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UKAEA Research Group
Culham Laboratory
Abingdon, Berkshire

December 1973 SBN: 8563110190




10.

11.

12,

13,

CONTENTS

Introduction

Physical model

Hydrodynamics, boundary conditions, equations of sFate
Mesh and integration scheme

Difference scheme

Solution of the ion temperature equation
SoluFion of the electron temperature equation
Chemical composition, volume changes

Timestep control. Convergence of iterations
Energy calculation

Structure of the computer code

Instructions for the user

Testing the program

References

page

10

1L

12

12

13



MEDUSA, A 1-dimensional Numerical Model for Laser Fusion Calculations

by

J P Christiansen, D E T F Ashby and K V Roberts

1. INTRODUCTION

The computer program MEDUSA 1 described in this
report calculates the l-dimensional hydrodynamic and
thermodynamic behaviour of a plasma irradiated by an
intense laser beam. The results are intended to
assist in understanding the proposed Laser Fusion

method for generating thermonuglear power[l,Z,S,&,Sl

The plasma is described by 4 main dependent

variables p, u, Ti’ TE representing respectively
the density, velocity, ion and electron tempera;
tures. The equations are outlined in Section 2.
Each variable is a function of a single space
coordinate r which can be chosen to correspond to
slab, cylindrical or spherical geometry as required.
The motion of the plasma, the boundary conditions
and the equations of state are treated in Section 3.
All physical quantities are expressed at the points
of a moving Lagrangian mesh which is described in
Section 4, together with a summary of the integra-
tion scheme used. The details of the integration
scheme and the method of solution are given in

Section 5, and the timestep control in Section 6.

The structure of MEDUSA 1 is based on the
OLYMPUS package [6,7]. Section 1l presents a diagram
illustrating the organization of the calculation.
The Appendix of [8] lists the sibprograms of MEDUSA 1 and
those common variables and arrays which can be set
by the user. It should be read in conjunction with
Section 12, which is meant as an 'instruction manual'
for those wishing to run the program and also serves
as a guide to the standard tests described in

Section 9 of [8].

To facilitate the reading of this report as
well as of the program listing we refer to sub-
programs by their identification numbers. Thus the
notation {2.9) means subprogram 9 of Class 2, the
decimal numbering being that explained in [6,7].
Conversely the program listing contains numbered
references to the equations of this report as well
as to those of ref.[8] which is a shortened versioﬁf
There is a similar correspondence for variable and

array names. SI units are used throughout.

Complex computer programs often undergo a con-
tinuous process of development which sometimes makes

it difficult for the reader to determine the precise

* Equation numbers followed by a letter, e.g.(864),
do not appear in ref.[8].

assumptions that have been made in any particular
calculation. To avoid such misunderstandings we
shall therefore refer to the standard 'frozen' ver-
sion presented here and in ref.[8] as MEDUSA 1.
Published calculations then need only refer
specifically to any ad hoc modifications that have
been made to this standard version. We hope to

describe further versions of MEDUSA in due course.

2, PHYSICAL MODEL

The plasma is assumed to consist of a charge-
neutral mixture of electrons (e), and various species
of ions and atoms or molecules which are collectively
referred to as 'ions' (i), the individual species of
heavy particles being distinguished where necessary

by the subseript 'k'.

The thermodynamics of MEDUSA 1 treats the elec-
trons as one subsystem, with internal energy UE per
unit total mass, temperature TEJ pressure p_, specific
heat ratio Ke and so on, and the 'ions' as a second
subsystem with a corresponding set of variables.
Charge-neutrality requires that the two subsystems
share the same velocity u. Electric fields are
neglected in MEDUSA 1, and the two subsystems are
coupled together by this common velocity and by the
exchange of energy due to electron-ion or electron-

atom collisions.

The 8 species considered in the published code
are H (hydrogen), D (deuterium), T (tritium),
e (Helivm 3, ‘e (Helium 4), N (an arbitrary
neutral atom or molecule with mass number MN),
X (an arbitrary ion with charge number Zx and mass
number Mx), and n (neutrons). Species N and X
play no role in the standard version, but are
carried along in the hydrodynamics and in other
parts of the code to facilitate ad hoc modifications
using the EXPERT facility [6,7].

assumed to escape freely from the system without

Neutrons are

further interaction, thus leading to a loss of mass
and a change in momentum; they are not included in
the subscript 'k'. The standard version does not
allow either for ionization or for the finite range
of the charge reaction products so that the number
of electrons in each Lagrangian fluid element

remains invariant.



The local electron density is denoted by n,
and only changes with time because of the hydro-
dynamic expansion and contraction of the moving
fluid element. The local 'ion' density is denoted
by n, and this may suffer a further change due to
atomic or nuclear reactions. The instantaneous
local chemical composition is described in the code

by a set of fractions £, such that

me = £ Dy L
is the number density of 'ions' of species k, the
fractions being adjusted at each step to maintain

the normalization
k. =1 . (2)
k k

A similar fraction fn is used to describe the
number of neutrons that have been produced by each
element but this is not included in the normaliza-

tion (2).

The average mass and charge numbers associated

with each 'ion' are denoted by
M=§fkr¢k (3)

Z =%fk Z, (&)

where Mk’ Zk are the mass and charge numbers of
the individual species. The electron and ion

densities are then related by

n=2Zn wm3. " {5)

and the physical density can be written as

P =nMm = é kg/m3 (6)

where my is the proton mass and V 1is the speci-

fic volume; we neglect the electron mass, the
neutron mass difference and all mass defects in
formulating the hydrodynamics. Note that the
specific volume V depends not only on the geo-
metry of a moving element (as in an ordinary
Lagrangian code) but also on any change in mass
that has occurred; also that energy gain and loss
processes are expressed in the code as rates/unit
mass so that the coefficients depend on both the

total mass and on the chemical composition.

Physical coefficients such as ion-electron
energy exchange rate, thermal conductivity,
bremsstrahlung etc. which involve encounters between
2 charged particles will employ averages such as
(3) and (4) together with averages of other powers
such as Eﬁ'EE, although the formulae obtained in
this simple way will not necessarily be accurate,
particularly if species with large Mk,zk are

involved. Ad hoc modifications must however be

introduced if neutral atoms or molecules are taken
into account, since the standard formulae in the
code refer only to charged-particle collisions.

Any average involving a non-zero power of Zk always
ignores the neutral species N so that division by

zero is avoided,

The internal energies per unit mass are denoted

by (we omit the subscripts e and i)

= B

Yol J/kg (7

and the two subsystems have independent equations of

state
U= U(p,T): P = P(p:T) (8)
which may in general not be the same. The energy
equation is written as
dT dp a
C,ae tBpgg*PagE =% Wk 9

where S 1is the rate per unit mass at which energy

enters each subsystem and
au>
c, - (%
v oT,
p

The source terms Si

_(av)

7= BP/T . (10)

and S of equation (9) for

ions and electrons respectively are written as

n

S, (11)

i W/kg

Hi-K+Yi+Q,

(12)

w
]

He+K+Ye+J+X, Wikg
where H represents the flow of heat due to thermal
conduction; K 1is the rate of exchange of energy
between ions and electrons; Y 1is the rate of
thermonuclear energy release; J is the rate of
bremsstrahlung emission; X 1is the rate of absorp-
tion of laser light; Q 1is the rate of viscous
shock heating (see Section 4). In the following we
shal} define the expressions used for the various
terms in equations (11) and (12). These are all
expressed in Watts/kg and if subscript 1 or e is

omitted the expression concerned applies to both.

Thermal conductivity

The heat conduction term becomes

1

H =BV.uVT (13}

where # 1s the thermal conductivity. The expres-

sions for # (2.13) are adapted from [9] to be

5 ——(—=\1
= = =k o
n;=64.3 x 10 12 Tip' (log /) Lz 2(22) Wm K
(14)

W/m K
(15)

5 —\1
x, =1.83% 10710 3 2 1og ) z <22>

where log A (2.8) is the Coulomb logarithm given by

[9] as . N

A= 126 x 10° T, 12 ne_%/Z (16)



Free-streaming limit

A limit in {2.13) is imposed on the electron
thermal flux Fe = ne‘?Te , the so-called free-
streaming limit [8]

_1l1 — 2
(F ) =17% Ve k TE W/m

where a is an adjustable numerical constant.

The flux is limited according to

i (17
Fe Fe (Fe)max
by using a modified expression for the thermal
conductivity
he d'I‘e -1
Ke = Ke (l+ai'_F) (18)
& .
where A, is the electron mean free path

7

_ Ty 3
A, =57 x10 T, /ni Z m. (19)

Energy exchange

The exchange of energy between ions and elec~
trons {2.11) occurs at the rate [10]

M—l Z2 eh

5
n, log Am -3
w= L= wr) ? Lo
32 /2n GD my
The term K of equations (11) and (12) is
K=Lwn KT, -T) (21)
p e i e )
Substituting for w we get {2.11)
..3 ——
- -8 72 -1,2
K = 0.59x10 ne(Ti-Te)Te M TZ° logh W/kg
(22)
Bremsstrahlung

The quantity J represents the bremsstrahlung

radiation emitted by the electrons. This is assumed
to escape from the plasma and is thus an energy loss
(J <0),

For a Maxwellian gas J 1is adapted from

[10] to be
28, 7
J == 3 W/ kg
24w e, ¢ m, om, Mh
(23)
Inserting for v_ etc we get (2.10)
J=-85x10"%n Telz 22wt ke
(24)

The term J may be modified, see Section 3.

Absorption of laser light

Absorption {2.9) is assumed to occur via
bremsstrahlung at densities below the critical

density

kg/m3 (25)

at which the plasma frequency equals the frequency
w of the laser light. The absorption coefficient

is given in [11] as

-3 -
@ =13.51 fzﬂz(l-ﬂ)_%Te 2 ¢5 054108 ) 2% mt

(26)

where B = p/pC <1 and A 1is the wavelength of
the laser light. If PL(RD) is the laser power
{2.3) incident on the plasma boundary at r = RO
then

~a(Ry-1)

PL(r,t) =e PL(RO,E) (27)

and the term in equation (12) becomes (dM is an

infinitesimal mass element)

X (r,t) = dLMPLu,t) Wkg . (28)

At T = I we have p = Pc and then the remaining
laser power is all assumed to be absorbed at this

density to simulate anomalous absorption, i.e. (2.9)

= L
X (rc,t) = W PL(rC,t) Wkg . (29)

Thermonuclear reactions

The terms Yi and Ye represent the rate of
energy released from the 4 thermonuclear reactions

{2.12)

- 4He(3.6 MeV) + n(l4.1 MeV)

D+T
D+D = T (1,0 MeV) + H( 3.0 MeV) (30)
D+D = SHe(D.8 MeV) + n(2.45 MeV)
D+ 3He » “He(3.6 Mev) + H(14.7 Mev) .
The number of reactions taking place is
_ 2
Rpr = (ovipp £ £q nf nogee™ (41}

with similar expressions for the D-D and D-3He
reactions, (Gv)DT is the reaction rate [12] which
is a function of Ti . The neutrons are assumed to
escape from the plasma carrying off their energy and
this represents a mass and momentum loss. The
charged reaction products H, T, 3He and AHe are
assumed to deposit their energy locally to the ions
and electrons in ratios which we write for the D-T
reaction as PDT and l—PDT respectively, where
P is a function of Te [4], with a similar nota-

DT
Let E

tion for the other reactions. and

DT’ EDD
denote the energies of the charged reaction

Then {2.12)

Epdne
products of equation (30).



¥y = oy Epp Rop + Bpp Epp Ry

* Pp3pe Eplge Rp3e) Wikg, (32)

with a similar expression for Y  where 1-PDT

replaces P_. etc.

DT

Chemical composition

The composition of the plasma changes due to
the reactions (30). We calculate the fraction

fr = anni from {2.28)

14,0 1
o at "t (5 Byp = Bppy o s
(33)

subsequently renormaliging according to equation (2).

Similar equations apply to the fractions fD etc.

Shock heating
The quantity Q will be dealt with in

Section 5.

3.  HYDRODYNAMICS, BOUNDARY CONDITIONS, EQUATIONS
OF STATE

Geometry

The plasma occupies a finite but variable
region whose geometry described by the parameter g

can be chosen as either
g = 1. A slab of unit cross-section
g = 2. A section of a cylinder of unit

height and one radian in angle

g = 3. A section of a sphere, of one
steradian in solid angle.

Only the coordinate rt is used in each case, the
cross-sections being needed only for normalization

purposes.

Equations of motion

The motion of the plasma is governed by the

Navier-Stokes equation (2.17),

du - _wvp. (34)

P dt

Here u is the velocity of the plasma which defines
the motion of the Lagrangian coordinates {2.19)
according to

dr

i ulr,t) . (35)

p 1is the hydrodynamic pressure (2.24) defined as
) 2

= N (36)
P Py t P, /m

together with an artificial viscous pressure dis-

cussed in Section 5.

Boundary conditions

It is necessary to specify both hydrodynamic
and thermodynamic boundary conditions at the inner
MEDUSA 1 does not specific-
ally allow for hollow shells [2], and for the inner

and outer boundaries.

boundary we simply choose

m

u(r=0) =20 , (37)

and zero thermal flux. At a moving outer boundary

point T = R, , we distinguish between the following

4 cases (2.25)

p(RD) =0 ; Zero thermal flux
u(Ry) =0 ; T3(R,) =T]-_(t); Te(Ro) =Te(t)
p(Ry) =p(t); Zero thermal flux

B~ W=

u(Ro) =u(t); Zero thermal flux
(38)

Case 1 is used for general problems involving the
absorption of laser light, Case 2 is used to study
simplified thermal conduction problems, e.g. com-
pression and expansion of a plasma. The standard
expressions used in the published version for the

functions p(t) ete. will be described in Section 8.

Equations of state

The equations of state (8) used in MEDUSA 1
assume the ions to behave as a non-degenerate per-
fect gas (2.6} and the electrons to behave as a
perfect gas which may either be non-degenerate or
partially or fully degenerate {2.7). TFor the ions

this simply means

i B B i
(cv)i = VT mh z (BT)i 0 ; Py n

1
il Ti . (39

If the electrons are assumed to behave as a non-
degenerate gas we use equation (39). 1In such a

case we can however simulate degeneracy effects by
choosing an initial electron temperature Teﬂ which
yields the same pressure as the Fermi pressure of a
fully degenerate gas at zero temperature, provided
that we also change the expression (24) for the

bremsstrahlung rate to {2.10)

. o 6Tj 22wt ke (40)
where : N Ye-l
e Q

is the departure from the initial adiabat. This
prevents an unphysical cooling of the electron gas

to an energy density below the Fermi minimum.

If however the electrons are assumed to behave

as a degenerate gas we introduce the quantity

€= 1 /T, (42)



where

(43)

2 2
cr -2 (2)" ()" o
F  8BM\m MmH

is the Fermi energy [13]. € measures the degree of
degeneracy and is used to obtain Pg: (Cv)e and

(BT)e from expansions of the Fermi-Dirac functions
given in [1] and [13].

used in three ranges of § as follows

Different expressions are

2 &
2 -1 @ m .3
55. +?g—4_0-§ el
-1 -3
_k oz 12
Pe-ml-[ﬁp're L+ (3/2m € gmin<§<§max
1 Emax<§
(44)
2 4
m T 23
75-15 § §<§min
) =i kzl ot o e
ve Ye-l my M min max
1 gmaxgg
(45)
2 4
2 _ 50 .2 w4 <
3185 T8 $<Snin
-1
-2 -1 /2
(Bp), VT Pe? 5 (6/2m)7" & Ein € 5<8nax
0 gmax <5
(46)
Pp is the pressure of a completely degenerate
gas [13]
2 5
<IN 2 Y O i
Pp = 20m \7 Mm ) P

4. MESH AND INTEGRATION SCHEME

The region extending from the fixed point r = 0
to:the moving point r = Ro is divided into N cells

as indicated in Figure 1. The cell centres are

r=R =0 r=R; r=Rn.
el L 2 T L. PP
j=1 2 3 I3 N-1 N Nel
Fig.l, The arrangement of the mesh
marked by X and labelled £. The cell boundaries

labelled j are free to move thereby altering the

volume of a cell. Each cell carries a mass dML 50

that the specific volume is {2.20)

1

(48)
dM,

L (g8 g
v, == (R®, - gE
£ B(J"']- J)

The mass dME can only change if a cell undergoes

thermonuclear burning. From equation (48) py can

be found. Knowing M and Z we find the number

densities (2.20)

(49)

n, = ~l— ;y o =2Zn
1pmHM’e i

A quantity given at cell centres can be evalu-
ated at a cell boundary by a simple average and

vice versa, for example

R, = %(Rj + R, .) (50)

j+l

A superscript n attached to any quantity
indicates its value at the time

o

n i i

= ot

] :

where Ati is the ith step in a series of discrete

n+1 : 3+ } e }
j-! i j*
nl — — = —0==—0———-0---0-=0-—— — aAt™"
-1 l l
n 4 * + 3 4
j-1 i j*l T A"
il
n-l2 - — — == 0-——0—-—0——0--0-- A" "
-1 l 1
n-1 + 32 } o }
j- i i
1-R 0-u
X=p.Ti T 0-q
Fig.2., The 5 time levels indicating where

the basic quantities are known

times. Suppose we are given (see Figure 2)

R, , Py » Tﬂ’fk at level n-1

J
uy at level n-%
Rj y Py at level n

where T stands for both Ti and Te‘ The time
integration scheme to be described in detail in
Section 4 constructs from the above-written quan-
tities

?Z’fk at level n

uj at level n+k

R, , p
3T

at level n+l

thereby advancing all basic quantities one step in

time. Because the physical coefficients of the

terms H, K, Y, J and X depend in a non-linear
fashion on the temperatures Ti and TE we perform

several iterations on a single step n-1 @ n. At



iteration m the value of Tin and Ten from
iteration m-1 are used in order to get as accurate

values of the phsyical coefficients as possible.

S DIFFERENCE SCHEME

This section describes how equations (9)-(12)
for the ions and electrons and equation (34) are
expressed in finite difference form. We use sub-

seripts £ .and j, but omit for brevity subscripts

i and e and superscript n where necessary

Energy equation

First we write out equation (9):

=1 o =
Cn_% _p? . B“'% pn_pn 1+ pn_% vy f 1 " 5“'%
- -k L .
voooa® T % A%
(51)

All quantities in equation (51) are evaluated in
cell £ . The quantities Xys Y;, J; and H, of
equations (11) and (12) are worked out at level n-%

by

n-% _ n n-1
K£ 0. L N (52)
a rule also applying to Cv’ BT and p.
Heat conduction
The heat conduction term H becomes
n_ 1 n o
Hy Eﬁ; (Fj+1 rj ) (53)
where the flux through cell boundary j is
n n
g-1 Ty - Ty
Fj“ = (Rj“) uj“ n—nl (54)
Ry = Ry

L
Thermal conductivity (2.13)

The conductivity u;‘ is taken as %(“;:1+’Hf)

where uél is obtained from equations (14) and (15).
The electron thermal conductivity is then modified
according to equation (18) which in finite differ-

ence is written as (subscript e omitted)

2 ad) o

L 6 s o il 4 (54A)
j+l j+l R 4 TN gn Rn
L+1 £ Ti41T 7%

n

where a 1is a constant larger than 1 and Ay is

expressed by equation (19).

Energy exchange (2.11)

The heat exchange term K of equation (22) is

evaluated in a different way in order to treat very

rapid rates of energy exchange. We set (2.11)
P = 5® + o™ D .
_ 1l k
A "~ ¥-T Mmy, Ty -7
(55)
en-% < 40" + 9n-l)
and  oWATE -y ME g on-E
i e
. . dT _
We write equation (9) as C, G- WK (+ for
electrons, - for ions), where W includes the
.
terms BT E%', P g% and S without K, and sub~-

tract this equation for the electrons from that for
With e=1 + (Cc );/(C ), this yields

a8 _
it S BW =Bk,

which in finite difference form has the solution

the ions.

S gnso 1 (en-l 8 w““%xl_ gmeuw” ae™ %y
eat™ caE /

+ =6W (56)
i
The term e has been averaged as
Atn-% n-% —ewn"% ae"
1 -EWw l-e
— e dt = i pe (57)
R ew™™ % A"
and the term sw“'% is
ol = - L
swi~E o L (8™ - g1y 4 e % gk (58)
e
The heat exchange term can then be written as (2.11}
_L - -
I o 18 gt (59)

During the iterations on a single timestep we first
evaluate the rate constant at level n from

(see equations (20) and (22))
w = 0.59x 108 wlz?

-5

-3
n, T, 12 (594)

i log A

The quantities "% and Bn_% are found from

equation (55) and 6w“'% from equation (58) using the
=

values of 8" and (w8)™ % from a previous iterationm,

Equation (56) is then evaluated using

e = 1+ e+ 0™, 1 @™ (598)
v v 1 v v e

If perfect gas laws are imposed we have € = 2.

Bremsstrahlung (2.10)

Equations (40) and (41) are used to evaluate
Jj‘. If electron degeneracy is present we use

equation (24) when §E > §m (see eqn.(42)).

in

The Coulomb logarithm (2.8)

AE is evaluated from equation (16). If A2<510
(dense cold plasma) shielding theory breaks down
[9] and the physics changes. No provisions are made
to alter the expressions involving A, hence if

Ag <10 we set AE = 10.

Absorption of laser light (2.9)

For a cell with a density less than pc

(equation (25)) we evaluate equation (26) and work

out
n n n
n,.. n, _.n,.n -, (R -R,) ;
PR = RT(RY ) e 4T (59€)
S T 1 (p“(a“ ) - pR¢ “)) (59D)
2  n R S s AR

L
At the first cell £ = NABS1 with p < e we
. . n,.n
apportion the remaining laser power PL(RNABS 1)
between cell NABS 1 and cell NABS 1+1 according te

n

n _ n n -
Xyaps1 = (1-p) PL(RNABSl)/dMNABSI (59E)
n n n n
Xvaps 141 = % PL Ryaps 1)/ 9Myaps 141 (s9m)
where i )
n Pmas1 ~ Pc

R . {59G)
n n
PuaRs 1 ~ PnaBs 1+1

The coordinate RABS of which p = pc is determined

by a linear interpolation from

)+ pRD )

- R n
NABS 1+2 ~ "NABS 1
(59H)

=1 m
RABS = 7 (Ryups 1* Ryass 141



Thermonuclear reactions

The number of reactions taking place at level n

(equation (31)) is computed from

n

_ n n .n, n,2
Ryp = (ovdpp £y £ (n) (591)
2 2
11 n l,..n n
Rop = (ov)DD E(ED} (ni) (597)
= (ov)? " (nn)2 (59K)
RDaﬂe D%He D 3He i
The cross-sections are taken as [12] (Tj expressed
in keV
-2 73
(ov)] = 3.68x107'8 T, B m19.94 T 78 -1
(59L)
but i
(crv)BT = 7.5x10722 o> gec™t g T, > 35 keV
(59M)
2 -
/3 /3
(crv)][;D = 2.33x10720 T gr A Ly ¥ geet ;
(59N)
@)poge = O (590)
but
3 =l
n _ -23 m~ sec if T, > 50 keV
(chDaHe = 10 i
(59P)

The apportionment factors are adapted from [4] and
written as (Te expressed in K)

n

T
Bl = = (59Q)
BI ™ + 3.71x10°

Tn
oy = 2 (59R)
DD ™ + 1.2 x 10°

. L
PP e (595)
D%He 9 AR

™+ 1.2 x 10
e

Y;‘ and Y;] are then calculated from equation (32),

The total rate of neutron production is calculated
from

n

N
- 1 n _n
Rogy = &2 (Ryp+3 ROD)] b am, (591)

and the rate of energy carried off by the escaping

neutrons is obtained from

N
L n = = 1 =0 n
B - 1?,%1 (Rpr Epp* 5 Rop Epplg Ve Mg
(590)
where EDT = 14.1 MeV and Epp = 2.45 MeV.

Shock heating
The shock heating term Q of equation (11) is

a modification of the standard expression used in

textbooks [14].

We write Q as
n n-1
L -5 vhav
Q" 5 _ a q“ % ——E—;:g~ (60)
E

where q, the viscous pressure for a given cell £

is expressed as

= 2 i
n-% 2 %) ng 5

q, - =b (61)

l, n-1_ n n-% n-
i(p‘z +p£) (uj+1 = llj

This expression differs from the standard expres-—

sion [14] by the factor 1 which is

3rVu

il i (rg-lau)/(argqlu) (614)
where in finite difference form
1
_ .n-% n-%
orVu = Wiy - Uy , (61B)
- ) n-% n-1,g-1 n ,g-1
3r7.u __—(R“'fi) - (ujﬂ ((RjH) + (RJ.H)
i+4
: (61C)
L _1.8-1 g-1
- e <(R‘? L s @y )) ;
] ] ]
. n~% _ .n  _n-l n n-1
with Rj+15 = RJ.+1 b RJ._H + Rj + Rj , (61D)
and v =1,2,8 for g =1,2,3 respectively.

The viscous pressure q given by equation (61) is
only applied if Vu<O0 and V.u<0, i.e. if both
righthand sides of equations (61B) and (61C) are
Otherwise In plane geometry

negative. q is 0,

(g=1) we notice that T = 1.

The reason for including T) in the formula for
q 1s to decrease the shock heating contributed by
the standard expression for q [14] to cells which

undergo strong but adiabatic compression.

6. SOLUTION OF THE ION TEMPERATURE EQUATION

n
10 I
arising from the H; term are grouped such that

The coefficients of TE and TE+1
equation (51) for the ions can be written as a

matrix equation

n n-1
D, + Gz .

Aj Ty, +By Ty +Ch Ty, = (62)

The quantities A,B,C and D {2.14) are func-
tions of (Ti)E and, (TE)E and for this reason we
solve equation (62) iteratively as explained
earlier. The quantity Gg-l {2.4) contains all the
known quantities and is thus unaffected by

iterations.



We write out the expressions for A,B,C,D and G
of the ion temperature equation assuming that the
equations of state are those given by (39).

Subscript i is omitted for brevity.

ng-l n
(R.) ",
n _ 1 i i n-%
A, = - — At (63)
& o8, s
J+l j-1
g-1
R ) Wt
o = - ¥ il ek (64)
n n
My g -R
42
pl'l
n _ n 1
By =C, - ﬂ-c£+—(vﬂ ) (65)
2T£
_1 n-%,, n-5 1 n n-1
D, = Z(Y -21(, YAt - 3P (v)2 -V£ )+c T,
(66)
n_1_n-1, n-% n-1,_n-1 n-1
GE i YE At - C‘e (Tﬂ - T}, )

Sl v dd n ¥ (67)
Equation (62) is solved by a Gauss elimination
procedure [14] for all 4 cases of boundary conditions

(equation (38)). For cases 1, 3 and 4 we have

AT = Cﬁ £ 0, For case 2 we set AT =0 and
n n - cn T n
Dy = DN N "N+l , where TN+1 is a temperature
. ) n _.n
applied at the outer boundary, i.e, Teer = Ty (€.
Following [14] we set (2.15)
D, + G
E. = C_]_ s F. = g‘. (68)
1 1 B
Bl 1
C Dy ¥ Gy =8 Bi
B T 3,-a,E N Ay E g Gl
g =8y By B = Sptey
(69)
The temperature can be found from (2.15)
Ty = Fy (70)
Ty =Fy-By Ty, 4£=N-1,8-2, ..... 2,1 (71)

7. SOLUTION OF THE ELECTRON TEMPERATURE EQUATION

If the electrons are assumed to obey perfect
gas laws (equation (39)) the solution of equation (51)
for the electrons is obtained in the same manner as
described in Section 6. The coefficients A,B,C,D
and G are those defined by equations (63)-(67),
except that QE_%

n -1
and Jy, xﬂ and J;7

is omitted from equation (67)

4 XE-I are included in equations

(66) and (67) respectively.

If however the electrons are assumed to behave

as a degenerate gas obeying the equations (44) - (46)

the coefficients B and D are redefined. A}so to

solve equation (51) for all ranges of degeneracy we
write the analytic form (equation 9) as

dTe &
— =-(p

s R (714}

2 T)E?+s

We set and from equations (44)

1
¥=p, - F 3B
&y

and (46) we find (Ye = %3)

2 4
& S g2 T 4
b=p, G- -Tgh,  g<g (718)
y=p (LGBt €2, £ se<g (710)
¥ pp - ' Pmin” max
v = By 4 Cnax S 8 (71D)
where p. is given by equation (47), and the
pressure pp of a perfect electron gas is
k 2
B, = ’—“—H P T (71E)

It is necessary to work with ¢ rather than P,

and B, since for very small E(~10" ) the dlffer-

ence between P, and is below the

1g
VZ T
rounding-off level on many computers (32-bit word
length).

We can now write out the expressions used for
B,D and G {2.14);
(63) and (64).

n_1 n n n _n
By = i(“%ﬂz * (Cv)-e')-AJE -

n_1l,,n, n n-%,, n-% n-l( n -l)
Dﬂ—i((X£+J‘,{+Yz+2K£ Yae T E+ T, (e )y +(C )

A and C are given by equations

(71F)

- (¢2+¢£ (Vg -V, 1)) (716)
6y = %((XE 1+JJa +Y,” Lia™%_ ¢ (T£+l Ty 5
+ Az-l( 47 l-TE 1)) (718)

With these definitions of the coefficients A,B,C,D
and G we can solve equation (62) as described in

Section 6.

8. CHEMICAL COMPOSITION, VOLUME CHANGES

When thermonuclear reactions take place
(equation (30)) the chemical composition, i.e. the
material fractions (equation (1)), will change.
Here we only describe how the fraction of tritium
changes since the fractions of the other components
are calculated in an almost identical way. We

evaluate {2.28)



n-% l,.n n-1 n-%
8f = (3( + l,.n n-1, At
T 5 Rpp *Rpp ) - 3Ry +RO-) Sl
i
(711)
where the ion number density is obtained from
n-1 _ n-1 n-1
n, C=p /(mHEJEk M) .

The fraction of tritium at level n 1is calculated
as (2.28)

n_ .n-1 n-3
fT = fT + 6f (71K)
and subsequently modified by a renormalization
(equation (2))
fn
Y E (71L)
T > gh
k 'k

The volume chahges are worked out via the
Navier-Stokes equation (34). First we form the

hydrodynamic pressure 2.24)

pp = (p; +p)} (72)

n n . :
where p. and p  are obtained from the equations
i e ; 9

of state.

The acceleration of the fluid is obtained from
(2,17}

-1
nts  n-% né n n n At
u__i —uj = —(Rj) (p£ =Py l-kqﬁ qQq_ 1) dM
(73)
where q, 1is given by equation (61) and
dM =l(dM + d,)
1= 88 4
The cell boundaries can now be moved to new
positions {2.19)
Rn+l - 5 5 un+15 Atn+% (74)
i) h| ]

Before working out the densities and volumes at
level n+l we evaluate at level n those quantities
which have been affected by the burn-up of deuterium
and tritium. The mass number, ionic charge number
and ion number density have all changed, but also

the mass undergoes a change due to the escaping

neutrons. Having found the fractions f (equations
(71K) and (71L)) we set

=3 ¢0 L

=ZeM o, 2 Ek i (744)

The change in the ion number density is (2.20)

~%
3Ry +Rpo DA™

51‘91-;"= n*z' l

1
_E(RET+RDT

(748)

(Notice that in equations (71I) and (74B) only half

the total number of D-D reactions contribute to the

changes). The new number density is then
n n-1 n-%
ny =n; "+ 8oy 3 (74C)
where nz_l is given by equation (71J). For each
ion lost a neutron escapes such that the mass
becomes {2.20)
d ((RJJrl (R, )K + (8n, )Jz mH> (74D)

The mass is worked out in this particular way as it

is only referred to at one time level. Finally we

calculate the specific volumes Vz+l and densities

p2+1 by equation (48) having found the coordinates
n+l
i

dME used to calculate VE+I

from equation (74). We notice that the mass

is only known at level

n such that we ignore the slight mass loss which

may take place between levels n and n+l.

9. TIMESTEP CONTROL. CONVERGENCE OF ITERATIONS

The implicit method for solving equation (51)
guarantees a numerically stable solution [14] and
the choice of At only serves to determine the
accuracy. However the explicit method used to find
u (equation (73)) restricts the value of At

according to the Courant-Friedrichs-Lewy condition

[14] R gn
P 2 Min(ﬂ'_l.__l> . (75)
n

c

where cE is the sound speed in cell 4 and a;

is a constant less than 1. To monitor the time

variation of T T, and V we enforce {2.16)

i

n+l

Atnnpﬁ S a, Min(vn-l-l——v;) (76)
v +V/y

n+1

T -T;l
i et D 6A
<€ ay Min (Tn+l n) (764)
i i’g

Atn+«'§

n+s T:+l Te
At € a, Min (—) (76B)
4 Tn+l +
ey

If the electrons are strongly degenerate, i.e.

&< gmin in equation (76B). The

variation of At is itself restricted by either

& By replaces TE

% ¢ a™E op et Sa, a™E . 7)

o
This restriction is enforced (2.16) to keep equation

(73) reasonably well time-centred. Finally At is



restricted by the time variation of the applied
external "force", i.e. laser, boundary tempera-

ture, pressure or velocity.

Having chosen the smallest At satisfying
these conditions we check whether the iteratioms on

T: 3 T

i . and u converge by evaluating {2.21)

o ( m. m-1u5>n+%

bu = = — (78)
| u + ur
rn,l.i_m-l,ri n
6T, = Max |—T‘| (784)
& Mg M
i i 4
( mTe _m—lTe >n
8T = Max [ (788)
e |mT +m--lT
e e £
In these equations m and m-1 indicate the values
obtained after m and m-1 iterations respectively.

If the electrons are strongly degenerate, i.e.

< no_ 5
g gmin , then (6Te)£ Similarly if
n+3
<
|mu| § “min
or if
m w1l ("E " < sR
] u - ul. min
nH; . R
we set (8u), = 0. If the maximum deviations

found by equations (78), (78A) and (78B) are below
specified values convergence is established.

. . . : s m
Otherwise a new iteration is performed with u ,

mTi and m’.l?E replacing the values obtained after
the m-1 iteration. At the first iteration of

. -1
each timestep we assume '1‘ —Tn 1 and TZ=T2 3

10, ENERGY CALCULATION

When a timestep is completed we calculate all
relevant energies at level n (2.22). The thermal
energy is

n _ 1 n n
Eqp = 572 P vy RN ¢ L))

The kinetic energy is averaged over levels n-% and

nHs

(80)

2 2
=1 o+ n-%
5l =5 2 tayrany 6 Wl ]

The energy input depends on which boundary condition

(equation (38)) has been chosen :

o Sogn 2% R
Case 1 : SE Ei.n T X, a, (81)

-10-

g-1
(RN ) =0
., 4 -n +1 { _ |
Case 2 7 Ei_n Ln (T TN)J,
i
Ryt ~
i ]n‘ (82)
M Ty - T J
g-1
ood.on _ 1 n- 1 n- %I:
Case 3 ¢ SEEL = 7 (ogy * Pany) Uy | Ryt
n-1 &-17
+ (RN-H.) _; (83)
Case 4 : As case 3 but with PNr-ll-l replaced by
nt+s n-%
= U
n _ o n+5' n-"i N SNl N+1
Pl PN+’(q qy ) - dMy ac® (rD 81
N+l)
(84)
The total energy input at level n becomes
n _ n-l d.n , d _n-l,, n-%
Bin = Bin v EGGEEin tar Bin 10 T, (8%)

o o
Ek + Eth

n

o
where E,
in

The energy released by the thermonuclear reactions is

En - En—l

n-%
p £ + % At

%[(Yi+Ye)2+ (Yi+Ye)2ul] iy

(86)

The energy carried away by the neutrons is found

from
&% .n .n-1 =
Pl " e YT A (86A)
neu neu
where E" is given by equation (59U). The total
number of neutrons released so far is
T i +35(R +R“ ) ae"% (86B)
neu neu neu ?

where R:_lleu is expressed by equation (59T). The

bremsstrahlung radiation loss is

El‘l= n-

n-%
4 E, +k Ac E(J£+J Lyaw, .

(87) .
The error in the energy calculations is represented

by
(88)

AE is a measure of the truncation errors arising
from the use of a finite difference scheme.
Finally as a check of the "Lawson criterion" we

evaluate



The quantity pr is proportional to n, T [2],

where T is the confinement time of a plasma. We

calculate E; as N
JA R N,
p, R, &M
A=1 Bk Bl R
()" =22t % 2 (89)
2 &M
£=1 4

where RE is given by equation (50).

11. STRUCTURE OF THE COMPUTER CODE

The MEDUSA 1 code comprises a main program and
144 subprograms of which 40 are part of the ICL 4-70
Multijob Operating System. 36 subprograms form the
graphical output package and these are not included
in the version presented here. The main program and
22 subprograms are part of the OLYMPUS package [6,7]
and the remaining 46 subprograms are divided into
5 classes as described in [6,7]. To run the MEDUSA 1
code on a particular computer one thus requires the
OLYMPUS package and the 46 subprograms as well as
11 dummy subroutines which eliminate the use of the

graphical output package.

Timestep 10::;!'L

Each of the 46 subprograms of MEDUSA 1 is
decimally numbered according to the conventions of
(6,7].
{2.9) can be correlated with the subprogram index

The references in this report of the type

shown in the Appendix of [8]. This index also appears in
the source deck. On the ICL 4-70 the corresponding
file name is denoted by €259 (Class 2, subprogram 9)
followed by a type code defining the type of file

(e.g. Fortran source code F, object module Y).

The overall structure of MEDUSA is based on the
underlying structpre provided by OLYMPUS [6,7]. 1In
Figure 3 we show the flow diagram for the subprograms
of the calculation Class 2. The classes 1, 3, 4 and

5 are almost identical to those of [6,7].

The common blocks used by MEDUSA 1 also follow
the conventions of [6,7]. There are 13 common blocks

labelled as follows:

| ——
1_2.1 STEPON

[C1.1] COMBAS Basic system parameters
[C1.9] COMDDP  Development and diagnostic parameters
[c2.1] COMHYD Hydrodynamics
[c2.2] coMTH Thermodynamics
[c2.3] comIE Ions and electrons
(c2.4] cOMLAS Laser data
[c2.5] COMFUS Fusion
[c2.6] COMEN  Energy
[c2.7] comcon Physics control
[c3.1] coMnc Numerical control parameters
[c3.2] COMNUM Mesh and numerical methods
>
2.2 MOTION

Non-iterative

L 2.5 STIT I—‘—I 2.11 xcm\m:l—(—[ 2.4 GIE_ | 2.3 LASER | quantities
Iteration loop ‘—L——I J——_"'_I State of
', { 2.25 Bompy > {_2.6 smmEL | > 2.7 STATEE S5 bars
W, Particle
l 2,13 HCDUCT I—(—l 2.12 FUSION |—<—[ 2.11 XCHM 2.10 BREMS F—«—-] 2.9 ABSORB '—(—] 2.8 COULOG I S
Numerical
2.14 ABCD | > { 2,15 FINDT l solution
I 2.24 FORMP F«E—{ 2,7 STATEE P—éh{ 2.6 STATEL | Fregsures
Aa T T T e
.TRUE.
2,16 TIMSTP >- BREA 1 Timestep
JFALSE, | T T T T T TTTT
Hydro-
| 2.28 purNu? Je{ 2.20 vOLUME |~ 2.19 NOVEON | 2.18 NEWMAN | 2.17 sEEED | v dynaktii
Premature
.TRUE. .TRUE.
| 2z cvmczl <FLGOON b BRE S ll 2.27 REVERS [ >
"FALSE. _FALSE. _ termination
, TRUE, ~ -
< [ 2.22 ENERGY 2.26 EXAM Diagnostics
Rearrange

&
N

Figure 3.

2.23 SHIFT time levels

Flow diagram for the calculation in MEDUSA 1,

Il e



[c4.1] comapM
(c5.1] comouT

Housekeeping data

Input-output control variables .

The variables and arrays of these common blocks
appear in an index following the source code.
Those variables which can be specified by the user
are listed in the Appendix of [8]. A common
block such as COMOUT is referred to in the text as

[c5.1].

12. INSTRUCTIONS FOR THE USER

An understanding of the code listing is facili-
tated by the inclusion of references to the numbered
equations in this report as well as the corresponding
paper [8]. The notation has also been chosen, when-
ever possible, to indicate the time level at which a
quantity is known. The 5 time levels n-1, n-%, n ,
nts and n+l are denoted by 1,2,3,4 and 5 respectively,
s0 that for example Rl, R3 and R5 are three arrays
containing the mesh coordinates at levels n-l, n,
n+l, while U2 and U4 contain the velocities of levels

n-% and nt+%, and so on.

Although all physical quantities are currently
expressed in ST units it is possible to scale these
to any arbitrary set of units (say CGS) by means of
the scaling factors in the common block COMOUT
fes.1].
the internal variables of MEDUSA 1 always being

This will however only affect input-output,

expressed in SI units.

The physical coefficients appearing in the laws
for conductivity, absorption, bremsstrahlung etc.
can be altered by setting elements of the array PIQ
PIQ acts

as a general-purpose array which enables modifica-

of [C5.1] to values different from zero.

tions of the code to be communicated from subprogram

DATA (1.4) to any other subprogram (see file INTRO).

To run the MEDUSA 1 code under conditions
different from those of the tests described in
Section 9 a user can control the calculation in 4

principal ways:

1.  The boundary conditions (2.25) explained in
equation (38) can be arbitrarily specified. This
means replacing the existing expressions for p(t),
ule), T_(£) and T,(t) in (2.25) and recompiling the

subprogram.

2. The laser power P, (t) programmed into (2.3)
can similarly be changed if necessary.

3. A user can overwrite any of the physical laws
coded in MEDUSA 1, as well as modifying other sec-
tions of the program. For this purpose a subprogram
EXPERT {0.4) is called at many places in the program,

with 3 parameters defining the class, subprogram and

point at which the call is made, The version of
EXPERT provided is a dummy, the idea being that the
user should "slot" into EXPERT the ad hoc coding
which may be required to replace or extend the exist-
ing action of any sections that are to be modified,

without disturbing the program itself.

4, The last and simplest method of control con-
cerns the input of parameters to the calculation.
This is done in subprogram DATA {(1.4) using the
NAMELIST facility which is available on most com-
puter systems including the Culham ICL 4/70. The
variables and arrays contained in namelist NEWRUN
are listed in the Appendix of [8]. (No specific
provision for a restart [6,7] is made in this
version). If the namelist facility is not avail-

able it is necessary to replace the statement

READ (NREAD, NEWRUN) (90)

in DATA (1.4} by a normal FORTRAN READ statement

which includes all the variables of the namelist.

If desired, any part of the physics calculation
can be excluded by setting the logical variables of
block COMCON [C2.7] to .FALSE.
NLBBMS = ,FALSE.

s BiEs

will switch off the bremsstrahlung
calculation. TIf NLBRMS = ,TRUE. the bremsstrahlung
calculation will be switched on only if the variable
MLBRMS = .TRUE. as set by the code itself. The
criteria for setting the variables ML.... to .TRUE.
depend on the current state of the plasma (2.26), but
also on the finite word length (32 bits), so that the
code neglects terms whose contributions cannot be

accommodated within the accuracy of the floating-

point calculations. This arrangement saves CPU time

and makes the testing much easier.

Premature termination of a calculation may arise
from a variety of checks made by the code. The
initial conditions are checked (1.10) and at the end
of each timestep the fundamental variables t, R, p,
Ti and Te are examined {2.26). If certain maximum
or minimum values are exceeded termination occurs.
This also happens if the iterations on u, Ti and Te
fail to satisfy the convergence criteria {2.21).

13. TESTING THE PROGRAM

There are no analytic solutions to equations (9)
and (34) when the right-hand side of equation (9) is
given by equations (11) and (12). This means that
the overall testing of the MEDUSA 1 code relies on a
series of independent tests which deal with each
individual physical process included in the code.
The results from such tests can be compared with

analytic solutions.

By setting the logical switches of Table 2 of



[8] as appropriate, a comprehensive series of tests

can be made.

with the corresponding output generated by the
MEDUSA 1 code.
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