg ¢oT HVYA Jo SsaJappy aseg d SSaJppy JYAYd
SP.J00aJI UNJIpP JO S38SSeJPPe aATIeTad JO ITHYI JO SSoJappe aseg c°T JIGYT JO SSaJppy eseq a SSeIpPY AIIVIVE
€ unIg uo sassaJppe ajnfosqe Sutatd a7ge] Jo SSaJppe aseg 71 2 8TQRT wnJg Jo °*y°g Jd SSaJIPPY cHYLNaYd
T UnJg uo SassaJppe 23nTosqe BuTATE aqe] JO SSoJIppR aseg #°1 T 9TQ® wnag Jo *y*g d SsaJappy TavInave
DFUNT ‘NATOFY ‘OFMN ‘THOON SDTOY yoTym ‘WIQ JO SSeIppE oseg ¢ 1 WIQ JO SSeJIppy 9seg d SS2appy WIQYe
€ UnJp 03 PJI0D3J 3SITF JO BuTHTIM TBNGOE 2U3 J0J MI) 2y3 583007 c*0T ¢ WNJIp 03 PJODAI JSJITI 3TN a T9Qe] chy
T WRJPp 0} pI028J 3SIIF JO SuT3TaM TBN3OoR ayj JOF jo) oyl S83B207 2°0T T UWRJP 03 PJIOOdI 3SJITI 8FTIN a 1eqe MY
€ UNJIP WOJJ PI00ad 2SITJ JO BuTpEad TEn30® ayj JoJ 100 9Yyj sejeo0] T°0T C UnJp wWouj pJ0ooal 3SIT] peay a 19qe] cuy
T WNJP WOIJ DIOOAI 3SJLTF JO JUTPEAJ TENJOR 8Y3 JOJ M) Syl Se3B00T T°0T T UNIP WOJJ PIODBI 3SILJ DBRSY a Teqe] Y
€ WNIg ‘U0TSJaAU0C Ssaappe oy dool Jo BuTuutdag c¢ SSaJppe g WnJgg 3Xau 3JJ3AU0) TeqeT CNIVDY
T unag ‘uotsaaiuos ssagppe JoJ dool jo SutuutSeg G*C SS3JPPR T UMJJ 9XaU 3J9AUOD) Ta2qeT TNIVOY
DaAoW 80 03 PJIODSI 3SITJ 8Y3l JO 8J09 UT SSaIppy VRS 8J0) UT SS3aJppy Jd SSaJppy JH00av
€ UnIp 03 2FuT}TIM JOJ PIOM DUBLWOD TSUUBYD 3SIt3 Jo *sod sajmOOT C°0T [unap 03°0ad 3ST SuT3TIA JOT MID ISITJ a T9QeT CMMIDY
T WnJp 03 BUTFTIM JOJ DJIOA DUBLWOD Tauueyd 34SITJ Jo *sod S93BOO7 €°0T |[L uWnap 03°09X 3ST BUTHTJM JOF MDD 3SITJ a TageT TIHOOV

INTYA TYITINI 350dund NOILI3S OJINOWINW dZ21S ddiL YITJILNAAT

JSNVHL WVYDOHJINS 04 SHITJIINIAI JO XIANT

- 6'AIV -

1 #°T + Ty Jequny E aNO
TnJSsaoans sem 93Tam snotasad It qutod sTyY3 03 dryg 9°¢ ¢ WnIg uo ¥O 93TJM TeqeT S0

TNJSS82ans SBM 93TaM SnoTasad JT jutod sTyU3 0% dryg 9°g T mnag uo jo 83TaM Teqe] ™o

TnJsSs200ns sem pead snotasad JT qutod STy} o3 dmig 2% 2 umig uo jp peay ToqeT 2Wi0

nJsss0ons sem peax snotasad T quroed STY3 03 d1ys 2°s T unJag uec o pesy 1aqe] TDIo

dump e A3Toads ‘uadc sae 5385 ®BaER(Q % uadp Mo Taqe] NIJOON

T PaTTe0 ST weadoad gns oy 3ey3 SWT] 3SITF oyg T = H ‘"1 TTeD Jo Jaquny d dI‘t NN

e e, N
1 sueTd=y jusaimo Jo jutod ysow 3SaTg H ‘g1 310D UT 3JUTod ysan 4 dI ‘1 HOHSAN
7!. 4

" T sweu 3o07g qndyng 3ndug €6 83TJM ‘g uniIg JI0J gOT 46 qooTqd ZhMgoI

" " euel ¥oo1g gndyng qndur €6 93TIH ‘T unig IoF goI J6 yooTq ™I0T

" u eweu yoo0Tg gnding gnduy 2'6 PERY ‘2 wnag JoJ €0I J6 Aootg cyg0T
ButystT eag sureu jooTg gndyng qndug 2°6 peay ‘T wnig Joj €01 J6 Ho01d THA0T
ki 7°T Vi I9quny d T 4no.d

< 7°1T 16y J3quny d I IATL
20BJIQUT J9TQUWASSY = UoJ3I0] BTA wesSoad qns BuTTTED 0% uanjay 9 DRYSTUT] }SB] Teqe] HSINTJ

g 181 JIaquny d il IHOTY

Y 2 UNJp 03 BUTITIM 107 HOOTq TOJIUCD juahy £'6 99Tan ‘Z unap 103 g3 d HooTg chend

0 T UnIp 03 SUT}TIM J0J 3O0TQ TOJIUOD JUDAT £°6 99TaM ‘T wndp J0F g03 d 00Td THEDI

0 2 WNJIP WOl BUTPBAI J0F YOOTq TOJJUOD UBAT 26 pEdy ‘Z wnig Joj goF 4 2019 cHend

0 T UNIp woay BUTPead JOJ ¥OOTq TOJJUOD JUSAT 26 pesy ‘T wnag Tof €03 d F20Tg THe0d

€ WNnIp 03 DPI0dSI Y3 JO BUTHTLM TENIOR 3y} JoF M) Sul Saje20T c*0L ¢ UnJp 03 PJIodad Yy 93TJM a T°q®1 cha

T UnIp 03 PI02ad Y3 JO BuTHTam’ TBNJOR 8yj JOF gD 8yl S9qE00T 2°0T T WNIP 03 PIOd3J Uiy 93TIM a ToqB] ™

C UnJp WO} pIoosd Y34 JC SuTpesd TBN4OR ayj J0F j00) AU S838007 1°0T ¢ WnJp WOJJ PJOOSI Yih pPeay a Teqe1 (0!

T UNJp WOJJ PJIOASI Y3y JO SuTpead [BNYOR 2y3 J0J M) SY3 Sa3=007 T°0T T WNJp Wodj pJodsd Y34 pEay a T2qe] Ta

8Tge] UNJp JO 3J89S WOl JusweoeTdstp ajkg #°1 juawaveTdsTq Jd I YIdSIT

OTUNT “NATOTH OFM T¥OOM SutuTEjuod ABLIR Ja8aqur SUOTSUSWTD BUTUTBIUCD KBJIIER Jot VI WIaQ

€ Wndp 03 pI0daI Y34 JuTITaM IO MID ISITI Jo uoTytsed Y3 se3eoo] 0T € WnJp 03°23J Yjh BUTFTIM JOF MOD ST a TaqeT CRAOOa

T Ungp 02 pIooad yi4 SuT4TIM JOF MDD 354T] Jo uot3rsod syz sajeooq 2*0T T UNJIp 03°28d Y34 BUTITIM JoJ MDD 3ST a Taqeq THHODT

Woou o SWBU {OO0Tg Tod3uo) BYE] 1°6 @3TaN ‘2 unag JoJ g0 (ouovm) HooTd EME2a

[T TR SWEBU 3OOTg Todjuo) Bieq "6 93TaN ‘T unag JoF 904 (ouovm) “jooTd ™mana

T TR aweu yo0Tg ToJ3uo) Bieq 1°6 pesy ‘g unag 103 gaq (ouoYH) 3}ooTd g
OHIVW £q 388 BWRU }{OOTg TOIjU0) 23e(1°6 pesy ‘T wnag JoF €00 (ouoYW) 320Td THEOT
dNTVA TVIIINI dS0dund NOIZDFS DINOWINW JZ1Ss Id1T YITITINIAQT

JSNYETL WVYDOUdENS ¥0J SHATJIINAAT JO XHANT

- 0T'AIV -

SunJdp 03 BUT3TIM JIOJ UCT399S5

1L S TIf T9qQeT T

83Tam snotasad Jo uoT3eTdwod JOJ JTBA 03 JBYJAYM 4S8 'S 191TIN JI0F JTEM Teqe] MTIVM

8402 UT 9JdB yOTUM UCTIBINITBO 8y} JO SI[OBTJIBA TT® BuUTUTBU0D ABJJY . SSTQBTJBA 8Y3 [T SuturRijucod KeJaay vy qyA

2 #°T 121 I8qumy d I OML
sunJap g 3utsn ‘ssueTd-)y BUT}TIM puR Burpeas Joj welSoad qng H seueTd=y JaJSUBRI] IoAS) JASNYHET,

¢ UNJp YoBS U0 SPJIOORI Jo Jaqunu TBI0T ¢*T SpJI0%3Y JO 1aqumy TE30] d I OTUNL
1T 124 JRqUNN d I JIHHL

P2IISISUBIY 8q 0} SPIOOAd JO SISSaJIPPE SATIBTAL BUTUTBIUOD BB S9SSaJppPR JO 9TQB] J89/ VI JTAVL

93ejUTT J2qUSSSYy - ueIjJd0d 09 AJaug 1°2 wexBoad aTqeINOeXs 1IB4S TeqeT IMVIS

9 #°T 19, Jaquny d I X1s
b 1T iy J9qUNY d I NIATS
(TANDDEI) 21-6 SJI89STI0J SAES H°T (21-6) BaIy BAES df VI 6IAVS

(sTreo 0doYN) wesBoad qns STY3 UT pasn SI93STHad SARS 2'T BaJY JABS J8T VI dAYS

T unag ‘pasIajsuedy 8q 03 PI0dad 3SITF JO Jagumy H *¢'T J9qunN pIodsy e dI ‘I ANNDEY

sa3Aq uT y3Busl PIoday ¢ 1 Y33usT prooay d I NETOFY

SunJp wody BuTpead JOJ UOT3085 1°9 pesy 18qeT ™

€ UnJJ Uo SSaJIPPeR 83nT0Sqe 03 J93uTod T 2 ungg JoJ J9juTod d SsaJdppy 2INIOd

T unJg Uo SSaIppe 23nToSqe 03 J33jUTod #°1 T mnag JoJ J93UTod d SSaJppy TINTOd
dNTVA TYILINI d50ddnd NOTILDAS DINOMNINN dz1s ddXL YETJIINAAT

JSNVYL AVHDO¥dENS 404 SHITJITINAAI JO0 XHANT

1 =

2 & SUDROUTINE SETORM(RH.STASTO,DIM,VAR, TABLE)

3 s

4 % INITIATE THE K-PLANES, 4 AT EACH CALL

5 & EACH PLANE IS DIVIDED BETWEEN THE TWO DRUMS 1 AND 2
6 % THE BASIC SEQUENTIAL ACCESS METHOD IS USED [B85aAM)

T * OVERLAPPING IS NOT EMPLDYED AT THIS STAGE

B % AS A CHECK, THE RECORDS CAN ALSO BE READ BACK INTD CORE
9 =

10 #

1= ARGUMENTS

12 =

13 #RW SPECIFIES WHETHER THE PRESENT CALL TO THIS MODULE IS FOR READING DR
14 *HRITING. RH=1 INDICATES READINGsRA=2 [NDICATES WRITING

15 *

16 #STASTO=1 MEANS FIRST CALL TO THIS MIDULE, HENCE OPEN THE DATASETS

17 ®5TASTO=2 MEANS LAST CALL TD THIS MODULE,

18 *5TASTO=0 ALL INTERMEDIATE CALLS

HENCE CLJSE THE DATASETS

9 =
20 eDIM IS5 AN [NTEGER ARRAY WHICH STDRES VARIABLES LIKE KCORE,NREC,RECLEN

21 KCORE NUMBER OF K-PLANES IN CDRE AT ONE TIME
22 = NREC NUMBER OF RECORDS IN 1/2 OF K-PLANE
23 = RECLEN RECORD LENGYH IN BYTES
24 ® TNREC TOTAL NUMBER OF RECORDS ON ONE DRUM
25 %
26 ®VAR 15 THE REAL ARRAY WHICH CONTAINS THE VARIABLES OF THE CALCULATION
27 #
28 *TABLE STDRES THE RELATIVE ADDRESS OF THE RECORDS WRITTEN ON DRUM
29 *
3D e e e e e e e e e e e
31 REFERENCES (REF/PAGE)
32 %
33 # L SUPERVISOR AND DATA MANAGEMENT INSTRUCTIONS
34 = 2 SUPERVISOR AND DATA MANAGEMENT SERVICES
35 = 3 2820 STORAGE CONTROL AND 2301 DRUM STORAGE
36 ¢ 4 SYSTEM PROGRAMMERS GUIDE
37 ¢ 5 PRINCIPLES OF DPERATIDN
g * 6 FORTRAN IV IG & HI PROGRAMMERS GUIDE
39 =
40 * i L SR SRR e
41 ®
42 SETDRM CSECT
43 USING #,15
L B START
45 %
b Bmm e o g i e —
&7 &L STORAGE
48 =
&3 %L 1al. SET CONSTANTS FOR DEBUG Re/P132
50
51 1 X1y
52 [1]s4 CL7*SETDRM®
53 &
54 ®L b2, SAVE ARCA
55 %
Bh SAVF ns LBF SAVE AREA FOR KEGISTERS
57 &
54 =L ARGUMENTS
59 &
o kW ns F Ha=1 RFAULRW=2 HAITE
61 STASTL 25 F STASTO=1 START,5TASTO=2 STIP
b GADLH a5 E SASE ADDRESS OF ARGAY DIv
03 Bayar 5 F BASE ADNKESS OF VAR
o4 RATARLE 0§ 5 JASE ANORESS OF TABLE
Ay w
"5 F NJMUER IF K PLANES IN CORE
ns F ND. JF RECORDS IN L/2 £ PLANE
[F RECNRD LENGTH IN BYTES
Lot [HTEHNAL VARIABLES AND CONSTANTS
s F CUKRENT ADNRESS I[N TABLE WHERE THE
RELATIVE ADORESS OF THE RECIRD JUST
ARITTEN ON ORUM IS TOD BE STORED
oc Fry!
nc Fr21

2. DEFINE DATA EVENT CONTRIL BLOCKS (DECB)

&1 4THE LIST FORMS GF THE MACRO [NSTRUCTIONS CREATE THE DECB'S

82 #5F HEANS REAM OR WRITE SEFQUENTIALLY
B) =
8% &LIST FORM OF READ

«

84
s READ DECBLRSF, INDCBL,MF=L
BT+DECALA TOCK
83+ (1] X'00*' TYPE FIELD

83+ nc X"80' TYPE FIELD

90+ oc ALZI0) LENGTH

91+ oc ACINDCBL) DCB ADDRESS
92+ oc ALO) AREA ADDRESS

93+ DC A1O) RECORD POINTER W3RD
9%

95 READ DECB2R.SF,INDCB2,MF=L
94+DECB2H] T BLOCK
97+ nc X100* TYPE FIELD

98¢ oc X'B0' TYPE FIELD

99+ nC AL2(0) LENGIH

100+ nc ALINDCAZ) DCB ADDRESS
101+ oc A(0) AREA ADDRESS

102+ oc A10) RECORD POINTER WORD
103 *

104 SLIST FORM OF WRITE

105 ¢

106 WRITE DECBLW,SF,0UTNCBL, MF=L
L07+DECBLW BT FY0T EVERY CONTROL BLOCK
108+ oc X'00* TYPE FIELD

109+ oc X*20' TYPE FIELD

110+ oc AL2(0) LENGTH

R1/P229
R2/P101

RL/P26T

R1/P2T9

- AV.1

111+ DC A{DUTDCBL) DCB ADDRESS

112+ DC Al0) AREA ADDRESS

113+ oc A{0) RECORD PDINTER WORD

Li4 *

115 WRITE DECB2WSFs0UTDCB2sMF=L
Lis+DECB2W NT CONTROL BLOCK

L17+ pc X*00' TYPE FIELD

118+ oc X*20' TYPE FIELD

119+ oc ALZ2(0) LENGTH

120+ oc ATOUTDCBZ) DCB ADDRESS

121+ oc ALO) AREA ADDRESS

122+ oc AlO)] RECDRD POINTER WORD

123 =

124 $mm e e e e --
125 &L 3. DEFINE DATA CONTROL BLOCKS (0DC8)
126 *

127 #PS MEANS BSAM

128 *R = READ, W

WRITE, P = POINT [IMPLIES NOTE)

129 *
130 INDCB1 DCB DDNAME=DSET1,DS0AG=PS4+MACRF={RP}
132+% DATA CONTROL BLOCK

133+2

134+INDCBI oc OF*0" ORIGIN ON HORD BOUNDARY
136¢% DIRECT ACCESS DEVICE TNTERFACE
138+ 219 BL16'0" FDAD,DVTBL

139+ oc A{0) KEYLE,DEVT,TRBAL

1al+s COMMON ACCESS METHOD INTERFACE
143+ DC ALL(D) BUFND

Lé4+ nc AL3(1) BUFCB

145¢ nC ALZ(D) BUFL

146w bc BL2'0L00000000000000" DSORG

147+ Dt AlL) IDBAD

149+# FDUNDAT [ON EXTENSION
151+ oc BL1'00200000" BFTEKsBFLN+HIARCHY
152+ DC AL3(1) EODAD

153+ 2] BL1'0000D000" RECFM

156+ oc AL310) EXLST

156+% FOUNDATION BLOCK

158+ oc CLB'DSETL' DONAME

159+ oc BL1*00000010* OFLGS

160¢ nc BL1*00000000" [FLG

161+ nc BL2'0010010000000030" MACR

163+= BSAM-BPAM-0SAM [NTERFACE
155+ nc BLL*00D0000J' RER1

Loo+ nc AL3(1) CHECK, GERR, PERR

167+ 1] AL1) SYNAD

lode oc H'O' CINDL, CIND2

169+ nc AL2(0) BLKSIZE

170+ oc F'0' WCPO, WCPL, OFFSR, OFFSW
171+ DC A(1) [0BA

172+ DC ALL(O) NCP

173+ oC AL3(1) EDBR, ENBAD

179+% BSAM-BPAM INTERFACE
LT7¢ nec AlL) EDBH

LT8¢ pc H*0' DIRCT

LT9+ (1] AL2(0} LRECL

180+ nc ALl} CNTRL, NOTE, POINT

181 *

182 [NDCB2 3]0] NDNAME=DSET2,0SDRG=PS,MACRF=(RP)
184+% DATA CONTROL BLOCK
L85+%

186+INDCBZ DC OF'0" DRIGIN ON WORD BOUNDARY
18ysw DIRECT ACCESS DEVICE INTERFACE
190+ nc BL16"0* FDAD,DVTBL

191+ Dc AlO) KEYLE,DEVT,TRBAL

193+# COMMDN ACCESS METHOD INTERFACE
195+ oC ALLIO) BUFND

196+ pC AL3(1) BUFCB

197+ nc AL2(0) BUFL

198+ nc BL2'0100000000000000' DSORG

199+ nc AlLL) [0BAD

2C1+% FOUNDATION EXTENSION
203+ oc BLL'0D000000" BFTEK,BFLN,HIARCHY
204%+ 1] AL3(1) EODAD

205+ DC BL1'00002000" RECFM

206+ bC AL3(0) EXLST

208+% FOUNDATION BLDCK

210+ pc CLB'DSETZ2* DDNAME

211+ oc BL1'00000010"' OFLGS

212+ oc BL1'00000000"' IFLG

213+ nc 8L2'0010010000000000" MACR

215+% BSAM-BPAM=QSAM INTERFACE
217+ DC BL1'00000D000" RERL

218+ bC AL3{L) CHECK, GERR, PERR

RL/P4T

R1/PSO
RL/P59

219+ oc All)l SYNAD

220+ oc H*0' CINDL, CIND2

221+ oc AL2(0) BLKSIZE

222+ 1] F'0" WCPO, WCPL, OFFSK, OFFSH
223+ oc ALl) 10BA

224+ oc ALL(D) NCP

225+ oc AL3{1) EDBR, EOBAD

227e¢ BSAM=BPAM [NTERFACE
229+ oc All) EOBH

230+ oc H'O0' DIRCT

231+ oc AL2(0) LRECL

232+ oc ACLl} CNTRL, NOTE, POINT

233 =

234 OUTDCBL OCB DDNAME=DSETL ,D50RG=PS,MACRF={HP}
23648 DATA CONTROL BLOCK
237+%

23840DUTDCBL OC OF'0' ORIGIN ON WORD BOUNDARY
240+ DIRECT ACCESS DEVICE INTERFACE
242¢ oc BL16'0" FDAD,DVTBL

243+ 1] ALO) KEYLE.DEVT,TRBAL

245+% COMMON ACCESS METHOD INTERFACE
24T+ nc ALL{O) BUFND

248+ nc AL3(1} BUFCB

249+ oc AL2{01 BUFL

250+ oc BL2'0100000000000000* DSORG
251+ oc ALLY TOBAD

253+% FOUNDATION EXTENSION
255+ oc BL1'00000000* BFTEK,BFLN,HIARCHY
25a¢ oc AL3(Ll) EODAD

257+ oc BLL'O0D00000' RECFM

251+ oc AL3{0) EXLST

260+% FOUNDATION RLOCK

262+ oc CLB'DSET1' DDNAME

263+ [al BL1'000D00LO" OFLGS

That oc BLL'00000000' IFLG

205 nc B8L2'0000000000100100" MACR

26T+% BSAM-BPAM-QSAM INTERFACE
2n0t nc BL1'00000000" RERL

270+ ot AL3{1) CHECKs GERR, PERR

2L+ oc A{L) SYNAD

272+ nc H'O' CENDLy CINDZ

273+ nc ALZ(0} BLKSIZE

2T4+ nc F'0' WCPD, WCPL, OFFSR, OFFSW
275+ nc ALl) [0BA

276+ nc ALL{O} NCP

277+ oc AL3(1} EOBR, EOBAD

2T9+> BSAM-HPAM [NTERFACE
281¢ onc Al1) EOBH

282+ oc H'O! DIRCT

283+ nc AL2(0] LRECL

284+ oc ALL) CNTRL, NOTE, POINT

285 =

286 DUTDC32 DCA DONAMF=NSET2,0SO0RG=PS, MACRF=(HP)
2684 & DATA CONTROL BLOCK
2R9¢%

2904DUTDCB2 DC QF'0' ORIGIN ON WORD BOUNDARY
292+% DIRECT ACCESS DEVICE INTERFACE
294+ nc BL16'0* FDAD,DVTBL

295+ nc ALO) KEYLE,DEVT,TRBAL

297% COMMON ACCESS METHOD INTERFAGE
299+ oc ALLIO} BUFND

oo+ oc AL311) BUFCB

301+ oc AL2(0F BUFL

302+ oc AL2'0100000000000000"' DSORG
303+ oc All) [08AD

305+% FOUNDATION EXTENSTON
A0T7e nc BL1'00000000"' BFTEK,RFLN¢+HIARCHY
308+ nc AL3I1) EODAD

309+ nc BL1'0D0000000* RECFY

310% oc AL3IOY EXLST

312+% FOUNDATION DLOCK

4+ ol CLB'*DSET2* DDNAME

315+ DC BL1'00000010' OFLGS

316+ oc BL1"00000000' IFLG

317+ nc BL2'0000000000100L00" HMACR

319+% BSAM-BPAM-QSAM [NTERFACE
321+ nc AL1*00000000' RERL

322+ oc AL3(1) CHECK, GERR, PERR

323+ D All} SYNAD

326+ DC H'0" CIND1ly CIND2

325+ oc AL2(0) BLKSIZIE

326+ nc F'0"' WCPO4+ WCPL, OFFSR, OFFSHW

0000C
0o000C
00004
00008

00000
00000
00054

00004
ooooo
aoos8

00054
ooo78
0038E

00058

ooo78
oo2ce

00008
0005C

0000C
00060

- AV.2

T+ oc 1 [0BA

123+ oc 0} NCP

129+ oc 1} EOBR, EOBAD

EEIR S BSAH-BPAM [NTERFACE

333 nc EQBW

334+ oc DIRCT

336+ oc 0} LRECL

EETTS oc CNTRL, NDTE, POINT

337 =

338 * =i e ———
3139 sL FORTRAN-ASSEMBLER INTERFACE R6/P132
340 *

341 WL 4.l STANDARD L INKAGE

342 * =

343 START STH 2,12013) SAVE REGISTERS 14,15 AND 0-12
346 LA AVE ADDRESS JF CURRENT SAVE AREA
345 ST 1121 STORE BACKWARD LINK IN CURRENT SAVE AREA
346 ST (13 STORE FORWARD LINK TN PREVIDUS SAVE AEA
347 LR 2 13 NOW HOLDS ADDRESS OF CURRENT SAVE AREA
348 ORQP

349 USTNG 113 NEW BASE ADDRESS

350 =

351 %

352 =L 4.2, INTEGER ARGUMENTS

353 *

354 L 9] TRANSFER BASE ADDRESS OF RW

355 L 201 3)

356 ST 5,RH

357 =

354 L Syail) TRANSFER BASE ADDRESS DF STASTO
359 L 5,015)

360 ST 5,STASTD

361 *

362 *L 4.3, TEST TYPE OF CALL

363 ®

364 L 34RH

365 5 3,0NE Ra-1

366 BE READING IFf Rd=1 THEN BRANCH TO READING
367 *

360 L 3,5TASTO

369 s 3,0NE STASTO-1

370 BNE WNFIRST IF STASTO NOT = L THEN BRANCH TO WNFIRST
71 #

372 #—mmmmmmmmmmmee

373 oL 5. INITIAL CALL

374 &

375 oL 5.1 INITIALIZE ARRAY BASE ADORESSES
76 *

ENSS L 5,801}

37a ST 54BADIM BASE ANDRESS OF DIv

379 *

aao L 5412111

ELTH ST 5,8AVAR BASE ADDRESS OF VAR

382 *

383 L Sy16(1}

184 ST 5yBATABLE BASE ANDRESS OF TABLE

385 *

386 oL 5.2. STORE COMPONENTS OF 2DIHe

387 *

388 L S BADIM

139 *

390 L 4,0(5)

391 ST 41 KCORE

392 *

363 L 44415)

394 ST 4 NREC

395 %

396 L 448(5)

397 ST 4yRECLEN

398 *

199 &L 5.3. OPEN THE DATA SETS RLFP129
400 *

401 OPEN__(OUTDCS1, (DUTPUT)] OPEN DATASET ON DRUML
%02+ CNOP 044

403+ 8AL Ly*+8 LOAD REGL W/LIST ADDR.

404+ nc ALLUL43) OPTION BYTE

405+ oc AL3{0UTDCBL) DCD ADDRESS

406+ SVC 19 [SSUE OPEN SVC

407 *

408 OPEN_ (0UTDCB2,{0UTPUT)I OPEN DATASET ON DRUMZ
409+ TP 0.2

410+ AL L,*¢8 LOAD REG1 W/LIST ADDR.

41+ nc ALLCL431 OPTION BYTE

412+ nt AL3(0UTNCB2) DCB ADDRESS

413+ SVC 19 ISSUE OPEN SVC

414 *

415 %L 5.k FIRST RELATIVE ADDRESS

416 *

417 L 6, BATABLE START STORING THE RELATIVE ADDRESS
41R ST 61CJAD ON DRUM AT HEAD JF TABLE

419 &

420

421 =L 6. PROGRAM FOR WRITING ON ORUMS

422 %

423 sL 6.1 SPECIFY PROG. INTERRUPTION EXIT RL/PLT3
424 %

425 WNFIRST SPIE_ O PRODJCE A DUMP [F PROGRAM ABENDS
a264 TNOP 2:%

42THANFIRST LA Ly#+12 LOAD BRANCH ADDRESS

423+ BALR Lyl BRANCH ARDJND PARAMS.

429+ oc ALD) EXIT ROUTINE ADDRESS

430+ oc AL2(U) INTERUPTION MASK

4314 SVC 14 ISSUE SPIE SVC

432 =

433 WL 6.2 INITIALIZE REGISTERS

434

415 L 3 NREC NUMBER DF RECDRDS [N EACH 1/2-PLANE
435 L 44KZORE NJYBER JF K-PLANES TO 3E WRITTEN

SPECIFIES ADDRESS FROM WHICH RECIRD IS TO

437 1 5, BAVAR
438 % BE MOVED

439

440 L 6.3, A{ITE RECORDS ON DAUML

L4] %

4642 *OUTER LOOP OVER PLANES (R%)

443 ®[NNEH LOOPS OVER RECORDS (RY)

444 &

445 WNEX] WRITE DECBLWsSF44015)+MF=E EXECUTE FORM RL/P280
446+ TTEX ¢ ¥ L) T 3

44T+ HVI 5(11,X*20* SET TYPE FIELD

444+ L4 14,0(5) LDAD AREA ADDRESS

449+ ST 14,1241,01 STORE AREA ADDRESS

450+ L 15,3(1,0) LOAD DCB ADDRESS

451+ L 15,4810,15) LOAD RDWR ROUTINE ADDR

452+ BALK 14,15 LINK TO D4R ROUTINE

453 =

454 CAECK DECBLW CHECK FOR COMPLETION OF WRITE R1/P3T
455+ ta » DE

456+ L 1448(0,11 PICK JP DCB ADDRESS

457+ L 15,5210,14) LODAD CHECK 20UT. ADDR.

4549+ BALR 14,15 LINK TO CHECK ROUTINE

459 %

460 NOTE _QUTDCBL RETURN POSETION OF LASY BLICK R1/P127
461+ TA T,00TDCBI LOAD PARAMEVER REG [-

462+ L 15,84(0,1) LOAD NOTE ATN ADDRESS

4671+ SALR 14,15 LINK TO NOTE ROUTINE

404 =

465 ®MACRO NOTE RETURNS THE RELATIVE ADDRESS ON DRUM OF THE RECORD WHICH
466 =HAS JUST JEEN WRITTEN TO DRUM IN REG 1

L6T *

463 L 6,CUAD

469 ST 1,0(6) STORE RELATIVE ADDRESS IN TABLE

470 LA by416) JPDATE CURRENT ADDRESS BY 4 BYTES
471 ST 6,CUAD STORE NEW CURRENT ADDRESS

472 A 5, RECLEN GET READY TO WRITE MEXT RECIRD

473 BCT 3, HNEXL RETURN TO WNEX1 T WRITE NEXT RECIRD
474 L 3,NIEC REPEAT WRITE NREC TIMES

475 =

476 %L Bub. NRITE RECIROS ON DRUM 2

477 *

473 =MOW WRITE THE NREC RECORDS OF THE SECOND HALF OF THE K PLANE TO DRUMZ
479 *

480 WNEX2 HRITE NECB2W,SF,,0t5),MF=E

481 +dNEX2 LA L,DECB2W LDAD DECB ADDRESS

482+ vl 5(1),X'20* SET TYPE FIELD

483+ LA 14,0(5) LOAD AREA ADNRESS

4B4+ ST 14,12(1,0) STORE AREA ADDRESS

485+ L 15,811,0) LOAD DCH ADDRESS

486+ 15,4810,15) LOAD ROHR RIUTINE ADDR

467+ BALR 14,15 LEINK TO ROWR ROUTINE

488 *

489 CHECK DECB2W

490+ LA +DELDB2W LDAD PARAMETER REG L

491, L 14,8(0,11 PIGK JP NCA ANDRESS

492+ 14 15,52(0,14) LDAD CHECK ROUT. ADDR.

473+ RALK L4415 LINK TO CHECK ROUTINE

494 *

495 A 5 RECLEN

496 BCT I WNEX2 REPEAT WRITING ON DRUMZ NREC TIMES
497 ©

494 L 6.5, PREPARF FOR NEXT K=PLANE

409 #

500 L 34 NREC

561 BCT 4 WNEX] REPEAT THE ABOVE KCORE TIMES

502 %

503 =L 6.6 TEST _FOR_COMPLETION

594 % o=

505 L 3,5TASTO 1F STASTO NOT = 2 DO NDT CLISE DATASETS
506 s 3,Tdn

507 nNE FINISH

508 =

509 =L Foilia CLOSE THE DATA SETS R1/P45
30 =

S11 CLOSE (DUTDCALY

512+ LA BFE)

513+« naL 1.%+#8 BRAMCH ARJUND LIST

514+ nc ALLI123) OPTION BYTE

515+ Dec ALJ(OQUTNCBL) DCH ANDRESS

514+ SYC 20 ISSUF CLOSE SVC

517 *

513 CLOSE _(QUTNCHZ)

51+ qle v

520+ BAL 1,%¢3 BRANCH AROUND LIST

521+ nc AL11128) OPTION BYTE

522+ nc AL3(QUTDCB2) DCB ADDRESS

523+ SYC 20 1SSUE CLOSE SVC

524 =

525 [FINISH

526 %

521 --

528 ¥, T. PHROGRAM FIR READING FROM DRUMS

529 ==

530 #PKOGKRAM FOR READING THE RECORDS WHICH HAVE BFEN WRITTEN

531 =T0 THE DRUMS. THIS IS USED FOR CHECKING THAT THE DATA HAS BEEN WRITTEN
532 *CORRECTLY

533 =

534 #L Tula TEST WHETHER DATA SETS ARE JPEN

635 ®

534 READING L 3,5TASTO

817 s 3,0NE

538 BNE KNFIRST SRANCH IF STASTD.NE.L

539 %

540 %L Ta2a UPEN DATA SETS R1/P129
541 *

542 OPEM LINDCRY, {INPUTI)

543+ CNOP 0,4

Sh4+ AL L,%¢8 LOAD REGL W/LIST apOR.

5454 nc ALL(128) OPTION BYTE

S4h+ nc AL3{INDCA1} NCA ADDRFSS

- AV.3 -

547+ SVC 19 ISSUE OPEN SVC
548 &

543 OPEN _ (INDCB2, [INPUTI)

550+ NOP O+ %

551+ BAL 1,%+8 LOAD REGI W/LIST ADDR.

552+ oc AL11128) DPTION BYTE

553+ oc AL3(INDCB2) DCS ADDRESS

554+ SVC 19 ISSUE OPEN SVC

555 %

556 %L Tadi INITIALIZE REGISTERS
557 *

558 RNFIRST L 4, KCORE NUMBER NF K-PLANES TD BE READ
559 L 5,GAVAR BASE ADDRESS OF FIRST RECORD
560 L 3,NREC NUMBER OF RECORDS I[N EACH L/2-PLANE
561 %

562 %L Tobe READ RECORDS FRUOM DRUM 1
563

564 =0UTFR LOOP OVER PLANES (R4)

565 TINNER LOOPS OVER RECODADNS 231

566 ®

567 RNEXL READ DECBLR,SF,,0(5) MF=E

568 +RF iy W LOA DORESS

569+ MVI 5(1),X'80% SET TYPE FIELD

570+ LA 14,0(5) LDAD AREA ADDRESS

STL# ST 14,1211,3) STOKE AREA ADDRESS

572+ L 15,811,01 LOAD DCB ADPRESS

573¢ L 15,4800,15) LOAD RD4R ROUTINE ADOR
5T4+ RALR 14,15 LINK TO RDWR ROUTINE

575

574 CHECK _DECBIR

577+ A T/DECBIR LOAD PARAMETER REG 1

578+ (3 14,8(0,1) PICK JP NCB ADDRESS

579+ L 15,52(0,14) LOAD CHECK ROUT. ADDR.
5HO+ BALR 14,15 LINK TO CHECK RDUTINE

581 *

582 A 5 RECLEN

583 GCT 3,RNEXL

534 %

585 %L T.5. READ RECOR0S FROM DRUM 2
546 *

5371 L 3 NREC

588 ANEX2 REAN DEC32RSF,,2(5) MF=E

SR9FRNEXD TNFLBIR LDAD DECO ANDRESS

530+ MVI 5(1),X'80' SET TYPE FIFELD

591+ La 14y315] LOAD AREA ADDRESS

5974 ST 14,12(1,9) STORE AKEA ADDRESS

593+ L 15,8(1,0) LOAD DCU ADDRESS

594+ L 15,4803415) LOAD RD4R RIUTINE ADDR
595+ RALK 14,15 LINK TD ROWR ROUTINE

5496 &

say CHECK DECBZR

599+ LA T/DECBZR LOAD PARAMETER REG 1

599+ L 14,810,110 PICK JP DCH ADDRESS

600+ L 15,52(0,14) LOAD CHECK ROUT. ADDR.
601+ BALR 14,15 LINK TO CHECK RNUTINE

602 *

603 A 54RECLEN

604 CT 3,RVEX2

605 %

606 *L Tabe PREPARE FOR NEXT K-PLANE
607 %

603 L 3, NREC

603 BCT 4RVEXL

610 =

611 L TaTa TEST FOR COMPLETION

612 ®

813 L 3,5TASTO

614 s 3, TWD

615 ONE FINISH

blh &

617 =L 7.8. CLOSE THE DATA SETS

61A =

619 CLOSE (INDCB1}

620+ TNOT v

621+ 8AL 1,%+8 SRANCH ARDUND LIST

622+ ac ALL{L28) OPTIDN QYTE

623+ nc AL31INDCBL) DCH ADDRESS

624+ SVC 20 1SSUE CLOSE SvC

625

62b CLOSE (INDCB2)

02T+ Cior 014

b28+ BAL L,*+8 URANCH ARDUND LIST

G6z9+ nc AL1(128) OPTION BYTE

630+ oc ALICINDCE2) NCB ADDRESS

oL+ SvC 20 ISSUE CLOSF SVC

632 *

533 Kemmmmmmmeemmme—ee —
634 *L 9. RETJRN TO CALLING SJBPROGRAM R6/PL33
515 *

636 FINISH L 13,4(11) RESTORE ADDRESS DF PREVIOUS SAVE AREA
617 Lv 14412,12113) RESTORE REGISTERS l4,15 AND 0-12
538 MVE 12413),X*FF' PIINTER T] DEBUG RIUTINE FOR RE-ENTRY
639 AR 14 RETURN

640 END

1z
123
104
105
105
107
109
109

BAMTABL DS F
Y

®

: SUBROUTINE TRAMSFIEHJ[CE.HESHC%"IU‘I.N\!;V&R.T&ELE'DlM)

® READ AND WRITE ON TWO DRUMS USING EXCP

e

: ARSUMENTS -

SCADICE=1 WAIT FOR CDYPLETION JF LAST READ THEN EXECUTE PRESENT AEAD

*CADICE=2 WJAIT FOR COMPLETION JF LAST HEAD THEN EXECUTE PRESENT HITE
*CHOICE=3 WAIT FOR COMPLETION JF LAST READ ONLY

¥CHOICE=4 SKIP WALT THEN READ

*CHOICE=5 SKIP WAIT THEN WRITE

*CHOICE=5 AAIT FOR COMPLETIDN JF LAST ARITE AND THEN READ

*®CHOICE=7 AAIT FOR COMPLETIDN JF LAST WARITE AND THEN WRITE

®CYOICE=8 AAIT FOR COMPLETION JF LAST 4RITE J9LY

®

#MESHCR=MESH POINT IN CORE OF FIRST RECORD TO BE MOVED E.G.

SUUI=10+ {J-11#PI+(K-11«P[PJ) &NV

*

SRECNUM=STARTING RECORO NUMBER ON DRUML TO BE TRANSFEIRED, THE SEZOND
#DIUM IS TIED TO THE FIRST,HENCE ECNJYM FOR DAJM2 [S THE éaNE

%

'Nyzl THE FIRST TIME THE MODULE IS CALLED,HENCE DPEN DATASETS A4S HWELL
EAa5 TRANSFERRING BASE ADDAESSES JF FIXED AIRAYS AND CINVERT AELATIVE
*®*ADDRESS TJ ABSOLUTE ADDRESS

®

*BAVAR 15 BASE ADDRESS IF THE MAIN ARRAY VAR

-

“BATABLE 15 BASE ADDRESS DF TABLE OF RELATIVE ADDRESSES
*

#BADIM [5 BASE ADDIESS OF ARRAY O[M
& K29 NJYBER OF <-PLANES IN CORE AT JNE TIME

* NEC NJMBER OF RECORDS IN 1/2 JF K=PLANE
* RECLEN RECIRD LENGTH IN BYTES
*® TNREC TOTAL NUMBER OF RECORDS ON ONE DRUM
*
& REFERENCES (REF/PAGE)
. _
* 1 SUPERVISDR AND DATA MANAGEMENT INSTRUCTIONS
* 2 SUPERVISOR AND DATA MANAGEMENT SERVIZES
* 3 2320 STOHAGE CONTROL AND 2301 DRUM STDRAGE
* 4 SYSTEY PROGRAMMERS GJIDE
* 5 PRINCIPLES OF OPFRATION
L 6 FORTRAN IV (G & H} PROGRAYMERS GUINE
*
«
TRANSF CSECT
USING #,15
8 START
s
&L L. STIRAGE -
&
L L.l SET CONSTANTS FOR DEBUG R&/PL32
#
nc Xr7e
0o CLT'TRANSF!
©
2 %L 1.2 SAVE AREA
®
SAVE 05 18F SAVE AREA FOR REGISTERS
&
oL L.3. ARGJMENT S
®
CHOICE 0s F JPTIONS FOR READ,WRITE,WaAlT
MESHZR ns F MESH PIINT I[N CIRE AHERE REZORD IS TJ BE
& YIVED
RECNUM DS F STARTING RECORD NO. DN DRUMI TD BE
TRANSFERRED
NN ns F =1 THE FIRST TIME MJIDULE IS CALLED
HAVAR 0s F BASE ADDRESS OF DATA ARIAY VAR
JATAHLE DS F: BASE ADDRESS DF TABLE
84014 ns F 3ASE ADDARESS OF ARAAY DIM
RELLEN DS F RECORD LENGTH
TNRED 0s F TOTAL NJ. OF RECDIINS ON EACH DRUM
®
=L Lotie INTERNAL VARIABLES AND CONSTANTS

®
ADTORE Ds F ADDRESS IN CORE JF FIAST RECORD TD BE

® YIVED

BASE ANDKESS OF TABLE CONTAINING ABSOLUTE
AJJRESSES OF SEJJENTIAL AECIRIS DN DRUML

BAUMTAR2 DS F BASE ADDRESS OF TABLE CONTAINING ABSOLUTE

w AJDRESSES JF SEQJENTIAL RECIRODS O DRUMZ
cuna ns F CONTATINS CURRENT ADDRESS IN DMTAB WHERE
F4E ABSILJTE ADDIESS IF A RECIRD IS T] BE
W STORED

DISPLA Ds F RECNJM*8,JISPLACEMENT IN BYTES FRIM THE
& START DF DMTAB

PDINTL Ds F CONTAINS ADDRESS AT WHICH THE A3S5JLUTE
* ADDAESS 0N DRUM1 JF FIRST 1ECIRD TO BE
& MOVED IS TO BE FOUND

POINTZ ns F CONTAINS ADDRESS AT WHICH THE A3SJLUTE
® ADDHESS DOV ORUMZ OF FIRST RECORD TO BE
* MIVED IS TO BE FIUND

SAVES ns 4F SAVE AREA FDR REGISTERS 9-=12

*

ONE nc { ol 63

THd oe Frae

THREE nc Lo)

FauUR nc Frar

FIVE nc FAEA

SIX nc F1gt

SEVEN nc Frie

EISHT oc Fra'

%

- AVI.1

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
1286
127
128
129
130
131
132
133
134
135
136
137
133
139
140
14l
La2
143
Las
145
146
147
143
149
150
151
152
153
154
155
156
157
158
159
160
161
le2
163
lo4
165

166
L7
168
1649
170
171
172
173+
LTa+
175+
176+
177+
178
179
180+
151+
Laze
L83+
134+
135
186
18T+
193+
139+
190+
1oL+
192
1493

LugGe «

195¢
lase
137+
190+
199
200
201
202
203+
204+
205+
206
207
204
201
210+
211
212+
2113
214
215
216
217
213
219
229

RG/PLIZ

L 2. FORTRAN-ASSEMBLER INTERFACE
-
L 2.1. STANDARD LINKAGE
L
START STM L4412412413) SAVE REGISTERS 14,15 aND 0-12
LA 12,SAVE ADDRESS JF CJRRENT SAVE AREA
ST 13,40121 STORE BACKWARD LINK IN CURRENT SAVE AREA
ST 12,3013) STIRE FORAARD LINK INM PREVIIUS SAVE A3EA
LR 13,12 13 NOA HOLDS ADDRESS JF CURRENT SAVE AREA
DROP 15
USING SAVE.13 NEW BASE ADDRESS
®
*L 2424 INTEGER ARGUMENTS
®
L 5,00(11
L 5:0(5)
ST S,CHOICE
*
L 5s401)
L 5,005}
5T 5¢MESHCR
*
L SeHl1)
L 5,215)
ST S5y RECNUM
*
L 5.1201)
L 5,0151
5T 54NN
bl
oL Zeds TEST FOR INITIAL CALL
Ll
S 540NE
BNE NOOPEN DATA SETS ARE NJA JPEN [F NN.VNE.1
*
L 3. INITIAL CALL
«
*L 3.l. INITIALIZE ARRAY BASE ADDRESSES
-
L 5,L541)
ST 5¢8AVAR
4
L 5,20(01)
ST 5,BATABLE
&
L 5:2%101)
ST SeBADIM
*
*L 3.2, STORE LAST 2 CDMPINENTS JF ®DIM¢
=
L 4,815)
ST 4y RECLEN RECORD LENGTH
*
' L 4.1215)
ST 44 TNHEC TITAL NJ. DF RECIRDS JIN INE DUM
i 4
=L 3.3, OPEN THE DATA SETS FOR EXCP
«
#0PEN ZONSTRUCTS DEE IN SUPERVISOR, AND INITIALIZES DCB R4/PB4
e
OPEN _ (DCBRL, (INPUT])
NOP O, %
BAL 1,%+#8 LDAD REGL W/LIST ADDR.
oc ALLE123) GPTION BYTE
nc AL3(DCBRL) DCB ADDRESS
SVC 13 1SSUE DPEN 5vC
L]
OPEN (DCAR2,{INPJT))
B Iy
DAL L,#%¢0 LDAD REGL A/LIST ADDK.
nc ALL1128) OPTION BYTE "
nc AL3I(DCBRZ) DCB ADDRESS
SVEL 13 ISSUE OPEN SvC
-
APEN (DCAWL, (OUTPUT)
H ’
BAL Ly#+d LDAD REG1 W/LIST ADDA.
L] ALL(143) OPTION BYTE
[a]e8 ALI(DCBAL) DCB ADDRESS
SVC 19 ISSUE DPEN SvC
&
OPEN (DCAW2,(QUTPUTII
N0 1
BAL ls#¢3 LOAD REGL A/LIST ADDR.
oc AL1(143) OPTION BYTE
oc AL3[DCHWZ) DCB ADDRESS
SYC 19 [SSUE OPEN SVC
Ll
s 3.4. REQUEST STDRAGE FOR ADDRESSES RL/PLLL
*
GETMAIN RyLV=1600 REJUEST STORAGE AREA 1600 RYTES LOING
Li 0, 150070,0) LOAD LENGTH
BAL Ly¥+4 [NDICATE GETHMAIN
Sve 10 ISSUE GETMAIN SVC
ST LeBADMTABL BASE ADDRESS OF STORAGE AREA RETURNED IN
* REG L1y STIRE IN BADMTABL
*
GETMAIN R,LV=1503 KREQUEST STORAGE AREA
%) T, 150010,01 LAD LEUGTH
BAL 1y%t4 INDICATE GETMAIN
sSvC 10 [SSUE GETMAIN SVC
ST 1,BADMTABZ
L
L 3.5. CONVERT ADDRESSES
=
SCONVERSION 15 CARXIED OUT BY SYSTEY RIUTINE [ECPCNVT R4/PLOO
«CONVERT FiOM RFLATIVE _A4DDRFESS TN ASSOLUTE AD.
*
L 4, TNREC

221 L T+BATABLE AELATIVE ADDRESS IS [N TABLE 331 bd 4 ELGHT [RECNUM-1]%3

222 STM 9,12,SAVED SAVE RFGISTERS 9--12 332 ST 5,DISPLA DLSPLA= (RECNUM-11#3
223 LR 8,13 GASE REG 13 [S SAVED IN REG 8 333 *
224 L 1.00BR1+44 ADDRESS OF DATA EXTENT BLOCK(DER) 334 A 5,BADMTA3L BADMTARL+[RECNUM-1)*B
225 L 2,BAOMTABL REG 2 CINTAINS CJRRENT ADDIESS WHERE 315 ST 5,POINTI PIINTS TD ABSDLUTE ADDAESS IN DRUYL
226 ST 2,CJDA A3SILUTE ADDRESS 4 DRUML [5 TO 35 STIRED 336 * :
221 # 337 L 5,015PLA
228 *LOOP OVER RECORDS 338 A 5,BADMTAB2
229 ASAINL L 040(7) AELATIVE ADDKESS 1S CONTAINED [N REG O 319 ST S5.PIINTZ POINTS TD ABSOLUTE ADDRESS JF THE
230 L 3,1640) ADNRESS OF CVTICIMMUNICATION VEZTIA TABLE) 340 # CIRRESPONDING RECORD DN DRJYM2
231 = AT AHSOLUTE LOCATION 16 341 ¥
232 L 15,2803 ENTRY POINT OF [ECPCAVT 342 # 4.3, AALT FIR AEAD [F CHIICE=1,2,3
233 BALR 14,15 BRANCH TO CONVERSTON MIDULE 343 #
234 LR 13,8 RELDAD BASE REGISTER 344 L 5,CHOICE
235 LM 9,12,SAVES RELDAD REGISTERS 9--12 345 s 5, THREE
236 LA T,4lT) MOVE TO NEXT RELATIVE ADORESS 346 34 WAITH BRANCH LF CHOICE.GT.3
237 L 2,cJna 367 *
238 LA 2,802} ABSOLUTE ADDHESS 1S 8 8YTES LONG 348 #mmmmmmms R o
239 ST 2,04DA 349 sl 5. JATT FJ3 GOMPLETLOM OF PREVIJUS 141 RL/P205
240 BCT 4, AGAINL REPEAT FOR NEXT RECORD 350 *®
241 * 351 *THE FOLLOWING SECTION USES THE WAIT MACAD TO CHECK IF PREVIOUS WRITE
242 SREPEAT THE ABOVE PROCEDURE FOR_DRUM2 352 ©Jk READ IPEAATION HAS BEEN CI4PLETED, [F NIT THE SYSTEM WALTS FIR ITS
243 e 4 TNREC 353 #COMPLETION BEFODRE ISSUING ITS NEXT READ DR WRITE
244 L 7,BATABLE 354 SCOMPLETION SHOWS UP AS X*7F' IN EVENT CONTROL BLOCKIECB)
245 STM 9,12,SAVED 355 = R4/PAB
246 LA 8,13 356 *L 5.1, JAIT_FOR _COMPLETION OF READ
207 L 1,DCBRZ4A4 ADDRESS OF DATA EXTENT BLOCK(DEB) 357 =
248 L 2, BADMTAB2 358 WAIT ECR=ECAR]
249 ST 2,CUDA 359+ [A 1,ECDR1 LOAD PARAMETER REG 1
250 = 360+ LA 0,1(0,0) COJNT DMITTED,L USED
251 sLOOP OVER RECORDS J61+ SYC L LINK TO WAIT ROJTINE
252 AGAINZ L 0,2(7) 362 *
253 L 3,1510) 363 MAIT ECR=FCIRZ
254 L 15,28(3) I64s LA 1,ESBRZ LOAD PARAMETER REG 1
255 BALR 14,15 Jest LA 0,100,0) COJNT DMITTED, L YSED
256 LR 13,8 366+ SVC 1 LINK TO WAIT ROJTINE
257 LM 9.12,SAVES 367 *
258 LA Te4lT) 168 =L, 5.2, TEST FOR SUCCESS, FAIL LF NIT
259 L 24CJDA 389 *
260 LA 2.802) 370 CLI ECBAL,X'TF* CHECK IF ECBRL CINTALNS 'TF° R&/P8Y
261 ST 2,CUDA 371 RE DKHL SIANCH IF EVENT CIMPLETED
262 RET 4, AGAINZ 172 oc x'0300° ILLEGAL [(NSTRUCTION TO FORCE DUMP
263 # 373 OKAL XC ECBR1(4),ECBEL ZERD ECBRL
204 L 3.6- INSERT REZ0AD LENGTHS IN CCW R3I/PLD 374 ¢
265 = 375 CLI ECOR2,X*TF' CHECK IF ECBR2 CONTAINS 'TF*
266 #THE FLAGS ARE OVEAWRITTEN AND ARG THEREFORE RESTOAED 376 BE DKR2 BRANCH 1F EVENT CIMPLETED
267 L 3,RELLEN 177 oc x'0300' ILLEGAL INSTRUCTION TO FIRCE DUMP
268 * 374 K32 XC ECBR2(&),ECBR2 ZEKD ECBR2
269 SREAD FROM DRUM] 379 =
270 T 3, AL+ MOVE RECORD LENGTH INTI CCW READ DATA 380 sL 5.3 TEST CHOICE (1.2 OR 31
271 MYT ARLEA,X14D1 381 ¢
272 ST 3,83L+4 MOVE RECIAD LENGTH 1NT2 ICW IEAD DATA 382 L 5,CHOICE
273 MV BRL&4,X1421 363 S 5 THHEE
274 ST 3,CRLe4 4OVE RECORD LENGTH INTI CCd READ DATA 384 BE FINISH BIANCH T2 EINISH [F CHIICE=3
215 MUL CRLr4,X14D° 385+
278 ST 3,030+ YOVE RFCORND LENGTH INTO CCW AEAD DATA L L 54 C-0ICE
217 WI DRI+4,X*00" At : 94 0ONE
ST6 w 188 BE RD BRANCH TD RD IF CHOICE=1L
T R 149 a Wi DIANCH TO WT IF CHOICE=2
260 ST 3,ax2s 2030 LE! : 0
;;T v\ll’] :I;;iir:o”.“' MOVE REZORD LENGTH INTD CCW AEAD DATA iq; oL 5.4, TEST CHOICE (4-81
] 1 22+ WOVE HFZDAD LEN 92 =
28z 3\” a;:i.:.ﬂl VE RFZIA0 LENGTH INT) CCH AEAD DATA 95 L 2'5?9}“
na T 1244 9OVE RECT 194 i
ans a\n gégu;';”m' DVE RECOD LENGTH [NTI CCH READ DATA s 5 GRANEH FOUHT TEEHBICESS
2486 ST 3,032+4 MOVE RFCOR TH INTJ CCW READ DA ATp: %
248 st boes COR0 LENG Cid READ DATA b ¢ 5 EHEIE
288 & 398 S 5,FIUR
309 sWRITE TO DRUML 399 HE RO BRANCH TO RD LF CHOICE=4
—y - L : c 400 ¢
33: I L . MOVE RECORD LENGTH INTD CCA WIITE DATA i B SiF EARERCERTOR B MRETE
: Bl 40z *
£ SO dwbiE o UONE RECORO LENOFN INRORGEM WRILE DATH 403 SUAIT FOK COMPLETIDN OF ARITE AHICH 4JULD SHOW UP AS X'TF* IN ECB
294 ST Crl+s Bl RECIRN T 404 *
;uj ST it OVE RECIRN LENGTH INTD CCH WATTE DATA 105 M&ﬂ—“nn eaeren ve
g T ; + o+ LA BHL L ME
5;’? ST Dobals MOVE RFCORD LENGTH INTI CCH WAITE DATA by B N RatEiEn JsED
Sak & 408+ SVC 1 LINK TO WAIT ROJTINE
700 wRIIL 10 DRu i WAIT _ECB=FCBW2
0 A Ad2ee E RFLOS NG T St
;511 s n;zfi,vua- MOVE RFCIRD LENGTH INTI CCA WAITE DATA s WESBJ"“?%Q TEG ;
a T ; RECAS al2e LA 2,100, NT OMITTEN, L USED
;ng fnu 3;‘275':_‘". YOVE RECORD LENGTH [NTD CCH WAITE DATA Fei A e R
304 * ECT ’ AL, %
304 5:] i,zﬁff.,i.m. YOVE HECOA0 LENGTH INTD CCd WILTE DATA e _— ST ENR SUCCESS, FAIL [F NIT
5 T + " 3 416 ®
P v ;;?ff,:.u. BYE REGHAQ LENETH INTOECH WAITE DATA 417 CLI ECBAL,X*TF' CHECK TF FCBAL CINTAINS 'TF*
Joa # 418 BE DKWl BRANCH IF EVENT SJCCESSFULLY ZOMPLETED
206 wo= S, 4% pC x'0300° ILLEGAL INSTRUCTION TO FIRCE OUYP
310 +L 4 PREFARE FI8 19PUT/IJTPUT 420 OKw1 XC ECOWL14),ECBHL ZERD ECEAL
3L % 421 &
* s i " w22 CLI ECON2,X'TF' CHECK IF ECBA2 CONTAINS '7F!
e izt SRECIEY PROG: INTERRUPFION EXIT R2/P42 423 BE OKW2 BAANCH IF EYENT SUCCESSFULLY SDMPLETED
314 NOOPEN SP 424 ot x'2100! ILLEGAL [NSTRUCTION TO FIRCE DUMP
!}ﬂu_wn sele o AEQUEST DJMP [F PROGRAY ABENDS 25 s e — A
ILGHNDOPEN LA Lo#+12 LOAD BRANCH ADDRESS bep ¥ .
7 SALR 1.1 BRANCH ARDJND PARAMS. 427 wL 5.7, TEST CHIICE (6,7 OR 8)
318+ nc ALO) EXIT ROUTINE ADDRESS a8 %
Ilae nc AL200) INTERUPTION MASK 429 L 5.CHOICE
320+ SVC 14 ISSJE SPLE 5vC 30 2 3¢ E1GHT X
w3l NE FINISH BAANCH TO FINISH IF CHIICE=8
" - 432 %
Gala CALCULATE ADDRESSES 433 L 5, CHOTCE
L 5, MESHCA 41k 5 5 SEVEN
" &y FIUR MESHER®4 435 AF ur BIANIH T WT [F CHOICE=7
A 5,8AvAR BAVAR+MESHCAS4 LELIR NTHERWISE READ
ST 5, ADCORE 430 %
438 #mmmmmmmmmmmmmmmmmmmm oo e -—
L 5, RECNUM PEEIE 5. SEF_UP_AND SXECJTE READ PRIGRAM
s 5, 00E RECNJA-1 WD ¥

- AVI.2 -

441
442
443
444
445
446
461
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
455
466
467
468
469
470
471
472
473
474
475
476
417
478
%79
430
481
432
483
484
485
486
487
438
489
490
491
432
493
494
49%

490
497
49n
499
s00
501
502
501
S04
508
506
507
504
509
210
511
512
513
514
515
SLa
517+
Sld+
514
520
521+
522+
523
524
525
526
527
528
529
530
531
532
531
534
535
LR LY
537
538
5339
540
941
542
663
S44
545
546
547
540
h49
5950

*CHOICE 1,4 OR 6
*HERE FULLOWS PKOGRAM FOR READ AITH CHAINING JVER & RECIRDS 0N 4 TRACKS

L bala NRUM ADDRESSES
o
RO L 4, POINTL ADORESS AT AHICH THE ABSOLUTE ADDIESS OF
« THE FIRST XECIRD T) BE EAD OV JRJIML IS
* TO BE FOUND

L 5,POINT2 AODRESS AT WHICH THE ABSOLUTE ADDIESS OF
* THE FIRST RECIRD TJ BE EAD OV DRJMZ [S
* TO BE FOUND
*
L Bo2a CLEAR
®

XC ECHR1(4) ,ECBR1 ZERD ECBRIL

X< ECB32(4),ECBRZ ZER] ECBR2
&
L 6.3. PREPARE 118 R&4/PBT
*
SCOMMAND CHAINING 4, COMPLETION CIDE TF R4/PBY
MYC I0BR1(5),=X"400020007F"' MOVE 5 BYTES INT] [3B311
MVC IDBR2(5),=X"400000007F" MOVE 5 BYTES INTO 10BR2Z
R4/PBE

#SEEK ADDRESS 3BLCHHR

MVC TOBR1+32(8),0(4) ADDRESS OF RECORD MOVED INTD

* 1J8’1+32
MVC 10BR2+32(8),0(5) ADDRESS OF RECORD MOVED E[NTD
€ 138R2+32
*
oL 6.4, PREPARE DCB
*

Ra/PBL

#FULL DISC ADDRESS FDAD-MBBCCHHR
ADDRESS OF RECDRD MOVED INTD

MVC DCBRL+5(81,004)

« DCBRL+5
MVC DCBR2+5(81,01(5) ADDRESS DF RECORD MIVED INTOD
* DCAR2+5
&
bt 645, PREPARE CHANNEL CIYMAND PROSRAM

®
THE CIODES ARE DVERWRITTEN AND ARE THEREFORE REPLACED
®

*DRUML

L 7 +ADCORE LOAD REG T AITH ADDRESS IN ZORE

ST T+ARL MIVE ADDRESS IN CIRE JF FI1AST REZIRD INTD
@ CHANNEL COMMAND WJRDICCH)

MV ARLsX 861 INDICATES READ WITH MULTIPLE TRACK DPTION
* IN CCA

A 7.RECLEN [NCREMENT ADDRESS

5T 71831 MIVE ADDRESS 1N CIRE IF SEZIND REZIRD INTI
& CCW

Mv1 GRI¢X"Bo&"Y MOVE 'RA6' INTO BR1

A T+RECLEN INCREMENT ADDRESS

ST T+CR1 MIVE ADJ4ESS IN ZJAE JF THIRD REIZDIRD INTD
» CLw

MV CR1,X'B&6*

A TyRECLEN

ST 7,011 MIVE AODRESS [N CJ3E DF FDUATH EZORD INTD
* CCW

MVl PRL,X*35"

&

SREPEAT SETTING UP FOR DRJUM2
A

T,RECLEN

ST Ty AR2

Myl AR2,X%"46"

A THRECLEN

ST IRLEYS

MVl BRZ,X*A5"

A THRECLEN

ST TeCR2

MV CR2,X*a4"

A T1RECLEN

5T 7,082

Myl DR2yX'36"
*
*L- b45a EXECUTE CHANNEL PROGRAMS R4/Pb&S
S

EXCP INBR1 EXECUTE CHANNEL PROGRAM USING ID3R1

La 1,1J8R1 LUOAD PARAMETER 2EG 1
SVC 0 15SUE SVC FOR EXCP
*

EXCP [DBR2 EXECUTE CHANNEL PROGRAM USING I0BR2
LA 14 1JBR2 LOAD PAAMETFR REG 1
SVC O ISSUE SVYC FOR EXCP
%
n FINISH
%
“
i i o i i e i i i P ——
= T SET UP AND ZXECUTE WRITE POGRAY

SCHOICE 2,5 OR 7
#HERE FOLLOWS PROGRAM FOR #RITE WITH CHAINING DVER 4 RECIROS OV &

* TRACKS
#
*L 7.1. NRUM ADNRESSES
%
AT L e PDINTL ADNRESS AT AHICH THE ABSDLUTE ADDRESS OF
* THE FIRST RECORD T3 BE WRITTEN OV ORUML IS
* T3 dE FOUND
L 5¢POINT2 ADDRESS AT W#HICH THE ABSOLJTE ADDRESS OF
*® THE FIAST RECI4D TJ BE WRITFTEN IV DRJMZ [5
¥ TD BE FOUND
®
*L T.2. CLEAR ECB
®
XC ECOALL4),ECBAL ZERD EZBNWIL
xC ECHAZ14) 4ECOA2 ZERD ECBW2
&
=L 7.3, PREPARE [08

MVL TOBALI5]) ,=X*400000007F' MOVE 5 BYTES INTO [0BWL

- AVI.3

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
548
589
590
591
592
593
5G4
595
596
597
598
599
500
601
602
603
604
605

606
&07
608
609
610
611
612
al3
&l4
615
616
617
6ld
6l9
620
w2l
622
623
624
625
hZht
027+
624
629
530+
LERRY
632
533
634
635
038
037
EEL
039
a40
641
K42
H43
LLES
445
bab
04?
u48
849

MVC IOBW2{5),=X"400000007F' MOVE 5 BY1ks INT] [DBW2
MVC [OBWL#3208),0(¢) ADDRESS ON DRUML MOVED INTO
« 12841+32
MVC L0BH2+32131,0(5) ADDRESS DN DRUM2 MOVED INTD
* 10842+32
*
L Tl PREPAKE DZB
*
MVC DCBAI+5(31,004) ADDRESS ON DRUML MOVED INTI
* DCBHI+5
MVC DCBAZ+5(81,015) ADDRESS ON DRUM2 MOVED INTD
* DCBA2+S5
&
sL 7.5. STORE CYLINDER/HEAD/RECDAD ADDRESSES
"
MVC CCHHRL(SE,314) ADDRESS DN DRUMI OF FIAST RECORD
- IS MOVED INTD A REGIIN VAMED
* CCHHR READY FOR USE BY CCW,DNLY
* 5 BYTES DF THE 8-BYTE ADDRESS
* ARE NEEDED
MVE CCHAR2(51,3(5)
LA “,804) INCREMENT ADDRESS
LA 5,815) INCREMENT ADDRESS
MVC CCAHRL+5051,3(4) MOVE ADDRESS OV DRUM IF SECIND
* RECORD
MVC CCHHR2+5{5),3(5)
La 4eBL4) INCREMENT ADDRESS
LA 5,8(5) INCREMENT ADDRESS
MVC CCHARI#10(5),3(4) MOVE ADDRESS ON DIuM OF THIRD
= RECORD

MvC CCHHR2+104{5),31(5)

La GyBl&) INCREMENT ADORESS

LA 5¢805) INCREMENT ADDRESS

“ye CCHARL#15(5),3(4) MOVE ADDRESS ON DRUM JF FOURTH
= RECORD

Mve CCHHR2+15(5),3(5)
%
L, & T.5. PREPARE CHANNEL COMMAND PROGRAM
= ENESS
*DRUML

L T,AJCORE LDAD KEG T WITH ADDRESS IN ZIJRE IJF FIAST
® RECORD TO BE WRITTEN

ST TiAdL MIVE ADDRESS I[N CORE JF FIRST REZIRD INTD
€ Cin

MV AWL,x*05" 05 INDICATES WRITE

A T+RECLEN INCREMFNT ADDRESS

5T TeBAL CIPY ADIRESS I[N SIRE JIF SEZOND REZDRD INTD
* CCwW

MY BWl,X*05" 05 INDICATES WRITE

A TeRECLEN

ST TeCAl CIPY AJDRESS I[N CORE JF THID RECIRD INTO
B ClH

vl CWlyeX'05? 05 INODICATES WRITE

A T+RECLEM

ST 74041 CIPY ANDRESS IN CIRE JIF FIUATH REZDRD INT2
® o

Myl DWlyx"05" 05 INDICATES WRITE

A T.RECLEN
®

*REPEAT FOR _DRUM2
—_—

MY AH2,X'05¢ 05 INDICATES WRITE
A TWRECLEN
ST 74042
Myl BW2,X*05" 35 INDICATES WRITE
A TyRECLEN
ST T.CA2
MV1 Ch2,Xx%'05" 25 INDICATES WRITE
A TRECLEN
ST TeDA2
MVl Dd2, %1051 05 INDICATES WRITE
®
L Tels EXECUTE CHANNEL PROGRAMS
%
EXCP [0BAl EXECUTE CHANNEL PROGRAM USING [0BWL
v i
Sve 0 ISSUE SVC FOR EXCP
*
EXCP 108W2 EXECJTE CHANNEL PROGRAM USING 108d42
' ¢ A 1
SVC 0 I[SSUE SvC FOR EXCP
8. RETJRN TD CALLING SJBPRIGRAM R6/P133
*
FINISH L 13,40(13) RESTDRE ADOKRESS OF PREVIDUS SAVE AREA
L L14412,12013) RESTORE REGISTEXS 14,15 AND 0-12
MV 12113),x'FF* POINTER TO DEBUG RIUTINE FOX RE-EVTRY
BR 14 RETJRN
El
= - P — —
®L 3. CONTHOL BLOCKS R&4/P6B
*
L 9.1. NATA CONTROL BLOCK (DCB) R&/PTT
=
“SPECIFY EXCP, DIRECT ACCESS, BSAM NRGANIZATION (PS) R4/PBO

“FJR DATA-SET JKGANIZATION SEE REF.2/PAGE 71 ET SEJ.
#

651+
b52+

653+
535+

65T+
654+

PSS ncs DDNAME=DSETLsMACRF=(E},DEVD=DA,DSDRG=PS
® DATA CONTROL BLOCK

&

NC3H1 o OF'2' DRIGIN ON WORD S0JNDARY

* NIRECT ACCESS DEVICE INTERFACE

ac GL15'0' FDAD,DYTEL
nc ALD) KEYLE,DEVT,TREAL

660+ % COMMON ACCESS METHOD INTERFACE
662+ ne ALLLO) BJFND

a6l 1l AL3(1) BJFCB

6h&+ oc AL2(0) BUFL

665+ 2l BL2'0100300300320000" BSIAG

bbh+ ne Afl} 128AD

G63+% FOUNDAT [ON EXTENSION

aT0+ nc ALL'00303002* BFTEK,BFLY,HIARCHY

671+ nc AL3(1) EJDAD

672+ nc BLL*0D0000000" RECFY

6T3+ nc AL3(01 EXLST

675+% FOJNDATICN BLDIK

67T+ oc CLB*DSETL' DONAME

6Tb+ oc BL1'000000LO" QFLGS

679+ nc BLL*00003000* [FLG

680+ nc BL2"1101200200201320" MACR

631 =

632 DCHRZ DCB ODNAME=DSET2,MACRF=1{E),DEVD=DA,DS036=P§
684+ & DATA CONTROL BLDCK

685+%

6R6+NCHA2 oc OF'0' ORIGIN ON WORD BOJNDARY

688+ DIRECT ACCESS DEVICE INTERFACE
690+ nc ALLS'0' FDAD,DVIBL

691+ nec AlD} KEYLE(DEVT,TRBAL

633+% COMMON ACCESS METHOD INTERFACE
695+ oc ALLIO) BUFND

696+ nc ALI(1) BUFCB

69T+ nc AL2(D) BUFL -

698+ 4 BLZ'0100200000020000" DSORG

699+ als A{1} 1DBAD

TOl+% FOUNDATION EXTENSION

703+ nc BLL"00202000" JFTEK,NFLN HIARCHY

T04+ nc AL3(1) EODAD

705+ ot BL1'0000D00D" RECFY

T06¢+ 219 AL3(D) EXLST

TOB+® FOJNDATION BLOCK

TLO+ oc CL8"DSET2' DONAME

TLL+ oc BL1'D0D00010' OFLGS

L2+ nc BL1'00000000" [FLG

L3+ c 8L2'1101000030001000" MACR

Tl =

715 DTl pce DNNAME=DSETL yMACRF=(F) ,JEVD=DA,050RG=PS
TLT+e DATA CONTROL DLODCK

Tla+s

TLO+DLAW] ne OF'2% JRIGIN ON WORD BOJNDARY

T21+¢ DLAECT ACCESS DEVICE INTERFACE
723+ pl BLIS'Q" FOAD,DVIBL

T24+ nc ACD) REYLEDEVT,TREAL

T26+% COMMON ACCESS METHOD INTERFACE
728+ nc ALLLO) BJFND

129+ oc AL3C1) BJFCBH

T30+ nc AL2{0) BUFL

Til+ oc @L2'0100300200000000" DSNARG

732+ nt ACL) 10B8AD

Tt FOUNDAT [ON EXTENSION

Tios nc BLIT00J03003" BFTEK,BFLY, HIARCHY

73T+ oc ALALLY EODAD

T35+ nc BLL"000023000" RECFM

Ti9+ nc AL3[0) EXLST

Tal+s FOUNDATION BLODCK

Taite oc CLB'DSETL' DDNAME

Tant oc BL1'000030L2" OFLGS

T45+ oc BL1'0D0D00000" [FLG

Tab+ nc 8L271101000000931030" MACR

147 =

T4d 0Cow2 nCa ODNAME=DSET 2 MACRF=1E),DEVD=DA,DS0RG=PS
750+% DATA CONTROL BLOCK

Tolen .

T92+NCAW2 Dc OF'0! GRIGIN ON WORD BOJNDARY

Toh+e OIRECT ACCESS DEVICE INTERFACE
156+ nc AL1S'0" FDAD,DVIBL

157+ oc A{D) KEYLE,DEVI,TRBAL

T59+% COMMON ACCESS METHOD INTERFACE
7oLt nc ALL{O) BUFND

That+ DC AL3(1) 3JUFCH

T6ar nc AL2{0) DUFL

Toar pls BL2"01J0200230320220' DSDRG

Ta5+ nc AlLY I7UBAD

- AVI.4 -

TeTH= FOJNDATION EXTENSION

T69+ nc S3L1'00000000" BFTEL,BFLN,HIARCHY

170+ nc AL3(L) EODAD

771+ nc BL1'00303002" RECFY

T2+ nc AL3(O) EXLST

TTa+e FOUNDATION BLOCK

TT6+ [1]s4 CL3'DSETZ! DONAME

7T+ oc BL1'0030001D" JFLGS

778+ nc BLL'00J0202)' IFLG

779+ nc BL2'11910000000210230" MACR

780 *

THL #L 9.2. 108 AND EC3 (READ)

792 * R4/P8T
a3 0s OF FORCE IV FULL=WORD BOUNDARY

794 100R1 ns 1F

785 e ALEZBRILI ADDRESS OF EVENT CONTROL BLOCKIECBR1L)
186 ac 2F'a"

787 nc ALCCWRL) ADDARESS OF START JF CHANNEL PROGRAM FIR
TdB ¢ AEADING ON DRUML

789 oc A(DCBRL) ADDRESS OF DATA CINTRIL BLOCKIDC3) FOR
790 *. READING ON DRUMI

791 oc 4F'01

792 =

793 I0BR2Z s 1F

T9% nc ALECBR2) ADDAESS OF EVENT CONFROL BLICKIECAR2)
795 nc 2F*2"

796 nc AICIWR2) ADDRESS JF START JF CHANNEL PAD3R&4H FIR
797 = HEADING ON DRU4Z

798 nc A(DCAR2) ADDRESS OF DATA CONTRIL BLOCKIDCBI FOR
799 = READING 0N DRUM2

aoo nc 4FtQ

a0l = R4/PBB
8oz ns oF

803 EC3R1 nc Fror

806 ECBWZ nc Fror

805 &

806 *L 9.3. 108 AND ECB {WRITE}

807 #

808 104l ns 1F

809 nc ALEZ3WL) ADDRESS OF EVENT CONTROL BLICK(ECIWL)
310 nc 2F*2*

all nc ALACCAWL) ADDAESS NF START 0OF CHANNEL PROGRAM FOR
912 = AATING ON DRUML

A1l ne AlLDCaWL) ADDRESS OF DATA CIONTROL BLOCKIDCB} FDR
als * ARTTING ON DRUMI

a15 nc 4F'0"

816 10342 ns 1F

aL7 11+ ALEZBW2) AINKESS JF EVENT CONTRIL DBLOCKIEC3W2)
818 nc 2F01

aLg nc ALACCHAZ) ADDRESS OF START 0OF CHANMEL PROGRAM FOR
320 ARITING OV DRUMZ

azl oc A(DCBWZ1 ADDRESS NF DATA CONTROL BLOCKIOCBY FDR
a2z = ARITING ON DRUMZ

823 g 4F'n?

324 0s oF

825 #*

424 ECOWL ocC Fro!

827 ECan2 nc Fror

4210 *

B2 e s e o i -—== -—=
830 =L L0, CHANNEL PROSRAMS R3
331 *

832 # COMMAND CODES

H3Y = as WRITE DATA R3/P12
ane = o8 TAANSFER [N CHANNEL R3/P23
ERERE S il SEARCH EQUAL 1D R3/P12
936 « H3 READ DATA AITH MULTI-TRACK MODE{MIH] R3/P12
(= alL SEARCH EQJAL 1D A4ITH MULTI-TRACK MIDE(MTY]) R3/P12
433 @

339 % FLAGS R3/P10
840 ¥ 00 NO COMMAND CHATNING

a4l 40 COMMAND CHAINING

842 %

843 SCLW ARE DOUBLE WOADS

At 0 an FIRCE OV DOUBLE WORD BIUNDARY

845 =

da46 =L 10.1. READ

847 *

369 #READ FROM DAUML

463 SLO0P JNTIL SUCCESSFUL, THEN SCIP DDJBLE WORD R3/pP22

450
usl
ana
as3
LERY
55
856
As7
EET
859
862
a6l

80t

Gath

CCARL

ARL
ARl
CHL
JRL
&

ccd
CCy
CCd
Gl
CCW
Clw

X031, INBRL+35, X401 ,X'05"
X'33',CCHRL, X', x'00"
X'85%,X1303300",X'40",X'000000"
X1851,%'000000',%'40",X*000000"
X'85',%'000J00,%"'40", X' 000000
X1331,%'030070%,X'20", X' 000000

#akEAD Fadd DRUYZ

CIWR2

AR2
dR2
cw2
D2
-
=L

-
#A4R1TE T3
ALCHH]
Akl

BCCAAL
®

el
Sindl

CoW
CCA
coy

NRUML

X'AL', [05A2+35,X%62", X' 25"
X1031,CCAR2,%'20",X'00"
X1E5',X'000000%, X 40*,X'000000"'
A1357,X'000000%,X'40",X'000000"
X1451,%1020030",X'40", X' 300000"
X1857,X'000020,X' 30", X'000000"

11.2 WRITE

X', COHHRL, X401, X'05!

X'08" yACCWAL X" 20", X'00"
X'05%,443003001,X'401,X'000000!
X'BALY, CCAHRT #5,% 1407, X705

XIN3T, ACCAWL,X"D0,X'00"
X'05%,X'000000",X'40",X'030000"
X8l 'y CCHHRL+LD, X*%0", X105"

SEARCH ID EQUAL

TRANSFER T4 CHANMELITIC)
READ DATA WITH MTY
READ DATA WITH MTH
HEAD DATA WITH MTM
READ DATA WITH MTHM

SEARCH 10 EJJAL

TRANSFER [N CHANNELITIZ)
READ DATA WITH MTM
AEAD DATA WITH MTH
READ OATA WITH MTW
READ DATA WITH MTH

SEARCH [0 EQUAL
TRANSFER IV CHANNELLTIC)
WRITE DATA

SEARCH 1D EQUAL WITH
MULTI-TRACK MIDE
TRANSFER IN CHANNELCTIC)
WRITE DATA

SEARCH ID EJUAL WITH
MULTI-TRACK “IDE

877
878
879
aso
BAL
asz
883
Ba4
uas
8a6
887
858
EE]
Bs0
891
892
A93
a94
895
8396
H9T
898
899
900
90l
902
Q03
904
905
908
507
908
209
aLa
qLl

Ccow X'06' yCCCHAWLyX'00"X"00"
CHL CCW X'051,%X'000000%, X"40', X' 000000"
DIl CoH X'BL*'aCCAHRL#15, X150, X105"
®

=] X103¢,DCCHWAL, X230, X"0D"

DHL CCw X*'05',X"000000",X'20",X'000000"
*
#HR!Tg T!! DRUMNZ

ACTWN2Z CCwW X*31',CCHHR2,X'40",X'05"
Clw XT'03 ' ACCHHZ X '00", X' 00"
AW2 cow X'05',X'000000',%*40",X"000000"
BCCWHZ Clu X'BLY,CCHHRZ+5,X 140", X'05"
®

CCHW X'0B*,BCCHWZ,X'00"',X'00!
BW2 (o) X'05%,X'000000",X'40",X'000000"
CLCaw? Cow X'31*yCCHHR2 +10, X140, X' 05"
®
CCw X'08',CLCHW2,X'00",X'00"
i CCwW X*05',X*000000",X"40",X"000000"
DCCWHZ CCW KBL'yCCHHR2+15, X140, X105"
=

CH X'049',DCCWH2,X'00",X'D0"

TRANSFER IN CHANNELITIC)
WRITE DATA

SEARCH [D EQUAL WITH
MULTI-TRACK MODE
TRANSFER IN CHANNEL(TIZ)
HRITE DATA

SEARCH 1D EJUAL .
TRANSFER IN CHANNELITIZ)
WRITE DATA

SEARCH ID EQUAL WITH
MULTI-TRAZK MODE
TRANSFER IN CHANNEL(TIC)
HRITE DATA

SEARCH ID EQUAL WITH
MULTI-TRACK MJIDE
TRANSFER IN CHANNELITIC)
WRITE DATA

SEARCH ID EJUAL HWITH
MULTI-TRACK MIDE
TRANSFER IN CHANNELITIC)

DW2 cCu X'05*,X'000000'yX*00",X"200000" WRITE DATA
»
®L 10.3 CYLINDER/HEAD/RECORD ADDRESSES
%
*5 WORDS = 4 * 5 BYTES
CCAHRL ns 5F AREA CONTAINING CCHHR ADDRESSES ON DRUML
x OF THE 4 RECORDS TO BE MOVED, THIS IS
* REFERENCED BY CCH
CCHHRZ ns 5F AREA CONTAIMING CCHHR ADDRESSES DN DRUM2
* OF THE 4 RECDROS TO BE MOVED, THIS IS
* REFERENCED BY CCW
END

=X'400000007F"

- AVI.5 -

APPENDIX VII

Documentation Conventions

There are many advantages in deliberately making the complex and expen-
sive logic of assembler language programs as intelligible as possible to the
reader. The extensive provisions for mnemonics and comments that are avail-
able with IBM 360-type assemblers enable this goal to be achieved fairly
readily provided that an adequate set of conventions is established at the
outset before coding begins. Although the routines SETDRM and TRANSF were
written some time ago, they have been brought up to date by extensive re-
commenting and it is hoped that a brief discussion of the documentation
conventions used here will be helpful in planning future codes. References
16 and 17 provide a detailed discussion of the readibility problem with

specific recommendations for Fortran and assembler language.

(a) Calling Sequence and arguments

It is often difficult to determine the calling sequence of a routine
simply by inspection. We recommend that where it is designed to be called
from Fortran, the equivalent Fortran SUBROUTINE or FUNCTION statement is
included as a comment, with a description explaining the meaning of the

arguments.

(b) References

The two routines discussed in this report cannot readily be understood
in full detail without constant reference to six IBM manuals, and page refer-
ences are therefore inserted in the code wherever the reader might encounter

any difficulty (R6P132 means reference 6, page 132).

(c) Sections and subsections

Although many assembler language routines are nowadays freely commented
so far as local details are concerned it is often very hard to understand
their overall structure. It is therefore recommended that large routines
should be divided into decimally numbered sections and subsections with
appropriate headings according to the conventions that have already been
proposed for Fortran in reference [16]. 'Blank' and 'ruled' lines are used
to emphasize this structure. The 'L' in column 2 enables a contents list to

be made by selectively printing only these lines,

- AVII.1 -

(d) Definition of identifier

The meaning of each identifier should be carefully explained, and it
is convenient to do this by arranging declaratioms such as DC, DS, EQU in
alphanumeric or other suitable order with an appropriate comment on each
line. Neat tables defining the storage layout or the meaning of the registers

‘can readily be maintained in this way.

(e) Comments

In addition to the headings and subheadings two other types of comments
are employed; those starting in column 30 of a statement line (an advantage

over Fortran), and comment lines starting in column 2.

(£) Program commentary

To avoid extensive comments within the body of the code Appendices III
and IV provide a commentary which uses the same decimal numbering scheme so

that cross-referencing is facilitated.

- AVII.2 -

),
=
\

(b)

UPPER
1= Nl === 7 = 7 o
]
i
| L it v Kt
[=NI-[{Q———— = = -
i I
|
I
L, WE SL(D W A0 E J EAST
; S)
|
|
) L
i 1 o \
&
X% 5)
' TLOWER i
I S !
! 5 J !
e ¢ LT S TR 1
Jal Jald-l J=HJ

{c)

Fig.l Explicit Leapfrog Difference Scheme

The physical region is a parallelopiped containing NIXNJxNK cells. Because of the
periodic symmetry the three faces which may be denoted by East, Upper and North do not
have to be independently calculated and act as guard planes. An extra set of guard
planes is provided outside the West, Lower and South faces. In Fig.l(a) and Fig.1l(ec)
points) are recalculated at even steps, and points X are recalculated at odd steps.
Points {} and }{ are guard points, set by symmetry. Fig.l(b) shows the compass nota-
tion which can conveniently be employed for Fortran or hand-coded assembler language,
together with the location of the FS and FN planes which are transferred to and from
the drums while the calculation of the central plane is in progress. CIM-R118

CORE BUFFER

DRUM | DRUM 2
]
|
FN FN
K
[} N N
0 0
S S
o FS FS
@
- B
¥ =] «— Itrack=10rows
s &
=
(-]
3
_t_y
: 1] [}
|] | :
48 Half-planes 48 Half-planes
[Rows 0-39] [Rows 40-79]

Fig.2 Data Organization
For maximum efficiency it is necessary to relate the space mesh to the structure of the

direct access storage devices used. In this calculation there are 48 K-planes, half

of each plane being stored on Drum 1 and half on Drum 2. Each half-plane lies entirely
within a single protection domain or 'cylinder', so that it can be transferred in one
operation. During the calculation of plane O the two FS half-planes are first trans-
ferred from the M-buffer to the drums (Stage 1), and then the M-buffer is refilled with
the two FN half-planes (Stage 2). Finally the buffer indices are updated so that the
next calculation takes place in the core area previously labelled N. CLM-R118

DRUM | DRUM 2

4Mbytes 4Mbytes
6:7s
CHANNEL | CHANNEL 2
g&{g I'5 Mbytes
STORE

" {05 Mbytes) i

|
N Y | g, —

2 |IBM 2301 Drums_.‘
Data cell

SYSTEM DEVICES Tapes

AND USER FILES

2Card Readers
(etc.)

|
|
| l
| 4 Printers :
| 4 Plotters
| I
| |

I

|

Fig.3 1IBM 360/91 Computer Configuration used at Garching

Large 2D and 3D calculations were facilitated by having two IBM 2301 drums available as
fast 'class C' direct access scratch storage for the problem program. These drums were
attached to separate channels so that the data transfer rate could be maximized., User
('class A') and system ('class B') files were held on other devices attached to different
channels leaving the problem programmer free to organize his scratch data in whichever
way suited the particular calculation best. These large calculations were run outside
normal hours and in order to make as much main core storage available as possible (1.5
Mbytes) they were not multiprogrammed with other jobs, making it desirable to develop
CPU calculations and I/0 transfers as much as possible in order to reduce the machine
time required. CILM-R118

c
SCRATCH

MAIN PRODUCTION

BACKING CORE cCPU
STORE STORE

A B
USER FRRATEAD SYSTEM
FILES MACHINE FILES

D

SUSPENDED
JOBS

E

HISTORICAL
RECORD

DISPLAY
CONSOLES

Fig.4 A Machine Configuration for Large Calculations

Several requirements must be met in a configuration which is specifically designed for
large 3D calculations if the full power of available hardware is to be exploited. This
diagram indicates a possible solutiom. Production runs would be carried out in a
special -purpose fast CPU coupled to a large main core store and a scratch backing store
C, the total storage requirements being of order 108bytes with a transfer speed exceeding
107bytes/second. Such runs would often need to be monitored on-line and a historical
record preserved on device E for subsequent analysis. Complex calculations might need
to be 'steered' from the console or temporarily suspended on device D to allow time for
thought. The front-end machine would also handle routine work such as compilations,
printing, file editing and short test runs. CLM-R118

READ
LIST FORM)

DECB | §2
DATA EVENT CONTROL BLOCK

Control operation
and pass parameters

WRITE
{LIST FORM)

A4
DCB §3 _///”—_“\\\
DATA CONTROL BLOCK y DCB
Characteristics R 53
of data set

Key
Symbolic reference = = 3 = - =

Address pointer ——>——
Construct block ==

Macro O

References are to subroutine SETDRM

Fig.5 Control Blocks for Subroutine SETDRM
This diagram shows the control blocks and macros, explained in ref.[1],
and the sections of the subroutine in which they are used. CLM-R118

10

B §§9.2,9.3

INPUT/OUTPUT BLOCK

Communication between
problem program and system
_

Type of chaining

Disc address

ECB [§892,93

A

Key

Symbolic reference — > — — —
Address pointer ———
Construct block e

Macro O

|§§ 101,10-2

EVENT CONTROL BLOCK b CHANNEL
Completion code PROGRAM
DCB §9.1

DATA CONTROL BLOCK

Characteristics and processing
requirements of data set

=

Disc address

References are to sections of subroutine TRANSF

DEB

DATA EXTENT BLOCK

control

data set

Extent entries and other
information about

Fig.6 Control Blocks for Subroutine TRANSF

l

This diagram shows the control blocks, macros and channel program for
EXCP, explained in ref.[4], and the sections of the subroutine in which

they are used.

CLM-R118

HER MAIJESTY’S STATIONERY OFFICE

Government Bookshops

49 High Holborn, London WC1V 6HB
13a Castle Street, Edinburgh EH2 3AR
109 St Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester M60 8AS
50 Fairfax Street, Bristol BS1 3DE
258 Broad Street, Birmingham B1 2HE
80 Chichester Street, Belfast BT1 4JY

Government publications are also available
through booksellers

