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ABSTRACT

Although it is necessary that a liquid have viscosity in order to generate
shear layers and streets of vortices, the development of such hydrodynamic
flows can be reproduced in effectively inviscid systems. This paper
describes some work on the stability and non-linear breakup of streets of
vortices of finite extent, and on the interaction between two finite vortices.
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1. INTRODUCTION

Most wakes encountered in engineering practice are turbulent. 1In
particular, real wakes, tend to be turbulent if the Reynolds number Re exceeds
103 [1]. When describing turbulent flows it is often convenient to introduce
an eddy viscosity [ 2] (analogous to the molecular viscosity but without its
underlying physical basis) especially as generally speaking the mean flow in
turbulent wakes is quite like that in laminar wakes. However this eddy vis-
cosity really is a smoothed way of representing the spreading of the shear or
vorticity in the fluid over a wider region in space through the wave-wave
interactions in the advection term of the momentum equation. The inertial

spreading of layers of vorticity is one of the subjects of this paper.

Wakes often exhibit periodicity. In the range 40 < Re < 103 the
periodicity in the wake of circular cylinders‘can be quite marked. 1In air,
this effect has audible consequences in the whistling of a strong wind through
a ship's rigging or the swishing of a cane. In water, the vortex trails or
streets are clearly visible behind small cylindrical obstacles. Vortices are
shed in the cross flow through heat exchanger pipes. Even iﬁ the dominantly
turbulent range, some wake periodicity is observable up to Re = 105. Serious

mechanical vibrations may result in extreme cases.

The study of vortex streets is now a venerable one dating back experi-
mentally to Benard's [ 3 ] correlation of Strouhal's musical notes in the wind
with the vortices in a vortex street; and theoretically to Karman's (1912)
classical work on his ideal vortex street [ 1]. 1In this paper we describe
some work on the stability and non-linear breakup of streets of vortices of

finite extent, and on the interaction of two isolated but finite vortices.



2. EQUATIONS AND FRAMEWORK

This survey is concerned with the flow of a uniform, incompressible,
effectively inviscid fluid, with vorticity. The vorticity is taken to be non-
zero over part of the fluid at least. The direct effect of viscosity is
neglected. We restrict our attention to flows in two cartesian dimensions
x and y, assuming that all properties are independent of z at least on

average.

We now set down a brief synopsis of equations and results to provide a
notation and framework for subsequent discussion. The equations of incom-

pressible fluid mechanics are those of mass and momentum conservation :

div.u = 0 (1)
- + u.Vu + L = vv? (2)
'a—t u.vVu E PpP=g =N u .

Neglecting viscosity (to which we will return later), we find it convenient

to rewrite equation (2) as

Fhe

-E,\(‘E =..VH_ (3)
where the vorticity w = curl u , q2 =u.u and @ is the gravitational

potential, H is the Bernoulli quantity defined by [5]

HE%q2+E+tP. (4)

For steady inviscid flow Bernoulli's theorem states that H is constant on
any stream line or any vortex line; this follows from equation (3). H/g is

the total Bernoulli head, g being the acceleration due to gravity.

The curl of equation (3) gives the vorticity equation
ow '
—= - curl (uArw) =0 5)
= 0 . W) (
which shows that vorticity is transported with the fluid, i.e. is "frozen in'.
One advantage of describing flow changes in terms of vorticity lies in the
absence of the pressure term from equation (5). However this does make the

formulation less familiar to those for which the '"pressure head" provides a

natural category of thought.

In two-dimensional flow (g% = 0), the velocity u has components (u,v,o0)

but the vorticity only has one component : & = (0,0,0). Explicitly
L = %% - %% .  Equation (5) can thus be reduced to a scalar equation of the
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form.
% ydiv(cu) = 0 . (6)
ot - )

Alternatively u may be expressed in terms of a stream function ¢ by

u 3y and v o

so that { = const.is a streamline of the flow. In

this case the flow is described by
oC L, 9¢ 3¢ _3yag _
-a? + ay g; - a'X a-‘;- 0 (7&)
with the relation
vy o= og (7b)

and appropriate boundary conditions. Here the stream function plays the role

of a Hamiltonian,

From the close analogy between equation (6) and the compressible equa-
tion of continuity of mass, it is clear that no vorticity is generated in the
body of the fluid. If additional vorticity arises, it must do so at the
boundaries and then be convected into the body of the fluid. A consequence
of this property is the conservation of vorticity within a particular fluid

volume as it is carried about within the flow.

We find it convenient to use the concept of a "point vortex" in two
dimensions (the system described here has a close relationship with the
Vlasov equation appropriate for the motion of charged particles in the
appropriate phase space). By a "point vortex" is meant a Dirac delta distri-
bution of vorticity at some point Ly in the x-y plane where r = (x,y) etc.

Thus
C=¢C,-8(x-r) .

Such a poiﬁt distribution represents a rigid rod of fluid with axis normal to
the plane of the flow which is rotating about its axis with angular velocity
QO equal to half the vorticity QO . Negative ﬁorticity corresponds to clock-

wise rotation, positive vorticity to anti-clockwise rotation.

For incompressible, effectively inviscid flows, it is a well-known but
still remarkable fact that the motion is determined solely by the distribution
of vorticity (and of course the shape of the boundaries). Given a distri-
bution of vorticity {(x,y), the stream function § can be calculated as the
solution of Poisson's equation (7b). The vorticity equation (7a) then enables
the transport of vorticity to be calculated. A new distribution of vorticity
at some time &t later can thus be calculated and the cycle continued. This

algorithm provides the basis for all fluid dynamical computer programs which
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use vorticity and stream function rather than the 'primitive' variables of

velocity and pressure.

3. METHODS OF CALCULATION

A continuum of fluid has infinitely many degrees of freedom and the
representation of fluid motions in a totally satisfactory way for computa-
tional purposes has not so far been found in general. This is particularly
true of the turbulent state whether in Fourier space or real space. However
where well-developed structure is known to be present in flows then progress
can be made by choosing a method of describing the fluid such that the expec-

ted features arise fairly naturally.

Three somewhat different approaches may be considered for flows satisfy-

ing equation (7). In these the vorticity distribution is represented by

(i) values at mesh points on a finite difference grid;
(ii) strips of constant vorticity (the WATERBAG model); or

(iii) a distribution of point vortices.

If vorticity is represented on a finite difference grid, it behaves like
any other scalar variable. This approach is of some antiquity [2] and is only
suitable when significant viscosity is present and when vorticity can be
generated in the fluid by thermal buoyancy forces or by electromagnetic
(Lorentz) forces in the case of an electrically conducting fluid. The
C2-I0TA computer program [ 7] which represents a more general form of
equation (7) by finite differences has been used for a number of fluid flow
problems involving thermal convection [8], with magnetic fields present (9]

or with internal heat sources [10.

In the WATERBAG model, the vorticity distribution is represented by
strips of uniform vorticity specified by a number of closed curves C; (see
Figure 1). Clearly any distribution of vorticity, continuous or discon-
tinuous, can be represented to any desired accuracy by taking a sufficient
number of 'waterbags'. The strips are so-called because the dynamical system
described by equation (7) preserves not only linear momentum, angular momen-
tum and kinetic energy, but also the area of fluid A(({)d{ between any two
vorticity contours [, and C+d(, which are frozen into the fluid (Helmholz'

theorem (equation (5))). Thus in Figure 1,the central waterbag { = (. can

5
be transported and distorted but its area is conserved. This method has been
used [11] successfully for the Vlasov equation and provides insight into the

flow. Only the location of the curves C; and the strength of vorticity in

each strip is required to specify the flow field instantaneously and its
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subsequent evolution. The waterbag constraint should also be satisfied by
the other methods of computation and provides one of the measures of their

accuracy.

In a third approach "point vortices" are used as particles, and a
sufficiently dense distribution of such point vortices can approximate any
distribution of vorticity. Here the analogy with electrostatics is quite a
strong one. The electric field potential is determined by the charge and
location of an isolated electric charge through Poisson's equation. For a
cloud of electrons the combined potential can be obtained through linear
superposition of solutions. The same is true for the fluid vorticity stream
function which is determined from the distribution of point vortices via
Poisson's equation (7b). In the VORTEX computer program [12] the vorticity is
represented by a cloud of point vortices, each of which has a quantum of
vorticity of % E; v Although the physical vorticity is not quantized, at
least on this macroscopic scale, it is computationally convenient to give
each point vortex the same vorticity, and is no more restrictive than that
electric charge occurs in integer multiples of the electronic charge. To
calculate the stream function, the VORTEX program calculates the distribution
of vorticity appropriate to each box on a finite difference grid, and assigns
values to the mesh points. The stream function can then be calculated using
a Hockney Poisson solver based on fast Fourier transforms [[3]. The point
vortices are carried to their new positions by a simple application of
Newton's laws. In practice only a finite number of vortices (e.g ~'104)
can be used on currently accessible computers. This method is appropriate
whenever point particles may be considered interacting via an integrated
force field, e.g. charged particles in an electric field or stars in their

corporate gravitational field [14].

4, VORTICITY DYNAMICS

When fluid flow is totally irrotational and a velocity potential is
available, complex variable theory enables a very detailed study to be made.
When the flow is not totally irrotational, it is not possible in general to

take the theory as far, since equations (7a,7b) form a non-linear system.

To understand complex flows it is helpful to have the behaviour of some
simple flows firmly in mind. These have been thoroughly analysed earlier

this century by, for example, Kelvin, Helmholz, Karman and Lamb [5, 15].
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(5]

TABLE 1 Viscosities for various

materials at 15°C and 1 atmosphere

V[mzsecﬁl] Re* = VL/v T, = L2/v[sec]
Glycerine 18.5 0.00054 5.4 x 10°°
Olive 0il 1.08 0.009 9.0 x 107"
Air 1.45 x 107" 690 6.9
Ethyl Alcohol 1.70 x 10°° | 5880 59
Water 1.14 x 10°° | 8770 88
Sodium } 6.6 x 10 | 15150 151
Carbon Tetrachloride 6.5 X 10-7 15380 154
Mercury 1.16 x 107 | 86210 - 862
} at 400 C

The Reynolds number Re is based on V = 1 msec ' , L =1cm.
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Fig.2 Streamlines and circular velocity for

Fig.1 A set of waterbags, or strips of uniform
a point vortex P.

vorticity. Between contours C; and Cj,q the
vorticity has the constant value of ¢ .
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Fig.3 The path of two circling point vortices of the same sign.
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Fig.4 (a) Two point vortices of opposite signs Fig.5 The Rankine vortex.
being carried to the right in their CLM-R125

self-consistent velocity field.
(b) A single point vortex near a wall.



velocity profile
1—/, Y P

stream function
profile

Fig.6 A uniform shear layer.

)oc ity profile

fif

\,,strectm function
profile

Fig.7 A complimentary pair of shear layers.
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Time =0 Time =144 Time = 232 Time = 328
Fig.8 The onset of the Kelvin-Helmholtz instability.

Time =0 Time = 120 Time = 200 Time = 280
Fig.9 The formation of the von Karman vortex street.

time = 0.0

time = 5.75 time = 6.75 time = 7-75 time = 8.75

Fig.10 The instability of laminar wake subject to small random perturbations.

CLM- R125



time = 0.0 time = 2.75 time = 5.75 time = 8.75

(a) Stable configuration of small vortices. b/a = 0.281

time = 0-0 time = 4.0 time = 6.0 time = 7-5

»-1.

time = 15.0 time = 19.0 time = 20-5

{b) Unstable configuration of large vortices. b/a= 0.6

Fig.11 The stability of a vortex street. Fixed y-boundaries.
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Time =0 Time = 48.0 Time = 96.0 Time = 160.0
Fig.12 Two vortices precessing around each other.
! E ; ‘ ,
Time =0 Time = 40.0 Time = 80,0 Time = 136.0

Fig.13 Two vortices coalescing because of sufficient initial proximity.
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