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INTRODUCTION

When there are temperature gradients in a fluid under gravity
such that the denser fluid is above the less dense then the fluid is,
evidently, potentially unstable to fluid motions. Viscous forces will
oppose such motions and thermal conductivity will tend to reduce the
temperature gradient. These effects combine in such gTwiz that a
non-dimensional number, the Rayleigh Number Ra = 25—%%——— parametrizes
the flow, where o 1is the coefficient of thermal expansion, g is the
acceleration due to gravity, v 1is the kinematic viscosity, k is
the thermal diffusivity, L is a typical length scale over which

0Z

is found that a minimum value of Ra exists below which no flow occurs.

oT . i :
temperature changes, and —— 1is a typical temperature gradient. It

In the familiar case of Bénard convection in a fluid layer the
temperature gradient is maintained by an externally imposed adverse
temperature difference AT between the upper and lower boundaries.
In the Classical Bénard situation o, V, K are constants and ther
Boussinesq approximation of replacing ﬁ , the density, by a constant
p, except in the buoyancy term (where &p = apOGT) is made. 'L 1is

aT . AT

then the layer depth and 5, 1s so that the relevant Rayleigh

T
number is:
ag AT it
Ra = —— ., ‘ 1
a A (1)
. - . it

Convection occurs above a critical Rayleigh number, Ra "t , and a
linearised perturbation analysis yields Rgrlt = %; " = 657.5 for
stress—free boundaries, If the simple symmetry of the Classical

-

Benard problem is destroyed by, for example, non-uniform viscosity

then in certain circumstances finite amplitude disturbances may lead



to convection at sub-critical Rayleigh numbers.

The relationship between the Nusselt numbeff(the non-dimensional
heat flux) Nu, the Prandtl number,Pr (= vk ), and the Rayleigh number
is of particular interest in the classical B;nard problem.

Rumford convection is thermal convection driven by internal heat
sources. The classical Rumford convection problem consists in find-
ing the temperature and velocity fields in a horizontal fluid layer
of uniform properties containing a uniform distribution of heat sources.
In the absence of convection, a parabolic thermal conduction profile

arises, part of which is thermally unstable. Rumford convection sets

in when the strength of the heat sources is sufficient for the thermal
gradient to drive convection and overcome the viscous drag. The

appropriate non-dimensional number is the RUMFORD number, RaH,

defined by

5
Ra = a—g..i_.'Y (2)

H vk 2

where vy 1is the rate of temperature rise due to a distribution of

heat sources of density H . [y = H/pcp where cP = specific heat
at constant pressure |. The steady state thermal conduction equation
iS 2
© Gl +y =0 . (3)
3z2

Hence K é%-% vy, and it is clear that the Rumford number is a kind of

L
modified Rayleigh number. A variety of numerical factors have been

used in the definitions of the (Rayleigh) Rumford number found in the
papers listed in this survey. How these relate to the Ra, defined
above is shown in the Appendix. In classical Rumford convection,

besides free or fixed hydrcdynamic conditions at the top and bottom

+see note 5 in the Appendix.



surface is either at the same temperature as the top (the
Kulacki-Goldstein problem) or it is a thermal insulator (the Roberts'
problem). As with the Benard problem, a critical Rumford number

crit ; ; .
RaH can be defined above which the layer is unstable to Rumford
convection for infinitesimal disturbances. The total heat flux
is known and constant in Rumford comvection so that the orthodox Nusselt
number is identically unity. What is of interest is the maximum

temperature .in the layer. Its non-dimensional form is the convective

cooling parameter M where

*
Toax = T

M=_m____7f£ (4)
max o

where T0 is- the surface temperature, T ax is the maximum horizontally
.
averaged temperature in the layer and i - is the maximum temperature
. m

in a layer cooled by thermal conduction only (no convection); obviously

M= 1.

The ratio of heat leaving through the top surface to that
leaving through the bottom (Nuup/NudDWn) is also a revealing quantity
in the Kulacki-Goldstein problem.

The possibility of convection in the Earth's mantle and core has
led to an interest in Rumford convection in spheres and shells. Here
the simplest model is of a self-gravitating sphere of uniform density
with a uniform distribution of heat sources within it. Motion can be
considered in the whole sphere (a core problem) or in an outer shell
of the sphere (a mantle problem). The same combinations of free or
fixed boundary conditions for spherical boundaries which are at con-
stant given temperatures or are thermal insulators can be considered.

The thermal insulator condition, zero temperature gradient, is
appropriate at the centre of the sphere . The Rumford number for

spherical geometry is given by (2) where L 1is the radius of the

- 3 -



outer surface and g 1s the acceleration due to gravity at the outer
surface. This relates to the number used by Chandrasekhar

[A2, p.227 eqn.(61)] by

Ra_=3C . (5)

For the definitions of other authors see the Appendix. Applications
of Rumford convection in spherical geometries are found in section E.

In real problems thermal convection is rarely either pure Bénard
convection or pure Rumford convection; internal heat sources and
applied temperature gradients can both be present. The more general
Rumford—Bénard problem has been considered by some authors particularly
with regard to the onset of convection. We find the use of hybrid
combinations of Ra and RaH not 'to be particularly illuminating.’

A different form of Rumford convection is that occurring in fluid
with internal heat sources in tall thin geometries, in which the heat
flux 1s removed from the horizontal walls. Models of this kind,
stimulated by problems arising in nuclear reactors, are discussed in
section D.

Turbulent phenomena have proved difficult to analyse in all areas
of fluid mechanics. Rumford convection is no exception, and there are
no theoretical papers on turbulent Rumford convection in layers or
spheres. Some work has been dome on turbulent Benard convection, and
this is included here since the philosophy underlying it applies also
to Rumford convection.

It will be clear to anyone after perusing the compilation of
papers that follows this introduction, that variation of heat sources

in space and Jor time, non-linear transport coefficients, and strong com—



pressibility are factors only lightly touched on. For a full under-

standing of Rumford convection much remains to be done.



A. CLASSICAL WORKS

Rumford convection is a particular form of thermal convectionm.
The following classical works give the general background to convect-
ion studies. Refs. Al and A2 provide many further historical

references.

Al. S. CHANDRASEKHAR (1957).
Thermal Convection
Daedalus 86, 323-39.

As a general introductory paper to the subject this is very
good. Professor Chandrasekhar concentrates on the physical con-
tent and mechanism of convection in a horizontal layer under a
variety of constraints.

A historical survey from the first observations of Count
Rumford to the demonstration by Lord Rayleigh of the dependence
of stability upon the Rayleigh number is given followed by a
discussion of the principle of exchange of stabilities and over-
stability. The principles behind classical Benard convection
are discussed, and the additional complexities introduced by
rotation and/or a magnetic field are considered under the head-
ings of 'Theoretical Predictions' and 'Experimental Verifications'.
Many illustrations are provided in the form of graphs and photo-
graphs, mainly from the original papers. -

A2. S. CHANDRASEKHAR (1961)
Hydrodynamic and Hydromagnetic Stability
Clarendon Press, Oxford.

This is inevitably the main reference work on fluid stabil-
ity and the first six chapters are concerned with thermal
convection.

The theory of classical Bénard convection and the onset of
instability is considered using linearised perturbation theory
which is thoroughly worked out for the cases of (a) Pure
Benard ; (b) Effect of Rotation; (c) Effect of Magnetic Field;
(d) Effect of Rotation and Magnetic Field. Although the linear
theory cannot predict the shape of the convection patterns it
does, given the shape of the basic cell,predict the size and the
flow within the unit cell and this problem is discussed in some
detail. Emphasis is laid upon the derivation of variational
principles which can be used in obtaining solutioms of the prob-
lems. Chapter six considers spheres and shells with internal
heat sources under various conditions.



A3, S.C. BROWN (1957)
Count Rumford Discovers Thermal Convection.

Daedalus 86, 340-343.

This is a delightful little account of Rumford's observations
concerning thermal convection. In quoting at fair length Rumford's
original writings we are transported back to the days when scient-
ific discovery was something which generally took place in the
kitchen.



B. RUMFORD CONVECTION IN HORIZONTAL LAYERS

0f the papers in this section,refs. B2-6, B10, Bll, are concerned

with layers in which no flux is conducted downwards. Refs. Bl, B8 take

equal constant temperatures on top and bottom surfaces (e.g. the melt-

ing temperature). Other works (refs. B7, B9, Bl2) deal generally with

the onset of convection when both heat sources, and applied temperature

gradient are present.

Bl.

B2.

F.A. KULACKI AND R.J. GOLDSTEIN (1972)

Thermal convection in a horizontal fluid layer
with uniform volumetric energy sources.

J. Fluid Mech. 55,271-287.

An experimental study of Rumford convection between parallel
plates at constant, equal temperatures yields thermal flux and
temperature distribution data from interferometric measurements.

The use of a Mach Zehnder interferometer to obtain horizont-
ally averaged temperature profiles is illustrated by a number of
fringe photographs. From these, temperature gradients and thence
heat transport coefficients in the form of the Nusselt number
(Nu) are calculated, Plots of Nu against Ra_ lead by extrapolation
to a value for RaSTt  yithin about 10% of ghe linear theory value.
A correlation of ghe form
crit)m

(Nu - 4) « (RaH - RaH

(m v 0.5)
is suggested.
) crit
The range of Ra_ 1is up to about 675 x Ra and at these
high values infinite adjustment' of the fringes ghows turbulent
convection in the form of isolated irregular thermals in time
sequence.

D.J. TRITTON AND M.N. ZARRAGA (1967)

Convection in horizontal layers with internal heat generation.
Experiments.

J. Fluid Mech. 30, 21-31.

An experimental study is described of Rumford convection in
a layer with constant temperature upper surface and zero flux at
the lower surface.

Observations are largely qualitative, of the convection patt=
erns at various values of Ra_ up to v 80 Ra Tt These are
made visible by polystyrene Beads which comé out of suspension
owing to a different thermal expansion coefficient from that of the
solution. It is found that rather irregular polygonal cells _
form with descending cold interiors. These, contrary to Roberts'

- 8 -



theoretical prediction, expand as Ra is increased, and tend
toward more roll-like patterns. Schwiderski (1972) [B6] has put
forward an explanation in terms of the temperature-dependence of
the electrical conductivity.

P.H. ROBERTS (1967)

Convection in horizontal layers with internal heat generation.
Theory.

J. Fluid. Mech. 30, 33-49,

This is a theoretical analysis relating to the situation
in the Tritton and Zarraga experiment of Rumford convection in a
layer with constant temperature upper surface and zero flux at
the lower surface.

The marginal stability problem for such a layer is solved
for RaSTt 4nd a, the horizontal wave number. The remainder of
the paper is devoted to the finite amplitude convection pattern.
This is approached by the 'mean-field approximation' which con-
sists of the supposition that the horizontal variation is
adequately represented by a single fourier component. It is
found that up-hexagons are unstable and that rolls are stable,
as are down-hexagons for Ra z 3 Ral(_:lrlt and that 'a' increases
slowly with increasing RaH.

R. THIRLBY (1970)
Convection in an internally heated layer.
J. Fluid. Mech. 44, 673-693. ;

A numerical simulation of steady convection in the Roberts
problem of Rumford convection in a layer with constant temperat-
ure upper surface and zero flux lower surface.

. The heat transport, :temperature and velocity profiles are
calculated for two-dimensional rolls and three-dimensional cells
in the steady state by time evolution using Chorin's method.

Cases were comguted for Ra 5 20 RaS**". The results show that
for Ra_ > RaS't cell structure is ?argély rectangular, and

. n .
lndepengent o? Pr. At larger Ra_ the dependence on Pr 1is such
that for low Pr rolls are mainly ?ormed, while for high Pr
hexagonal shape persists. In all cases, in agreement with Roberts
size decreases slowly with increasing Ra_. Roberts calculated
the dependence of the convective cooling parameter M in two ways -
using the shape assumption, and with the mean field approximation.
Thirlby's computed form for M(RaH) lies between these, '

E.W. SCHWIDERSKI and H.J.A. SCHWAB (1971)

Convection experiments with electrolytically
heated fluid layers.

J. Fluid. Mech. 48, 703-719.

In general terms, this is a repeat of the Tritton and



B6.

B7.

Zarraga experiments on Rumford convection in a fluid layer with
constant temperature upper surface and zero flux at the lower
surface.

It is found that there is considerable time evolution of the
convection pattern, polygonal cells continuing to grow through-
out the duration of the heating. Rolls, which develop more
quickly at higher Ra_, are much more stable in size and seem to
reach a steady flow aligned parallel to the applied electric
field.

It is suggested that the continued discrepancy with Roberts'
theory can be explained as arising from the temperature depend-
ence of electrical conductivity and, to a lesser extent, the
thermal properties of the upper surface.

The duration of these experiments was unfortunately trunc-—
ated by the appearance of gas bubbles at the zinc electrodes
after an hour of heating.

E.W. SCHWIDERSKI (1972)

Current dependence of Convection in
Electrolytically heated Fluid Layers.

Physics of Fluids 15, 1189-1196.

Theoretical and numerical investigations into the way in
which the convection pattern varies through the temperature
dependence of the electrical conductivity reveal some interesting
effects. '

The main immediate problem of the discrepancy between experi-
mental results of Tritton and Zarraga and existing theory is
considered and the investigation shows that the qualitative
features can, in the main, be explained by the temperature
dependence of ohmic heating for Rumford numbers near the critical
value. The effect of imperfect thermal properties of the upper
and lower boundaries is found to be negligible for these regimes.

E.M. SPARROW, R.J. GOLDSTEIN AND V.K. JONSSON (1963)
Thermal instability in a horizontal fluid layer:
effect of boundary conditions and non-linear temperature profile.

J. Fluid Mech. 18, 513-528.

The stability of a fluid layer against Beénard and mixed
Benard-Rumford convection with a variety of thermal and hydro-
dynamic boundary conditions is analysed theoretically and the
critical Rayleigh and Rumford numbers determined.

The dependence of critical Ra on Biot number is plotted for
the Benard case and the dependence of forms of critical Ra
and Rayleigh-Rumford number for different ratios of heat gener-—
ated to heat transferred through the layer are calculated.

- 10 -



BS.

B9.

B1O.

P.M. WATSON (1968)

Classical cellular convection with a spatial heat source.
J. Fluid Mech. 32, 399-411.

A theoretical investigation into convection of a mixed
Benard-Rumford type leads to values of critical Ra and RaH in a
horizontal layer.

For fixed top and bottom and free top and bottom boundaries
and constant temperature at these boundaries the critical
Rayleigh number, Ra, and the critical wavenumber are plotted against
Rumford number Ra_ thus yielding Ta~ Lk and RaS’ lt. The method
is by Fourier ana§y51s in the z-direction, threée or four terms
being adequate to specify RE"'" with sufficient accuracy.

Velocity profiles for selected values are plotted and the possi-
bility of formation of a double cell investigated with negative
results.

This paper views the problem from a meteorological stand-
point, where heat sinks may be as important as heat sources.

W.R. DEBLER (1966)

On the analogy between thermal and rotational
hydrodynamic stability.

J. Fluid. Mech. 24, 165-176.

The correspondence between stability in a fluid layer with
parabolic temperature profile (Rumford convection) and that for
viscous flow between rotating cylinders is considered. It is
shown that they are governed by adjoint differential systems.

The question is considered of whether the flow splits up
into a double cell and it is found that a double cell is pre-
dicted for n > 0.546 where n is the ratio of the height of
the temperature maximum to the height of the layer. It is noted
that ®, a modified form of the Rayleigh-Rumford number is near
its maximum at this critical value of n however further investi-
gation in this region could yield no concrete deductions possibly
because of numerical inaccuracies.

The analogous problem of water near 4°¢ (the ice water
problem) is finally considered.

T.D. FOSTER (1969)
Convection in a Variable Viscosity Fluid Heated from Within.

J. Geophysical Research 74, 685-693.

Mantle convection may not be fully developed if the time
elapsed during the earth's existence is insufficient. This paper
therefore considers a numerical simulation of Rumford convection
in a layer with exponentially depth-dependent viscosity as it
develops in time. Infinite Prandtl number is assumed. The mean
field approximation based on a single Fourier component in the

_11_



Bl11.

Bl2.

horizontal plane is taken in which motion is assumed to be purely
two-dimensional rolls.

The wave number chosen is that which grows fastest at the
onset of convection and the boundary conditions are free boundar-
ies with constant temperature upper and zero heat flux at lower
surfaces.

Results indicate that viscosity variation limits the convect-
ion to the low viscosity region; the horizontal wavenumber is
consequently that appropriate to an effectively shallower layer.

E.W. SCHWIDERSKI (1972)
Bifurcation of Convection in Internally Heated Fluid Layers.

Phys. Fluid 15, 1882-1898.

This theoretical analysis is concerned with finite amplitude
Rumford convection in a horizontal layer with constant temperature
upper surface and zero thermal flux through the lower surface.
Both surfaces are rigid.

The paper uses the non-linear Lyapunov-Schmidt expansion
technique about a given finite—amplitude solution to investigate
whether bifurcation occurs for neighbouring solutions. The
introduction of a periodicity vector enables a systematic analysis
and classification of the spectrum of periodic linear planforms.
It may be that the single tesselating convection patterns - the
roll, rectangular, and hexagonal cells - may be unstable to finite
amplitude perturbations at certain well defined Rayleigh numbers.

F.A. KULACKI (1971)

Thermal Convection in a Horizontal Fluid Layer with
Uniform Volumetric Energy Sources.

University of Minesota Ph.D. Thesis.

Rumford convection in a layer is investigated theoretically
and experimentally. The linear theory critical Rumford numbers
are calculated for a wide range of boundary Biot numbers for the
four possible combinations of fixed and free boundary conditionms.
A stability analysis by the energy theory is also carried out,
the critical Rumford numbers being smaller in certain regions
than the corresponding linear value. This indicates the possibil-
ity of finite amplitude sub-critical convection.

The experimental investigations are essentially those
reported in Kulacki and Goldstein (1972) (see Bl).

Rl Y N



B13. G. VERONIS (1962)
Penetrative Convection
Astrophys. J. 137, 641-663.

This paper considers the stability of water near 4°C where
the density is a parabolic function of temperature.

The linearised perturbation analysis is precisely equivalent
to a problem with internal heat sources since the conduction pro-
file of density is parabolic. The principle of the exchange of
stabilities is proved for free boundaries hop and bottom by a
general method and critical equivalent Rayleigh numbers and
horizontal wave numbers are calculated for a range of values of
the ratio of the height of the density minimum to the depth of
the layer. In Rumford convection this ratio is that of the height
of the temperature maximum to the depth of the layer.

_13...



C. RUMFORD CONVECTION IN SPHERES AND SPHERICAL SHELLS

The only quantitative work on Rumford convection in spherical
geometry prior to 1961 has been concerned with the onset of instability,
and this has been gathered together systematically in ref. Cl. The
effect of magnetic fields has been considered in [C2, C3] . The other

papers in this section are more recent finite amplitude studies.

Cl. S CHANDRASEKHAR (1961)
The Onset of Thermal Instability in Fluid Spheres and
Spherical Shells.
Hydrodynamic and Hydromagnetic Stability, Chapter VI
Clarendon Press, Oxford.

Here we briefly review the contents of this chapter.

The linearised perturbation equations and the separation of
variables by analysis into normal modes (spherical harmonics) are
considered and the principle of the exchange of stabilities is
proved for the case of uniform density and heating. The Rumford
numbers for the onset of convection in modes & = 1 to 15 are
calculated by a variational method which is shown to be equival-
ent to the condition, at marginal stability, that the rate at
which energy is dissipated by viscosity equals the rate at which
energy is liberated by the.buoyancy force. It is seen that the
2 = | mode has lowest Ra;rl and so is the predicted mode at the
onset.

Convection in spherical shells is considered for various
values of n, the ratio of inner to outer radius, and the four
possible combinations of fixed and free boundary conditions and
the critical Rumford numbers calculated for &£ =1 to 15. 1Im
addition some results of Lyttkens are glven for non-uniform den-
sity or mon-uniform heating.

The effect of rotation is considered and an analysis carried
out. A variational principle is derived and used to discuss the
onset of stationary convection (assuming the principle of exchange
of stabilities to be valid - which it may not).

Finally some remarks are made on Geophysical applications.

A 1ist of authors referred to by Chandrasekhar is appended
to chapter VI.



c2.

C3.

C4.

A. KOVETZ (1969)

The Influence of a Uniform Magnetic Field on Thermal Convection
in an Enclosed Fluid Core.

Phys. Earth Planet. Interiors 2, 88-92.

The critical Rumford number Racrlt is calculated for the

onset of stationary convection in a uniform self-gravitating
fluid sphere with uniform heat sources and permeated by a uni-
form magnetic field. A rigid outer boundary is assumed, which
is not electrically conducting. The convective solutions at
onset must be symmetric _about the magnetic field direction, and
it is found that Ra;rl cr%gcreases with Q, the Chandrasekhar
number ' ,and that Ra = Q as Q » », Overstable solutions

. H
are not considered.

T. NAMIKAWA (1958)
Fluid Motions in a Sphere

I. Thermal Instability of a Rotating Sphere Heated Within.

IT. Thermal Instability of a Conducting Sphere Heated Within
under a Uniform Magnetic Field.
ITT, Thermal Instability of a Rotating Sphere Heated Within
under a Uniform Magnetic Field.

J. Geomagnetism and Geoelectricity 9, 182-192; 193-202; 203-209.

In all 3 papers, the onset of convection is examined theoret-
ically in the limit of zero viscosity. The outer spherical surface
is at constant temperature and is a streamline. Namikawa finds
convection sets in as overstability (a) for a rotating spnere,
or (b) for conducting sphere if the magnetic field is strong
enough and S~ > 1T, Otherwise for case II convection sets 1in as
steady motions. In case III it is found that if the principle
of exchange of stabilities holds then solutions must be axially
symmetric. These conclusions all depend on the validity of the
effectively one-term approximation used for the fields.-

P. BALDWIN (1967)
Finite Amplitude convection in a self-gravitating fluid sphere

containing heat sources.
Proc. Camb. Phil. Soc. 63, 855-869.

This is a theoretical and numerical analysis of Rumford
finite amplitude convection in a sphere. A zero outer surface
temperature and both fixed and free outer surface are considered.

The velocity field is supposed to be axisymmetric with no
toroidal component. A solution involving only the first spherical
harmonic 1s sought, and the vertical structure of the cells
determined from mean field equations. The results obtained are
in agreement with those from Stuart's shape assumption. The
solution is independent of the Prandtl number, and the direction
of flow is not determined. Temperature and velocity profiles
are calculated up to 200 R e (rigid surface) and 500 Ra
(free surface).As RaH + o, the solution consists of a constant

+ see note 6 in the Appendix.
S



C5.

temperature, constant velocity 'mainstream' solution coupled
with a thin steep thermal outer boundary layer for b?th boundary
conditions. The central temperature behaves as Ra_i for large

H
Ra...
4y

A.T. HSUI, D.L. TURCOTTE AND K.E. TORRANCE (1972)
Finite-Amplitude Thermal Convection within a

Self-Gravitating Fluid Sphere.
Geophysical Fluid Dynamics 3, 35-44.

A numerical simulation of Rumford convection within a sphere
is carried out for the case of (effectively) infinite Prandtl
number.

Finite difference calculations show that for a fixed-surface
condition single-cell convection breaks up into double-cell and
then quadruple-cell convection at given Rayleigh-Rumford numbers.
For a free surface condition no such break-up occurs and con-
vection remains single-celled to high numbers. The results are
compared with the mean-field approximation of Baldwin (1967)
and reasonable agreement is found.

It is concluded that the surface boundary conditions are

most important and that doubt is cast upon the necessity for a
lunar core (Runcorm 1962, 1967).

» T



D. RUMFORD CONVECTION IN VERTICAL TUBES

In the papers in this section, the heat from the internal sources

escapes through the vertical walls. These studies find a natural

application in heat transfer calculations for thermonuclear reactors.

D1.

D2.

J. WOODROW (1953)
Free convection in heat generating fluid (laminar flow).
UKAEA A.E.R.E. report E/R 1267.

In this paper two systems of natural convection in fluids
containing a distributed source are considered. In one heat is
generated in a fluid enclosed by two vertical parallel walls
whose height and width are large compared with their separation,
2a, and which are cooled by an external coolant, flowing upwards.
In the-other heat is generated in a fluid enclosed in a vertical
circular cylinder whose height is large compared with its radius
and whose curved wall is cooled by an external coolant flowing
upwards. This model assumes no horizontal fluid velocity, that
the vertical velocity is a function of horizontal co-ordinate
only, and that there is no net vertical flow. Pressure is a
function of height only. At the walls the velocity is zero, and
there is a vertically-uniform heat flux. There is however
a uniform vertical temperature gradient A imposed through-
out the fluid, and a uniform distribution of heat sources H.

Both rectangular and cylindrical theory give AT (the temperature
between centre and wall) « H/Az.

D. WILKIE AND S.A. FISHER (1961) :
Natural Convection in a Liquid Containing a Distributed Heat Source.

Int. Develop. in Heat Transfer 5, 995.

Wilkie and Fisher have done experiments to study the laminar
flow theory of Woodrow (1953) for fluids having a distributed
heat source and vertical temperature gradient, contained in long
vertical cells of circular or rectangular cross-section. They
use ohmic heating, passing an electric current through a 207
solution of zinc chloride. They find Woodrow's formfor AT born
out at low values, but with a smaller constant of proportionality:
(i.e. AT 1is lower than predicted). This is explained in terms
of eddies of relatively short vertical extent transporting some
of the heat horizontally, thus allowing a lower temperature
gradient. The horizontal temperature profile has "ears'" as
predicted by Woodrow (1953).



D3. W. SMITH AND F.G. HAMMITT (1966)
Natural Convection in a Rectangular Cavity with Internal Heat
Generation.
Nucl. Sci. Engineering 25, 328.

This is a thorough theoretical and experimental study of
Rumford convection in a closed rectangular cavity, cooled along
a pair of vertical side walls. The experiment uses water;

the theoretical analysis considers fluids of arbitrary Prandtl
number since the illustrative example would use a liquid-metal
solvent. The boundary layer approximation is assumed for a

. 4 . a, o a .
uniform Boussinesq fluid, and also (=)< << 1 — aspect ratio
of rectangular cavity . Lighthill's procedure and Squire's
method are used to obtain solutions. The experiments support
the theoretical profile used for the temperature viz. peaked in
the boundary layer and uniform in the core. The velocity pro-
file is assumed to be constant in the core. The Nusselt number
(heat flux) is found to be

a 1
Nu = C (m, Pr) (E.RaH)" "

where m characterizes the fixed slope of the imposed linear
wall temperature distribution. Experimentally C seems to be
between 0.1 and Q.33. Experimental points lie in the range

107 < 2Ra_ < 10 , 5 <Pr < 8. An overshoot is found in the
experimental velocity profile in the boundary layer near to the
matching point.

D4. W. MURGATROYD AND A. WATSON (1970)
An experimental investigation of the natural convection of a
heat generating fluid within a closed vertical cylinder.
J. Mech. Engineering Sci. 12, 354.

Experiments have been carried out on convection in a verti-
cal right-cylindrical circular canister closed at both ends, in
which a uniformly distributed heat source permeates the fluid.
The outer wall of the canister is maintained at a uniform
temperature. The radial temperature profile maximum is away
from the axis, and occurs where the axial velocity is zero.
Conduction is the main heat dissipating mechanism there. Con-
vection takes place in the form of a cell with upflow at the
centre and down flow at the edges. Their experiments cover
the range 8000 < Ra 65)6 < 350,000 where a is the cylinder radius,
2 1is the cylinder ?en%th and RaH is based on 2.

The fluid is water, % is typically 50. The work can be com-
pared to work dome by Lighthill and others on the thermosyphon
which is a cylinder with open ends.

D5. M.J. LIGHTHILL (1953)
Theoretical considerations on free comnvection in tubes.

Q. J1. Mech, appl. Math. 6, 398.

The basic theoretical paper on the thermosyphon.



D6.

D

T.M. HALLMAN (1956)

Combined Forced and Free-Laminar Heat Transfer in Vertical Tubes
with Uniform Internal Heat Generation.

A.S.M.E. Trans. 78, 1831-1841.

This paper examines theoretically the heat transfer
properties of a vertical pipe of liquid with intermal heat
sources. Its contribution was in examining tube flow with net
through flow, and internal sources. The pipe is a cylinder of
circular cross—-section and the walls may be at constant tempera-
ture or constant flux. The solutions are sums of Bessel functions

which depend on RaHI.

I. MICHIYOSHI, Y. KIKUCHI and O. FURUKAWA (1968).

Heat Transfer in a fluid with Internal Heat Generation Flowing
through a Vertical Tube.

J. Nucl. Sci. Tech. 5, 590-595.

Experiments have been carried out measuring temperature
distributions for fluid flowing both turbulently and laminarly,
in a vertical pipe of circular cross-section. The fluid con-
tained a uniformly distributed heat source generated by passing
an electric current through the fluid,(which was brine). Their
experimental results are compared with a boundary layer analysis.
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E. APPLICATIONS

Convection in the mantle and core of the earth and moon provides
an explanation for some observed features. The following papers
explore some of the consequences of Rumford (and Bénard) convection
in planets. They are in chronological order. The emission and
absorption of radiation provides non-uniform heat sources and sinks.
Papers on the complicated Rumford-Benard problem posed by the influence
of radiative transfer on cellular convection are also considered in

this section.

El. D. GRIGGS (1939)
A Theory of Mountain Building.
Am. Jour. Sci. 237, 611-650.

In this review the possible forces causing mountain building
are compared and it is suggested that thermal convection is the
most probable.

Convection is then considered in various aspects such as
the depth of the convecting shell, the solid flow of rocks and
the possible causes of cyclic convection. '

A number of laboratory experiments are illustrated to show
the ways in which the proposed mechanism might work.

E2. S.K. RUNCORN (1962)
Convection in the Moon.
Nature 195, 1150-1151.

The shape anomaly of the moon is considered on the basis of
thermal convection. It is stated that Jeffreys' 'Fossil Tide'
theory is not tenable but that convection is able to explain the
observations assuming an £ = 2 mode.

It is suggested that this requires a lunar core (but see
Hsui, Turcotte and Torrance (1971): C5).

E3. S.K. RUNCORN (1962)
Convection Currents in the Earth's Mantle.

Nature 195, 1248-1249.

A short paper describing a theory of the growth of the
Earth's Core by a hypothesised correlation between mountain-—
building ages and thermal convection.



This is an interesting illustration of the possibilities
of obtaining quite detailed information from the consequences
of a fluid stability analysis.

D.C. TOZER (1965)
Symposium on Continental Drift:

Heat Transfer and Convection Currents
Phil. Trams. A 258, 252-271.

In an article reviewing the possible causes of convection
in the Earth's Mantle it is concluded that radiogenic heating
is the most probable driving force. The theory of Rumford
convection is discussed semi-quantitatively and it is suggested
that marginal stability considerations in an incompressible
fluid are a gross oversimplification.

Points suggested by the study are:

(1) Radiogenic heating would probably give average velocities
of about 3 cm/year.

(i1) Convection is confined to the outer few hundred km. of
the mantle.

(i1i) - The convection is unsteady.
(iv) An elongated 'roll' pattern is expected.

(v) Ascending-streams are narrower than descending ones.

D.L. TURCOTTE AND E.R. OXBURGH (1969)
Implications of Convection within the Moon
Nature, 223, 250-251.

It is suggested that the moon's crust is probably about
300 km thick, preventing break-up, and that the viscosity
remains low throughout the interior so that convection takes
place through-out the sphere within the fixed surface.

G. SCHUBERT; D.L. TURCOTTE, E.R. OXBURGH (1969)
Stability of Planetary Interiors
Geophys. J.R. astr. Soc. 18, 441-460.

The linear stability analysis for a fluid with exponentially
depth-dependent viscosity is carried out for Benard and Rumford
convection. The results are extrapolated to show that, in the
limit of large layer depth, the critical value of a form of the
Rayleigh number based on the viscous scale height tends to a
constant finite value.
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The likelv conditions in the interiors of Earth, Moon,
Venus and Mars are considered and the preceding analysis used to
show that these are unstable to convection.

K.E. TORRANCE AND D.L. TURCOTTE (1971)
Structure of Convection Cells in the Mantle.
J. Geophysical Research. 76, 1154-1161.

A numerical simulation of Benard convection with temperature
dependent viscosity is conducted, demonstrating the feasibility
of using numerical methods to determine the structure of convect-
ion cells in the mantle. Flow and temperature profiles are
illustrated and it is seen that large flow velocities and small
temperature differences are associated with ascending convection
with infinite Prandtl number.

Directions for future work are suggested including the con-
sideration of internal heat generation. It is stated that there
is good reason to suspect that this will lead to unsteady flow.

D.L. TURCOTTE AND E.R. OXBURGH (1972)
Mantle Convection and the New Global Tectonics
Annual Review of Fluid Mechanics, 4, 33-68.

In an extensive review of the state of Geophysical theory
the authors address themselves to the problem of the mechanism
of tectonic plate movement.

Benard and Rumford convection are considered and a boundary
layer theory of finite amplitude convection discussed and illus-
trated, showing rising and falling plumes for high Prandtl
number.

R.M. GOODY (1956)
The Influence of Radiative Transfer on cellular convection.

J. Fluid. Mech. 1, 424-435.

This paper presents an approximate solution of the problem
of the onset of convection between plane-parallel plates heated
from below when the fluid between them absorbs and emits thermal

radiation.

In the 'opaque' approximation, the effect of radiant heat
transport can be included simply via a radiant thermal conductivity
k , so that the molecular thermal conductivity k 1is replaced
b§ (k + k ). In the 'transparent' approximation thermal radia-
tion prov{des highly non-uniform heat sources and sinks and the
problem may be viewed as a complicated Benard-Rumford problem.
Radiation never destabilizes; under suitable conditions
(small temperature scale-height, large kr/k) radiation stabil-
izes the fluid.
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E10. J. GILLE and R.M. GOODY (1964)
Convection in a Radiating Gas.
J. Fluid Mech. 20, 47-79.

This is a theoretical and experimental study of the effect
of radiation on the onset of convection in dry air and in
ammonia,contained between horizontal plates with an applied
vertical temperature gradient.

The non-linear temperature profile which is the result of
the action of radiative transfer on a linear conductive profile
in the pre-convective state is explained theoretically for a
non—grey model. An S-shaped departure from the mean profile is
obtained.

In dry air, Ra was found to be v 1780 (cf.theoretical
1708). This was the flrst precision measurement of critical
Rayleigh number for the classical Benard problem in a gas. In
ammonia, where there was significant absorption and re-emission,
Racrit was found to be considerably larger than for air.

In the pre-convective state, the temperature does not have
linear conductive profile; the thermal radiation results in an
S-shaped departure from the mean profile. This paper may thus
have been viewed as an investigation into the onset of
Rumford-Benard convection in the presence of a 'cubic'-type of
profile composed of an applied vertical temperature gradient, a
layer of heat sources in the lower part of the fluid, and a
layer of heat sinks in the upper part.
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F3.

F4.

F5.

F. TURBULENT CONVECTION

At high Rumford numbers the laminar convection which
occurs at low but supercritical Rumford numbers breaks up into
turbulent convection with the associated major theoretical
problems.

W.V.R. Malkus in two papers [Fl, F2] examines a statistical
approach based on the hypotheses:

(a) The mean fields do not exceed the marginal inviscid
stability fields.

(b) The smallest scale contribution to heat flow is from
eddies which are the size of the smallest unstable mode

in the mean field.

(¢) Maximum heat transport is achieved.

In another paper, [ F3], W.V.R. Malkus and G. Veronis suggest
that the condition of maximum mean-square temperature gradient
is possibly more appropriate than (c) above.

L:N. Howard [F4] reviews these and various other approaches
to the problem and points out that the experiments of
A.A. Townsend [F5] show that developed turbulent convection is
largely a matter of distinct thermals. These are not considered
in the previous developments and Howard then outlines an
approach to this time-dependent convection. These time-dependent
thermals are also seen by Kulacki and Goldstein [B1] for the case
of Rumford convection.

W.V.R. MALKUS (1954)
The Heat Transport and Spectrum of- Thermal Turbulence.
Proc. Roy. Soc. A225, 196-212,

W.V.R. MALKUS (1963)
Outline of a Theory of Turbulent Convection. in
Theory and Fundamental Research in Heat Transfer. J.A. Clark (ed)

Pp.203-212 Pergamon.

W.V.R. MALKUS AND G. VERONIS (1958)
Finite Amplitude Cellular €onvection
J. Fluid Mech. 4, 225-260.

L.N. HOWARD (1966)
Convection at High Rayleigh Number., in

Proc. Appl. Mech. 1lth Int. Congress Munich (1964) H. Gortler (ed).

A.A. TOWNSEND (1959)
Temperature fluctuations over a heated horizontal surface.

J. Fluid. Mech. 5, 209-241.




APPENDIX:
In table 1 the non-dimensional numbers defined in each paper are

related to the Rayleigh and Rumford numbers defined by:-

3
Rayleigh Number Ra QE;%%Ji—
L5
(Rayleigh) - Rumford Number Ra = Q8Y
H 2
o
where
@ = Temperature coefficient of volume expansion
g = Acceleration due to gravity (at the surface in spherical
problems).
AT = Temperature difference across layer.
Y = Rate of increase of temperature due to internal heating
rate H 1in the absence of heat transport; y = E‘b
P
K = Thermal Diffusivity
v = Kinematic Viscosity

L = Layer Depth or Sphere Radius



Notes

1. The heating in this paper is temperature-dependent and this

Rumford number 1s based on a reference value.

2. With mixed convection n , Ra, Ra, are connected by the identity

H

= == for 0O<n<l

|
1
91—

(where n 1is the ratio of the height of temperature maximum to the

total layer depth).

3. In papers with exponentially depth-dependent viscosity the Rayleigh

numbers are based on the surface value.

4. In spheres and shells the gravity, g, which enters RaH is the

value at the outer surface.

5. The Nusselt number Nu = (total heat flux transported by convection
and conduction)/(heat flux transported by conduction when the fluid is
a rest).
6. The Chandrasekhar Number Q is defined as
BO2 L2
Q=upvl
where BO is a typical magnetic induction

p  is the permeability

and A is the electrical resistivity.



Paper Author (s) Symbol Equivalent Note
Bl Kulacki & Goldstein Ra |= g%-RaH
B2 | Tritton & Zarraga R |= RaH
B3 Roberts R = RaH
B4 | Thirlby R = RaH
B5 Schwiderski & Schwab R |= RaH
B6 Schwiderski R = RaH (1)
B7 Sparrow et al R = Ra
Ns - %'igg lEZn =
Ro|= ray @-m)” = 4 RayR2 4 g3
B8 | Watson Q |= ! RaH
R . Ra
B9 | Debler R =/ RaH (l-n)2 = RaH (égi + %)2 (2)
B10 | Foster R N RaH i
B12 [ Kulacki Ra |= —L-Ra
64 TH
B13 | Veronis R = 2r1RaH = RaH - 2 Ra
Ra* |= |} Ra, (1—n)5 =4 Ra, (-1%'; + %)5 (2)
Cl | Chandrasekhar C1 = %-RaH (4)
C2 | Kovetz c |= % RaH
C4 Baldwin 7 = %—RaH
C5 | Hsui et al Ra |= f% RaH
E4 Tozer Rh |= RaH
E6 Schubert et al Ra(L)|= Ra (3)
Ra(L)|= Ra,

TABLE T
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