





COMPUTATION OF MHD EQUILIBRIA IN TOKAMAK

by

C. L1. Thomas and F.A. Haas

ABSTRACT

A code (TOPE) has been written to study MHD equilibria in Tokamak. We consider
four different models of the equilibrium and describe the numerical techniques
appropriate to each. Where possible, asymptotic analysis has been developed,
and used (a) to elucidate the qualitative features of the models, and (b) to

check the code. The results are presented as a series of examples.
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1. INTRODUCTION

We investigate magnetohydrodynamic equilibria
in Tokamak. Our objective is to consider different
models of equilibrium and to develop numerical methods
of solution appropriate to each physical situation.
These techniques should be of use, both in design
work for future experiments, and in obtaining equi-
libria for numerical magnetohydrodynamic stability
studies.

It is well known that by defining a poloidal-
flux V¥, such that the poloidal magnetic field is
given by

(1)
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then the axisymmetric toroidal MHD equilibrium equa-
tion can be written in the forml
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where R, ¢ and Z are cylindrical coordinates based on
the axis of symmetry, and F and p are arbitrary
functions of V. In the present work, a finite ”
difference code, TOPE (Toroidal Plasma Equilibrium) ,
has been written to solve Eq. (2). The difference
equations used are derived in the standard way, as
described by Thomas?. The precise numerical procedure
adopted depends on the physical model studied - in
particular, whether or not a trivial solution can
occur. Since the basic method is iterative, conver-
gence difficulties might be anticipated. In the
range of models considered here, however, this prob-
lem has not been encountered.
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In principle, Eq. (2) can be solved for any
choice of F(Y) and p(¥). In practice, however, the
forms for F and p will be determined by the under-
lying diffusion process. Thus, for example, Grad
and Hogan~have considered the simplest classical
model for resistive diffusion in a Tokamak. Assuming
the duration time of an experiment to be long com-
pared with the diffusion timé, they show the plasma
to approach a unique limiting profile (and unique f3)
which is independent of the value of resistivity.
Grad and Hogan infer that this profile will be estab-
lished irrespective of the dissipative mechanism
(classical or anomalous). The corresponding forms
for p and F? are linear in VW, and it follows that
the equilibrium equation to be solved is linear and
inhomogeneous.

In the present work, in order to study different
physical situations, we consider a variety of forms
for p and F. The work of Grad and Hogan suggests that
for linear forms, at least, the results obtained from
Eq. (2) should provide a plausible description of a
Tokamak in "equilibrium',

The models considered are maintained in equilib-
rium by a perfectly conducting wall, and calculations
have been made both with a wall touching the plasma
(diffuse equilibrium), and with a wall away from the
plasma (plasma-vacuum equilibrium). In all models we
take the pressure to vanish at the boundary. The
models for diffuse equilibria are characterised by
the values of toroidal current demsity (j,) and
pressure-gradient (|Vp|) prescribed at the boundary,
namely, (a) |Vp|, jp finite (Model I), (b)
|Vp[ =0, jp finite (Model II), and (c) |Vp|= j,=0

We remark that TOPE could easily be amended to
solve the problem

L{¥) = G(r, %)
where L is a linear elliptic Bperator, and G is any
function of ¥ and the independent variable X, but
not the derivatives of W,

For a plasma-vacuum equilibrium we take
at the interface (Model 1IV).

(Model III).
|Vp| = jo = 0

The chosen forms for p and F lead to phenomena
such as bifurcation in Model IIL, and "eigenfunction"
behaviour in Model IIL. Due to the number of para-
meters involved we make no attempt to optimise our
models, but rather present the results as a series of
examples.

2. MODEL I

We consider a diffuse equilibrium with p(¥) and
F(¥) given by

a \!: 2 \l_, n
p(I) = 1 -(,—) ) (3)
o R; (j qE
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where WYy is the value of the poloidal-flux, V¥, at
the boundary, and Ry 1is the major radius of the
torus. The parameters C, a and d are free, but
because of the form for F, Eq. (2) only involves the
dimensionless quantities a and d. However, the
toroidal field, Byp(= F(¥)/R), does depend on C.
With the above forms the toroidal current density and
pressure gradient are non-vanishing at the boundary.
The equation to be solved is linear or non-linear
depending on the values prescribed to the integers n
and m., Gourdon and Touche®have also solved the
linear problem but with different forms from those
given in (3) and (4). An important physical quantity
to be evaluated is the poloidal-f, By, which through-
out this report we define to be

[[ pdRdz
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Pr = TIT 1odraz1 2 * (3)
where the integrals are taken over the cross-sectiomal
area.

For an equilibrium with circular cross-section
it is straightforward to obtain an asymptotic solu-

tion in terms of the inverse aspect ratio, €. This
is useful because it enables us, (a) to elucidate
the qualitative features to be expected, and (b) to

check the numerical procedure.

(i) Asymptotic Analysis

Transforming to local polar coordinates T,
f, p based on the centre of the minor cross-
section (see Fig. 1), Egq. (2) can be written as

Lav\, 1 8%  _ cosh B sin .0V
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+ FF (§) + (RO-+r cos®) p' () =0 . (6)

Substituting from Eqs. (3) and (4) and intro-

ducing the dimensionless variables r = r/ro
and ¥ = w/wB » Eq. (6) becomes
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where € = rg/Rg. We assume the ordering
a€? ~1 and d+ 1 ~e€, the latter implying
that d be negative. We further assume that
n+md ~€. Thus taking m =4, n = 3,
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Fig. 1 Coordinate systems for a circular cross-
section plasma.

d =- 0.8 and € = 0.2, it follows that
n+md=- 0.2 and that our ordering is consis-
tent. In fact, the numerical results reported
in the next section demonstrate the asymptotic
analysis to be valid over a wide range of
parameters.

Expanding the solution in the form
Wim LAY by g (8)

we find Eq. (7) to be trivially satisfied in
leading-order. To first order the appropriate
solution (¥ =0 at r = 1) is given by

w, =7 a€2(1+d) (L -1 (L+vx cosd), (9)

where v = e(d + 1)”'. This solution shows that
the radial dependence of the pressure is essen-

tially parabolic. The positions of the pressure
maxima and minima, and hence the magnetic axes,

are given by

3pr?2 + 2ur - v =0, (10)

where =+ 1. Adam and Mercier; and Laval et
al.® have derived equations of this type, but

with different ». For 0 < w»v <1 there is ome
(outward) magnetic axis corresponding to a pres-
sure maximum, For w» > 1 there are twomagnetic
axes, the second corresponding to an inward axis

with a pressure minimum. For - 1 < v < O there
is one (inward) magnetic axis corresponding to a
pressure minimum. For w < - 1 there are again

two magnetic axes, the second corresponding to
an outward axis with a pressure maximum. Since
p vanishes at the boundary the presence of a
minimum implies the existence of a region of
negative pressure, Thus the only case of prac-
tical interest is 0 < v < 1, for which the
displacement A of the magnetic axis can be
written as

1 5
A= [-1+1+3wD)7 . (GRD)]

It is straightforward to show, that to
leading-order, the toroidal current density is
given by
j = HEC (1+d)(L+2rrcosO) V_ . (12)

¢ Rr?* B

We observe that the constant j contours are
perpendicular to the R-axis and¢paralle1 to the
axis of symmetry. For v =% the toroidal
current density is zero at the innermost point
of the torus, that is, point A in Fig. 1.
Increasing » above this value leads to a region
of reversed current spreading into the plasma

from this point. Using the above formulae,
Eq. (5) leads to a very simple expression for
the poloidal-f3, namely

(13)

Thus for a given € the poloidal-f3 depends only
on the parameter V.

It is clear that the essential physical
features of our model can be described in terms
of v. Thus as v is increased j, remains
unidirectional until S = ;° =0.5€ , the
critical value for current reversal. Increasing
¥ still further eventually leads to an upper
limit for f;. This is set by the second mag-
netic axis about to enter the plasma on the
inside of the torus (point A in Fig. 1), and is
given by f; = it = ¢ ', the pressure maximum
being displaced outwards a distance A = ¥. We
note that to the order of our theory, fr is
independent of 'a', although the poloidal flux,
the magnitude of jCp etc., do depend on this
parameter.

(ii) Computations

Normalising R and Z with respect to Rg

and defining the dimensionless flux ¥ = iy,
then Eq. (2) can be written as

1

: ]
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where ¥ = 1 at the boundary. We have solved
Eq. (14) with m, n in the range 2 <m S35
and 2 <n <5, for both circular and non-
circular cross-section plasmas. The solution is
used to evaluate the dimensionless toroidal
current density

R j - -
M=_§(dw“‘ 1ogay ™ty (15)

\r

and hence the poloidal-f3.

For m =n = 2, the equation is linear,
and provided the eigenvalues of

8 (1208}, 8 :
R 3R RE)R)+822 - a(d + R%)

are all negative, the equation has a unique
solution. For other values of m and n, how-
ever, the equation is non-linear and the number
of solutions to be expected is unclear. Since
Eq. (14) is, in general, non-linear, it is
appropriate to use Newton's method. Eq. (14) is
of the type

Ly = f(¥, R, (16)
where L 1is the elliptic operator. For the pur-

pose of discussion, however, we write Eq. (16)
as

N(¥) =0 . (17

Newton's method applied to this equatiom is

N Ma"= - nee™, (18)
where N'(Wn) = §§n ™
av
and Av" = anrl -yt (19)
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Flux Surfaces

The above figures show flux surfaces and toroidal
current density contours (a
d=-0.4 (Figs. 2a and 2b), d=-0.7 (Figs. 3a and 3b)
and d = - 0.95 (Figs. 4a and 4b).
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We take finite differences and have to solve a
set of linear equations at each step of the

iteration. From Eq. (16) we have
Ny =1n -% @y, (20)
h h BTn
vhere N{(¥") and Ly are matriceg of finite

difference coefficients. Hence N, (¥ ) is the same
as Lh except for changes in the diagenal ele-
mentsof Ly - the derivatives @£/8¥ being speci-
fied exactly. N(¥") is just the residual at the

n iteration. The convergence of the method
depends on the starting value for the solution
and on 9f/9%. If Of/8¥ makes the matrix Nh
indefinite the system of linear equations
cannot be solved by an iterative method.

(a)

Circular cross-section

Setting € = 0.2, a = 5.0, and consideringn,
m such that 2 <n <5 and 2 <m <5, the results are
presented in Tables la and lb for three values
of d, namely d = - 0.4, - 0.7 and - 0.9. For
d = - 0.4 a single magnetic axis (a pressure
maximum) is found and the toroidal current den-
sity is unidirectional. Poloidal-f is of order
1.5 and the results do not depend significantly
upon n or m. For d = - 0.7 a single magnetic
axis is again observed, but in this case the
toroidal current density reverses. Poloidal-f
is of order 3.2 and not significantly affected
by the values of n and m. Finally, for d=-0.9
two magnetic axes are observed, corresponding
to a pressure maximum and a pressure minimum.
Since the latter is associated with a negative
pressure, the evaluation of 31 is not meaning-
ful in this case. Current reversal is found
and again the results are not much affected by
n and m, Although 1 has only a weak depend-
ence on m and n, it is possible to discern a
pattern in the results for d = - 0.4 and - 0.7.
This is brought out clearly in Table 2. We see
that for constant m, BI increases with n. For
constant n, f; decreases as m increases.

flux-surfaces and toroidal current demsity con-
tours (for n =m = 2, a = 5.0, € = 0.2), we
give plots of the following cases:

(a) d =- 0.4 - one magnetic axis, j unidirect-
jonal (see Figs. 2a and 2b).

(b) d =-0.7 - one magnetic axis, j reversed
(see Figs. 3a and 3b).

(e) d=-0.95 - two magnetic axes, J reversed
(see Figs. 4a and 4b).

Fig. 5 shows a plot of [T as a function of
a and d for € = 0.2, n =m = 2. We observe
that for the range of parameters considered
B is essentially independent of a. We have
compared the numerical solutions for the cases
d=-0.7, -0.95 (a =5.0, € =0.2, n=m=2)
with the results obtained from the asymptotic
formulae of Eqs. (8) and (9), and find agree-
ment to three decimal places. Although we
have considered n and m for which the MHD
equilibrium equation is non-linear, as shcwn
earlier, there is an ordering for which the
solution is essentially linear, and this is
borne out by the computations - there being mno
evidence of bifurcation. In fact, all the
significant features of the theory are supported
by the numerical results.

(B)

Non-circular cross-section

We now treat the problem of a plasma with a
non-circular boundary. Taking the forms given
in Eqs. (3) and (4) with m = n = 2, we suppose
the plasma to have an 'egg-shaped' boundary
given by the formula

y? = (1-x2)(1+62-26x) , (21)
and illustrated in Fig. 6. .Solving Eq. (14) for
the values of a and d taken before, our
results are found to be wvery similar to Cthose
for the circular boundary, even when the distor=-
tion (6) of the boundary is significant, 8 =0.75
say. For a given § a limit on [’ is reached
which is again set by the appearance of a second

To illustrate the general features of the magnetic axis. In Figs. 6a and 6b we give plots
6~
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as a function of a and d.



(m,n)

(2,2)
(2,3)
(2,4)
(2,5)

(3,20
€3,3)
(3,4)
(3,5)

(4,2)
(4,3)
(4,4)
(4,5)

(5,2)
(5,3)
(5,4)
(5,5)

TABLE 1(a)

TABLE 1(b)

a=50 d=-0,4 a=50 d=-0,7 a=50 d=-0.9
Position of Flux at Position of Flux at -
pressure pressure IGI pressure pressure lG1 PDSi;ion Flux at POSLELOH Flux ac
maximum mitximum (m,n) maximum maximum 2 pressure & pressure
pressure aximum pressure minimum
(m,n) maximum o minimum
0.2 0.969038 1.4927 (2,2) 0.3 0,982932 31592
0.2 0.970163 | 1.5032 (2,3) 0.3 0.983531 | 3.1958 (2,2) 0.45 0.991691 -0.80 1.000749
0.2 0.971217 1.5054 (2,4) 0.3 0.984090 3.2213 (2,3) 0.45 0.991937 -0.75 1.000776
0.25 0.972202 | 1.5063 (2,5) 0.35 0.984611 | 3.2438 (2,4) 0.50 0.992168 -0.75 1.000804
{2,5) 0.50 0.992383 -0.75 1.000830
0,2 0.968586 | 1.4923 (3,2) 0.3 0.982518 | 3.1349
0.2 0.969746 | 1.4959 (3,3) 0.3 0.983148 | 3.1651 | ¢3:2) 0.45 | 0.991481 | -0.80 1.000728
0.2 0.970829 | 1.4982 (3,4) 0.3 0.983738 | 3.1017 | (3.3) [ 0.45 1 0.991743 | -0.80 | 1.000743
0.2 0.971840 | 1.4993 || (3,5 0.35 0.984284 | 3.2154 | (3.4) | 0.45 ] 0.991990 | -0.75 | 1.000781
(3,5) 0.50 0.992218 -0.75 1.000809
0.2 0.968131 | 1.4849 (4,2) 0.3 0.982086 | 3.1030 4,2 0.45 6. 991261 0,80 1. 600704
5
i 0.969318 | 1.4889 | (4,3) 0.3 0-982747 | 313821 (4 5y | o045 [o.991539 | -0.80 | 1.000732
0.2 0.970429 1.4914 (4,4) Q3 0.983364 3.1622 (4,4) 0.45 0.991798 ~0.80 1.000758
L 1 . 4, % . .
0.2 0.971466 | 1,4927 (4,5) 0.3 0.983940 | 3.1870 4, 5) 0,45 o .8 S BB
0.2 0.967659 | 1.4781 (5,2) 0.3 0.981634 | 3.0712 (5,2) 0.45 0.991029 -0.80 1.000677
0.2 0.968879 | 1.4823 (5,3} 0.3 0.982329 | 3,1035 (5,3) 0.45 0.991323 -0.80 1.000710
0.2 0.970019 | 1.4850 (5,4) 0.3 0.982973 | 3.1329 (5,4) 0.45 0.991597 -0.80 1.000737
0.2 0.971084 | 1.4864 (5,5) 0.3 0.983575 | 3.1588 (5,5) 0.45 0.991852 -0.80 1.000763
TABLE 2
Values of BI
d =-0.4 d = -0.7
n 2 3 5 o2 of 3 4 5
N l | | | N
2 1.4927 1.5032 1.5054 1.5063 2 3.1592 3.1958 32213 3.2438
3 1.4923 1.4959 1.4982 1.4993 3 3.1349 | 3.1651 3.1917 3.2154
4 1.4849 1.4889 1.4914 1.4927 4 3.1030 3.1342 3.1622 3.1870
5 1.4781 1.4823 1.4850 1.4864 5 3.0712 3.1035 3.1329 3.1588
TABLE 3
Bifurcation results for the case a = 10.0,
d=-0.4, m=2,n=2, € =0,2
! B i Flux at
ressure
o Start I MA gin bt
2000 2.0 2.86 0.2 0.93
2000 1.0 - 0.15 1.01
3500 2.0 2.38 0.2 0.93
3500 1.0 - 0.25 1,01
7500 2.0 2.08 0.2 0.93
7500 1.0 - 0.35 1.01
Note: (1) START is the starting value of

the solution taken everywhere

except at the wall, where WB'=1.

(2) '™A (position of magnetic axis)
has been normalised to a minor
radius of 1.




Flux surfaces for plasma with an "egg-
shaped" cross-section (6§ = 0.75, a = 5.0,
d = - 0.95).

Fig. 6a

for the case &6 =0.75, a = 5.0, d = - 0.95., The
phenomena of two magnetic axes and current
reversal are observed. The curve defined by

Eq. (21) touches the sides of a square, and
therefore cannot describe cross-sections which
are a long way from circular.

3. MODEL II

We now consider a diffuse, circular cross-
section model, with p(y) and F(I) given by

ay 2 n 1
B L
=—=\1 -3 exp ( - —————j——{> » (22)
R( (&) <Qu-ﬁ>n
B
2da ¥ ? A
(c Bt [ (-‘L) >>
mR 2 v ?
[} B

where @ is a further free parameter. By choosing «
to be sufficiently large we can ensure that for most
of the range O < ¥ < ¥p the pressure has the V-
dependence adopted in Model I. As V' approaches Vg,
however, the exponential dominates. Thus the form
for p has the property that dp/d¥, and hence |Vp|,
vanishes at the wall, whilst the toroidal current
density is finite. The equation to be solved is
non-linear, and takes the form

- a [d?m-ql + chgn- L

n f'. 1
—1——3’;—-(1—_‘1‘—_3—1> exp -——n>}=0, (24)
a-9" a(l-¥)

p()

and F()

(23)

2/ 1 av\ a2
R BR(R or )tz

where, as before, ¥ = ¥/¥p , and ¥ =1 at the
boundary.
We examine the case a = 10.0, d = - 0.4,

m=n =2 and € = 0.2, and give results for three
values of @, For each setting of & two solutions
have been found. One shows a single pressure maxi-
mum displaced outwards. The other corresponds to an
unconfined plasma, the pressure being everywhere
negative, and with a pressure minimum displaced
inwards. The solution obtained depends on the start-
ing value for ¥ used in the iterative procedure. This
is an example of bifurcation, and a similar phenom-

7
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Fig. 6b Toroidal current density contours for
6 =0.75, a=5.0,d=-0.95

enon has been observed by Marder and Weitzner’ in
connection with an equilibrium derived from the rigid
rotor distribution function. QOur results are summar-
ised in Table 3.

In Figs. 7(a), 7(b) and 7(c), we give plots of

the poloidal flux, pressure and toroidal current den-

sity contours for the confined case corresponding to
a = 2,000. The current density contours show the

972
0958,
094
{ 0930 R

N

Fig. 7a Flux-surfaces for MODEL II with « = 2,000.

4z

Fig. 7b Pressure contours for MODEL II with
o = 2,000.



(i) Asymptotic Analysis

We introduce dimensiorless rectangular
coordinates (x, y) based on the centre 0, of
the minor cross-section (see Fig. 8). The

\_l'
¢
Fig. 7¢ Toroidal current density contours for MODEL Fig. 8 Coordinate systems for a square cross-section
II with & = 2,000. plasma

mathematical transformations are straightforward

resence of reversal. As increases the crescent- X
B B and Eq. (2) can be written as

shaped current contours move towards the axis of sym-

metry and eventually join the family of "circular" 2 2
contours 22,2 _= "&E'i'(l (b-al(l+ex)?) =0

nours. 0x?  8y? 1+ ex ox - -a i 3

8 , . . (27)
Callen and Dory have studied a non-linear equi-

librium equation in which p and F are.harmOnic where ¥ = /¥g and ¥ =1 at the boundary.
functions of V¥, Since they found no evidence of 2 2 .

: F A . Choosing the dimensionless parameters a and b
bifurcation it is important to confirm our results. : -
Now Marder and Weitzner, in their study of a two- to haye the ordering . a ~b = € , where

; ¥ a-b~1, Eq. (27) can now be solved by

dimensional non-linear equation, demonstrated bifur-
cation by dropping the Z-dependence, and solving the
resulting one-dimensional equation exactly. In the L NS R
: . = w0 (28)
present problem this has not proved possible. We 1
can, however, solve the one-dimensional version of
Eq. (24), numerically. Thus,as an independent check,
we have used the mutiple-shooting method for two-
; i 9w a2y
point boundary value problems as implemented by 1 1
England?. Since England's code requires an initial i By? + ¥, (a-b+2aex)
estimate of the solution, we have used the results
pertaining to the plane of symmetry (Z = 0) in the
two-dimensional calculation, for this purpose. The
shooting method confirms the existence of two distinct
solutions for the one-dimensional equation. Each
corresponds to a pressure with the same sign as the
pressure given by the initial estimate, and hence by
the two-dimensional solution. (W
cos|

vo= 2 ))E(x) F (30}

expanding ¥ in the form

It follows that Eq. (27) becomes L°

0, (29)
where the boundary conditions are periodic,
namely ¥ =0 at x=+1 and y ==+ 1,

Assuming ¥, to have the form

1

then E(x) satisfies the equation

4. MODEL III
d2E

as 3 &

In the models previously described the toroidal axz P EA+RE =0, (31
current density is non-zero at the boundary. Since Y -3
this feature is undesirable in a reactor it is of where B = (2a€)” and A= [a-b-(7/2)2]B .
interest to consider a diffuse plasma in which p, Defining the new independent variable
I?ﬁ| and jg, all vanish at the boundary ¢ = Vg . p = B{A+ x), Eg. (31) can be writien as
For such a mode, Eq. (2) has the trivial solutiom
¥ = Vg, and this suggests the existence of eigen- 4iE
functions. By taking the cross-section to be square EEE‘*‘PE =0, (32)

we can develop asymptotic analysis, thus illustrating
the essential physical features. We choose the

Following: famm fur 5 ged, B which is Airy's equaticn. The solution of

Eq. (32) can be wiitten in the form

2
a = il-p) +-CBi( =
p = E-R—DZF (‘IIB - ) (25) E PAi( p) i QB].( .0) 3 (33)
where P and Q are arbitrary cosfficients.
1 w2\ ] 5 Applying the boundary condition £ =0 at
and F=g|C+2b WB¢ =g J 5 (26) x=-1, Eg. (33) becomes

where a, b and C are free parameters, and 2S5 is the E = P}iAi(- p)-—ﬁ%%:Lg%ig:ji§gBi(- p)}. (34)

side of the square cross-section. These forms ensure
that the required boundary properties are satisfied,
and that the pressure is positive everywhere. For E to vanish at x =+ 1, B and A must



be related through the expression

Ai(- X) _ Ai(- X - 2B)

Bii- X) Bi(- X - 2B) ° L33)

where X = B(A- 1). Thus for a physicai solu-
tion to exis*, the parameters a and b are
related through Eq. (35). The eigenfunction
nature of the problem is brought out more clearly
by writing (31) as

d2E 4 _
W+B(X+B+Bx)—0. (36)

Thus if we select a value for X, solutions arise
for all values of B given by Eq. (35). The Airy
functions have been tabulated by Abramowitz and
Stegunjtand we give a plot of their ratio

Ai(- X)/Bi(- X), in Fig. 9. We observe that
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Fig. 9 Plot of Ai(- X)/Bi(- X) against X.

the various branches of this function approach the
vertical lines ®,C,, B,C,, B,C,...asymptotically.
For X corresponding to the point Az, Eq. (35) is
satisfied for values of B given by 2B = AjA,,
ApAg, AjA, , v For each value of B in
this series there is a corresponding value of A.
Since B is positive, choosing X =0 implies
A> 1, whereas for X < 0, we must have h< 1,
Thus the procedure is to select a value for X,
determine B (and henmce A) through Eq. (35), and
then to plot E(x) and ¥,(x, y). This process
is then repeated for all values of X.

Having solved the equilibrium equationm, it
is of considerable interest to evaluate the
toroidal current demsity, f and fr . It is
straightforward to show that the dimensinnless
current demsity is given by

T
|
|4

E(x)

SZRO :’- T 2 .
qu)= :(E) + B? (A+ x)} v, . (37)

—

To leading-order, the total -3 is given by

a¢§ .
A= s2R 2B 2 wlma 2 (38)
o “go

where wlma denotes the first-order poloidal-

flux at the magnetic axis. Using Eq. (26), the
zero-order toroidal field B¢o, can be written
as

2 2
B = 52 (€ + b¥y) . (39)
It follows that
2
a¥
Ima
= — . (40)
b + Cu
B

; -1
Recalling that a ~b ~ e , we choose C to be
negative, of order Wﬁ et , and such that

b + Cbp ° ~ 1 . This ordering ensures that

B ~ e. It should be noted that to assume any
other order for C would contravene the basic
tenet for Tokamak, namely that ﬁL ~1.

o
To obtain a number for S it is necessary to
specify a value for C, and also to choose a
suitable normalization for ¥;. Both these
features, however, are avoided in the evalu-
ation of poloidal-f, since this quantity is
independent of C and P. The poloidal -f3 can be
expressed in the form

X+2B

7:;-3 [ : , . . . 2
- (m(—x) A (-p) - AL(X) Bl(—p)) dp

%mhm

X
X+ 2B 2
) i m 2 -2
-/(Bi(—X)Al(—p)—Ai(-X)Bi(-p)(,o+(5) 5 ")dp

(&41)

We now give some typical results of the
asymptotic analysis. Referring to Fig. 9, we
take the point A; to lie at the value X=- 1.8,
and then A, corresponds to B = 2.07 and
A =0.13. Setting the amplitude P, equal to
unity, the solution E(x) is shown as curve I
in Fig. 10. The poloidal-flux surfaces ¥,
are plotted in Fig. 12. This example shows
the presence of one outwardly displaced mag-

0.8 T T T T T T T T
0.6 — 1 -
0.4 -4

o2 —

0.0
-0.2 - m -

04} : - -

06 [ I I | I I I I
2.0 -08 -06 -04 -02 00 02 04 06 08 10

X

ig. 10 Plot of E(x) for one (curve I), two (curve

II), and three (curve III) magnetic axes.



40 e oy P e ponding fiT . A plotof €f3] against B is shown
in Fig. 11. We observe that 1 approaches the
limit 3.88 €™! as B increases indefinitely, a

1 30 7 result found previously by Haas and Thomasl2 .
B, 20l We now consider A, to lie at the value
120 7 X = - 2.5. For the point A, this gives B=3.29

and A= 0.24. The appropriate E(x) is plotted
itk | in Fig. 10 (curve II), and poloidal flux-

’ surfaces are sbown in Fig. 13. This example
demonstrates the existence of two pressure
0 | | maxima separated by a pressure minimum with

o 50 10.0 15.0 P =0. To cover all X, we start with the

B line AjAjat -»D, and raise it to B,B,, and

then from C,C, to B,B, and so on.

L
Fig. 11  plot of ¢ B, versus B (= (2ae) ). This para-
meter is related to the displacement of the

magnetic axis . Lastly, we consider A, to lie at the value

X =0.1. For the point A, this gives B = 2,83

netic axis corresponding to a pressure maximum, and A= 1.04. The solution is plotted in Fig.
where fI = 0.8le~', To cover all values of 10 (curve III), and the flux-surfaces are dis-
X we start with the line A,A, at -® D, and played in Fig. 14. Three pressure maxima are
take it up to B;B,, and then from C,C,to B,B,, observed,
and so on. We determine B and A for each
setting of X, and hence evaluate the corres- The curves for E in Fig, 10 show character-
1.0 1.0 T T T T T T T T
0.8 08
06— 06 -
04 - 04
z
0.2 = 0.2
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-0.2 -0.2
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Fig. 12 Fig.
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06—
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z
2 ool (o9 (025 (0320(0426 .03
0.0 —»R
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-06 -0.208(-0314(-0419 _ -0525
-08 -0.8 —
-1.0 -1.0 1 !
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Fig. 14 Fig. 15

Flux surfaces

The figures show flux surfaces corresponding to the
"fundamental" (¥ig. 12) and first and second "har-
monics" (Figs. 13 and 14) respectively. Fig. 15

shows flux surfaces corresponding to ¥, =cos(§§XJE1(x)
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Fig. 16 1Isometric views of the solution for the case
b =0.109, a=-20 and J, 2 = 1.0.
The figures illustrate the iterative develop-
ment of the flux-surfaces, values of the
toroidal current density, and the adjustable
parameter b.
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istics resembling the fundamental and harmonics
of an eigenvalue problem. Ignoring the limit-
ations of the ordering, these results indicate
that for our particular model the number of
magnetic axes is unlimited. However, the present
calculation is not a real eigenvalue problem
since we cannot identify a true eigenvalue,
each "eigenfunction" corresponding to a continu-
ous range of the parameters B and A . We observe
from Eq. (37) that for X > O (that is, A> 1),
the sign of j, is determined by the sign of ¥,.
Thus the number of current reversals will

depend on the number of sign changes in E. It
follows that for X > 0 the single magnetic
axis case has a unidirectional current, whereas
the double magnetic axis case has one current
reversal. Similarly, the triple magnetic axis
case has two current reversals, In view of the
reversals in jm, these multi-pressure maxima
equilibria are unlikely to be of practical
interest for Tokamak. For X < 0 the number of
current reversals depend on the details of the
particular case under consideration. Of course
we can consider solutions of the type

¥, = cos ((Zn-kl)%g) En(x) ¥ (42)

and these will also show a multiplicity of axes
- an example is given in Fig. 15.

(ii) Computations

Using the forms givem in Eqs. (25) and
(26), and normalising R and Z with respect to
the minor radius, the equation to be solved is

o 1ov) o _—
aR\RaR)+az=’-+(1‘w)(b“a€R) o,

(43)

with ¥ = 1 on the boundary. As before, we con-
sider the plasma to have a square cross-sectiom.
Following the asymptotic analysis, we expect

Eq. (43) to have a nmon-trivial solution if a
and b are appropriately related.
method, the iteration always converges to the
trivial solution ¥ = 1, for any starting value

of ¥ . Thus it is necessary to devise a differ-
ent procedure.
Symbolically, we can write Eq. (43) in the
form
LY =f(¥, R) . (44)

14
Lackner}jFisher, Marder and.Weitzner?have shown
that the most straightforward iterative scheme
for Eq. (44) namely,

n+1

Ly = £(¥" R) , (45)

has only a limited range of convergence, For an
equation such as (43), the iterations will
always converge to the trivial solution. To
overcome this difficulty Feneberg and Lackner
adopt the more general iterative scheme

15

n+1

LY - fn(w“, R . (46)

The essence of this method is to vary one or
more parameters in £(¥, R) such that an equal
number of physical quantities are kept constant.
The latter quantities are chosen so as to avoid
the trivial solution.,

In the present computations we have kept
the total toroidal current () constant. Intro-
ducing the dimensionless toroidal current,
Jm(=JRD/W3), and using Eq. (43), we can express

Using Newton's

1

this quantity as

1, =/(1_£‘¥_) (b - ae’R2)dRdz , (47)

where the integral is over the plasma cross-
section. It is clear that by maintaining Jy
constant throughout the calculation, the trivial
solution ¥ = 1 must be avoided, since the latter
corresponds to Jp = 0. 1In practice we have

used Eq. (47) in the form
T = b/(¥)(1 - a,€2R?)dRdZ , (48)
where a, = a/b. With J, thus defined we can

novw implement the iterative scheme of Eq. (46).
The steps are as follows:

(a) Specify Jy and a;, and make suitable
"guesses" at b? and ¥° (the starting solu-
tion).

(b) Calculate ¥! from Eq. (46&) and Jp! from
Eq. (48).

() If Jy! # Jg then set bl = b%Jy /Ty . This
scales the toroidal current so that Jy!=Jq.
The quantity b, is then replaced by b, .

(d) The procedure of (b) and (c) is repeated
until some predefined convergence criterion
is satisfied. 1In the calculations reported

-4
here, we took fJ(pn+1—J(pn‘| < 10 Jgp, as

our criterion.

A typical example of this method of solu-
tion is shown in Fig. 16. The corresponding
plots of poloidal flux and current density con-
tours are shown in Figs. 17(a) and 17(b).

We now compare the numerical solution with
that obtained from the asymptotic analysis for
the single pressure-maximum case. For simpli-
city, we only present results for the plane of
symmetry (Z = 0). In Fig. 18 we plot the
numerical solution pertaining to the case
€ =20, J¢ = 5.0, b = 4.071 and a = - 0.814, for
which BI = 0.82 and the pressure maximum is at
0.1. The asymptotic analysis, corresponding to
these values for a and b (B = 1.175 and
A= 1,485), leads to the values indicated by
the circled points, with f3; = 0.80 and the
pressure maximum at 0.1. The two sets of
results are seen to be in good agreement.

T T T T T T T T T

1.633 R

Fig. 17a Flux-surfaces corresponding to the case

b =0.109, a = - 20 and J@ = 1.0.



0.624 R

Fig. 17b Toreidal current demsity contours for the
case b =0.109, a = - 20 and Jm = 1.0.
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Fig. 18 Comparison of asymptotic analysis and

numerical results for the case b= 4.071,
a = - 0.814, and J(p = 5.0 (B = 1.175,
A= 1.485)

5. MODEL IV

In this model, we consider the plasma to be
surrounded by a vacuum region, which is, in turn,
enclosed by a perfect conductor. Defining ¥ at the
plasma vacuum interface to be Vg, and V¥ at the
conducting wall to be Yy, we choose the forms

ay? 2
__'B L3
p_ZR,,(L-q, ) 49)
o B
and
F=|[C- 2(:11102;,(\1')]'15 5 (50)
for the plasma region, ¥ = WB’ and
p=0, (51)
and F2 =€, (52)

for the vacuum regionm, ¢B > > $W. Thus we have to

solve the equations

12

2
R 2 (%% >+-gz—‘§'= a(R?- ) (1-¥) (53)
for ¥ 21, and
2 1 0¥ oy _
R'ﬁ(ﬁﬁ)-ﬁ-ﬁ—@, (54)

for 1 > ¥ > ¥;, subject to the boundary conditions
that the normal derivative of ¥ at the interface is
continuous, that is

o a¥
vac _ _ plasma

Ba on (553

As before, Eqs. (53) and (54) are normalised to the
major radius.

Numerically we treat the equilibrium as des-
cribed by a single equation for which the right-hand

side has a discrete change in form at ¥ = 1. Since
the MHD equation can be written in the form
R 3
yey_ 1l o,
v'<R_2->_R‘|’BJ(P’ (56)

the boundary condition of Eq. (55) may be derived
directly using Gauss's theorem, As the equation to
be solved admits the trivial solution ¥ = Y, we
must use the procedure introduced for the previous
model in order to obtain a physically significant
solution. As for the previous model, the forms for
p and F ensure that the poloidal current demsity
vanishes at the plasma boundary.

We present results for systems maintained in
equilibrium by a "D-shaped" conductor with equation

pR2z2 + (R2-1)2 =T, (57)

where R and Z are normalised with respect to the
major radius, and p and T are free parameters. We
give results for u = 2,747 and T = 0.721. For
our first example we choose d = C = 0 (no toroidal
field), Jy = 5.0 and ¥y = 0.5. The corresponding
value for the poloidal-f is [ = 1.0. Figs. 19a

and 19b show the associated flux-surfaces and dimen-
sionless toroidal current demsity contours (ij6V¢B),

respectively. For our second example we take d=0.5,
J, =5.0 and ¥y = 0.9, and give results for differ-
ent values of C. The value for poloidal f is

fr = 2.1. Figs. 20a and 20b show the flux-surfaces
and dimensionless toroidal current demsity contours
for this case., Fig. 20b illustrates the phenomenon
of current reversal. The safety-factor q, which we
define to be

r B
1
= e )
q 2vrf o Af (58)
pol

has the value 0.3 at the magnetic axis and 1.8 at
the plasma boundary for the value C = 36. Since the
toroidal field is low at the magnetic axis, we expect
the [B| surfaces to be closed in this vicinity, and
this feature is demonstrated in Fig. 2la. As C is
inereased (that is, the toroidal field) the family
of closed |B| surfaces disappears. This is shown in
Figs. 21b and 2lc for C = 72 and C = 100, respect=-
ively.



Fig. 19a Fig. 19b

Fig. 20a

Fig. 20b

Toroidal Current
Flux Surfaces

Density Contours

The figures show flux surfaces and toroidal current
density contours for the cases d = C =0 and ¥w=0.5
(Figs. 19a, 19b) and d = 0.5, C = 0 and %, = 0.9

(Figs. 20a, 20b). 1In each figure the dotted curve
represents the plasma boundary.
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