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ABSTRACT

Early models of a fusion reactor blanket based on a toroidal
first wall backed by 1iquid 1ithium can be quickly discounted
because of the impossibility of maintenance and repair. A more
practical engineering solution has been proposed in which the blanket
comprises replaceable cylindrical cells in a close nested array.
This paper examines the neutronic consequences in terms of increased
neutron Teakage from the blanket and breeding losses due to the
‘cusp shaped gaps between these cells.
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Glossary of Terms

p torus minor radius

R torus major radius

R/p aspect ratio

w angular co-ordinate of point on the toroid surface measured

around the minor circumference from the point closest to the
major axis

yand r cell radius

a plasma minor radius

h cell depth, i.e. blanket thickness
a diam/pitch ratio of blanket cells at outer end

B diam/pitch ratio of blanket cells at first wall end



1. INTRODUCTION

A considerable amount of physics effort has

- been devoted to the neutronics problems of the
toroidal fusion reactor blanket/magnet shield system,
including consideration of tritium breeding, activa-
tion, transmutation, neutron damage, heat deposition
rates etc. Generally speaking the calculations have
been performed on idealised systems in which the
vacuum containment is in the form of a continuous
wall around the plasma, behind which Tje in turn,
layers of breeding materials (with structural
materials mixed in homogeneously), reflector,

magnet shielding, magnets etc. This is the well-
known "onion skin" model. '

The geometrical problems associated with the
toroidal shape of the blanket are usually ignored,
the torus being "opened out" into an infinite
cylinder. This approximation neglects neutron
flux variations around the minor circumference of
the torus. Some estimates, however, have been made
of this effect as a function of torus aspect
ratio{1).

Recent work at Cu]ham(z) has shown that there
are very real engineering objections to the "onion
skin" model. Because of the inevitability of
periodic replacement of parts of the first wall
and structure during the reactor life and the need
to achieve this with minimum outage time, a modular
system is being developed in which the blanket
comprises a large number of cylindrical cells filled
with breeding material packed around a toroidal
volume containing the plasma. The cells can be
replaced a few at a time at scheduled shutdowns or
in the event of untimely failure. This is described
fully by George et 31(3). A hexagonal shape was
originally considered for the cells on the basis
that this would represent a minimal departure from
the "onion skin" model of the blanket. In a blanket
which uses liquid Tithium for both breeding and heat
transfer, high pressures are generated in the
flowing 1ithium by magnetic forces and a hexagonal
cell would raise prohibitive stressing prob1ems(4).
To allow the hexagonal cells to touch would be
(a) unsatisfactory because of the possibility of
diffusion bonding, but in any case (b) impossible
because of the simultaneous restrictions of
toroidal geometry and the need to be able to
extract the cells. This paper examines some
consequences of departing further from the "onion
skin".model by using cylindrical cells for a
toroidal fusion reactor blanket.

A preliminary calculation (see Appendix A)
showed that the neutron transmission through the

cusp-shaped region between three adjacent cylinders
(Fig 1) is typically less than 1% for the primary

Section aof plasma toroid

Fig.1 Line of sight between adjacent blanket cells.

14 MeV neutrons from the plasma and only slightly
more for neutrons backscattered from the opposite
wall. However this does not take into account the
effects of the gap on neutrons other than those

which penetrate the full thickness of the blanket
while remaining in the gap. Recent work at Harwell
has therefore been directed at accounting for these
in a comprehensive manner, using the Monte Carlo

code SPECIFIC II(E) described in Appendix B.

To be consistent with fusion reactor studies at
Culham and Harwell, typical values have been taken
for the dimensions of the torus. These are major
17.8 m, and minor radius 6 m, with a plasma
These dimensions are not sacro-

radius
radius of 4.8 m.
sanct, representing only those current at the time
this study was started.

2. NEUTRONICS MODELLING OF AN INHOMOGENEQUS
BLANKET

As remarked above neutronics calculations on
fusion reactor blankets have most frequently been
carried out on an infinite cylindrical model to
represent the torus "opened out". While this gives
a fairly adequate representation of an "onion skin"
model, in which the plasma, blanket, reflector and
magnet shield are regarded as consecutive layers,
when the blanket is formed of cells arranged end-on
around the torus the problem cannot be tackled by
the geometry routines of the SPECIFIC code; however,
with appropriate approximations neutron motion
through the blanket can be satisfactorily represented
by modelling only a portioh of it, complete with
cylindrical cells and the gaps between them. The
angular distribution of the 14 MeV neutron current



incident on the first wall ends of the cells must
be adequately simulated, as must the condition that
the Tower energy neutrons reflected back into the
plasma space will return to the blanket.

SPECIFIC can deal with a nest of concentric
cylinders and has facilities for including off-axis
cylinders which, however, must be parallel to the
Z-axis of the problem space. A hexagonal array
of cylindrical cells can be set up easily by
specifying their depths, radii and (x , y)

The 14 MeV neutron
source distribution is represented by a source
distributed throughout a large cylindrical space

coordinates of their axes.

below the cell array as shown in Fig 2. As shown
in Appendix C, when
Reflecting
| /boundari
S 5
< Iron |reflector <
? ?
I L al—ABS
A I A .
g Cylindrical region containing 91 cells g,sa:\t
A ™~ Scat s
B B
F Sou|rce F
a FAB reglion FAB .g
e 330
Retlecting
boundary 291.54

Fig.2 Problem arrangement for SPECIFIC calculations.

the dimensions of the cylinder are suitably chosen,
this gives a close approximation to the angular
distribution of neutrons arriving at the first

wall from a toroidal plasma.

The condition that the currents of lower energy
neutrons leaving and entering the first wall must
be equal (since the plasma neither produces or
absorbs them) has to be satisfied. To ensure this
use must be made of a SPECIFIC facility for
reflecting neutrons at the problem boundaries.
Appendix D details the steps necessary to achieve

this while Teaving unaffected the angular distribu-
tion of 14 MeV neutrons arriving at the first wall.
Fig 2 shows the model of the source, multi-cell
array and reflector used for the SPECIFIC cal-
culations.

3. TOROID GEOMETRY PROBLEMS

Within its limitations of parallel cylinders
the SPECIFIC model must be corrected to simulate the
array of cells in a toroidal reactor blanket. There
are several consequences of the fact that the cells

are located on a curved surface.

(a) Since the gaps between them are tapered the
mean density of the blanket is reduced further than
is the case with close-packed parallel cells. The
reduction in density depends on the two components
of the surface curvature, and is discussed in
Appendix E.

(b) There are paths through an array of cells along
which neutrons can stream unimpeded from the first
wall to the reflector end of the blanket. The
probability of a neutron so doing depends on the
geometry of the gaps between the cells. This is
evaluated in Appendix F, in terms of the cell
diameter to pitch ratios at the rear wall and first
wall, o and B respectively. The resulting visi-
bility parameter VIS is proportional to the neutron
current passing through the gaps between cells at
the rear of the blanket for a given isotropic flux
incident at the first wall end. The variation of
VIS with « and g8 1is shown for parallel gaps (¢ = B)
and tapered gaps with the cells touching at the’
first wall end (B = 1) in Fig 3.
tapered gaps can be simulated by using the parallel
cell SPECIFIC model with a cell diameter/pitch ratio
offering the same value of VIS.

Leakage through

a Corresponds lo gaps belween paraliel cells

X Is appropriate to gaps batween cells touching
at the first wall end

L0

YIS

Bz Corresponding to calls

e in contact at the first wall

L s P S R S -
10 0495 0.30
o or 8 = cell diameter/pitch

Fig.3 Visibility (VIS) through inter cellular gaps.



(c) Since the cells are arranged on a curved
surface it is not possible to close-pack them in a
.hexagonal lattice. Two immediate possibilities can

be envisaged: (i) the cells may vary in radius
according to their position around the torus minor
circumference, as illustrated in Fig 4, or

Fig.4 Cylindrical cells fitted around a torus.

(1i) they may be arranged in hexagonal arrays on a
relatively few plane surfaces which fit together in
a "lobster back" configuration to make up the
toroidal blanket structure. In the latter case the
present SPECIFIC model would give an excellent
representation of all but the regions of inter-
section between adjacent planes of cells.

4. CALCULATIONS WITH SPECIFIC

A series of runs was carried out on problems
of the general form shown in Fig 2. For these
caleculations an array of 91 cylindrical cells was
set up on a hexagonal lattice within an otherwise
unoccupied cylindrical region representing the
blanket. The cells were defined as SPECIFIC rod
regions (Appendix B) and consisted of Tiquid lithium
contained in niobium cladding equivalent to 6% of
the cell volume. Blanket depths of 50 cm and 100 cm
were considered, with a distance between adjacent
cell centres of either 60 cm or 120 cm. The end
walls of the cells were not represented. Above the
cells is a reflector of iron 100 cm thick, followed
by the upper reflecting boundary to the problem
space. '

In order to simulate tapered gaps several runs
were performed with cells of smaller radius, but
with the same 60 cm or 120 cm pitch spacing corres-
ponding to various values of the visibility parameter
VIS in Fig 3. Results are detailed in Table I. The
main aim of the calculations was to provide informa-
tion on the net neutron current Teaking into the
reflector. This was monitored by integrating the
cross sections for neutron absorbing reactions in

iron over the reflector spectrum.

To isolate the effect of the inhomogeneity of
the cellular blanket from the density reduction
effect further computations were carried out in
which the 91 cell array and the gaps between cells
were homogenised. Two models were used: (i) a
homogeneous blanket of Li + 6% structure to the full
physical density and with no voids, corresponding to
an "onion skin" blanket of the same depth, and (i)
a low density homogeneous blanket corresponding to
cells packed to a diameter/pitch ratio, a = 0.90.

While neutron Teakage to the reflector is an
important factor in a fusion reactor design, an
equally pertinent one is the tritium breeding ratio.
However, using a Monte Carlo method in which the
results are always subject to statistical errors, it
is much better to investigate the reflector current,
which undergoes a much greater relative change than
the breeding ratio as a result of introducing the
cellular blanket. The impairment of breeding per-
formance can be obtained from the increase in net
reflector current by comparison with previous
"onion skin" model calculations, as discussed in

Section 9.
5. RESULTS

In the SPECIFIC runs, the integration routine
was used to obtain the reaction rates over the whole
reflector for the neutron absorbing reactions in
iron.. Referring to Fig 2 and the dimensions thereon,
this gives an estimate of the total net current of
neutrons Teaving the upper surface of the blanket
over a circle of radius 291.54 cm, the across flats
dimension of the 91 cell array, over which neutrons
are permitted access to the reflector. This current
has been increased by a factor to take into account
radial fall-off over the width of the array. The
factor ¢ central/¢ mean has been calculated from the
radial distribution of total neutron flux in a very
thin layer of iron immediately above the cell array.
The corrected current J appears in column 5 of Table
I. Errors quoted are those calculated by the
SPECIFIC code from the variance in the computed fluxes.
SPECIFIC breaks down the total number of source
neutrons dealt with into smaller sub-units or
“experiments", each of which yields an estimate of
the flux in any region of interest, from which the
mean and variance are obtained for the total
number of neutrons tracked.

The net neutron current to the reflector when
the blanket is homogenised appears as Jhomog in
column 6 of Table I. It is obtained by interpolation
for homogeneous cases other than those calculated.

= F =



TABLE T

I

Neutron Currents Penetrating Lithium/Niobium Blankets

1 2 3. 4. 5 6. 7. 8. 9.
Blanket Rod Diam.| J = net 3/ cell 2
Case No | Thickness | Pitch, ecm | ¢ = ——— leakage |J J VIS VIS { : }
cm.. Pitch cureeht.| OmOg hormag radius
RAD 35 50 homogeneous at full 651 = 40 = 1 0 0
physical density
37 50 homogeneous at density 851 + 42 - 1 0 0
equivalent to « = 0.90
34 50 120 1.00 836 + 46 | 723 1.156 4.83 17.4 x 103
36 50 120 0.95 882 + 47 | 792 1.114 28.54 | 102.7 x 103
38 50 120 0.93 1015 + 50 | 818 1.241 46.5 167.4 x 103
42 50 60 1.00 647 + 40 | 723 0.894 4.83 4.3 x 103
a4 50 60 0.90 804 + 45| 851 0.944 34.1 75.6 x 103
80* 50 120 0.95 889 + 47| 792 not used in fitting results
RUD 35 100 homogeneous at full 217 + 26 - 1 0 0
physical density
37 100 homogeneous at density 416 + 33 = 1 0 0
equivalent to o = 0.90
34 100 120 1.00 322 + 28| 269 1.197 4.83 17.4 x 103
40 100 120 0.90 562 + 37| 416 1.350 84.1 302.0 x 103
44 100 60 0.90 399 + 32| 416 0.960 84.1 75.6 x 103

* RAD 80 is a special case discussed in Section 8.

It differs from case No

RAD 36 in that the Tithium and niobium are homogenised, the gaps between the
cells meanwhile retaining the same geometry

The ratio J/Jhomog is also tabulated. Column 8 gives
the value of VIS, while in column 9 the product

VIS. (cell radiusf is given.
6.  ANALYSIS OF THE RESULTS

In the SPECIFIC output the fluxes quoted are
normalised to a total source of 104 neutrons. Since
in the process of producing a representative angular
distribution of incident 14 MeV neutrons on the
first wall, many of the neutrons emitted from the
cylindrical source region are wastefully expended
without entering the blanket, the currents given
in Table I do not give a true measure of the neutron
loss. Appendix G gives details of the method of
normalising the results by relating the neutron
current leaking into the reflector to the 14 MeV
neutron current incident normal to the first wall.
This has been done for a particular reactor model
in which the first wall radius is 600 cm, with a
plasma radius of 480 cm. The total net neutron
current leaking from the blanket into the reflector,

expressed as a fraction of the total neutron source,
is given by:

2.71 x 10°% J for 50 cm blanket depth
and 2.92 x 10°% J for 100 cm blanket depth

(i)
(ii)

In analysing the results of Table I for various
blanket configurations, it is proposed that the
neutron current leakage into the reflector can be
expressed as that leaking from a homogeneous
blanket of the same mean density, increased by an
inhomogeneity factor F, dependent on the gap
geometry. The form of this dependence, it can be
argued, is a proportionality to both VIS and the
square of the radius of the cells. The latter
factor arises from geometrical consideration of the
solid angle subtended at the rear end of the gap
between cells by the area of the gap at the first
wall end visible to it. On this basis the inhomo-
geneity factor d/Jhomog has been plotted against
VIS (cell radius)Z in Figs 5 and 6 for 50 cm and

100 cm deep blankets respectively. Straight lines

-4 -



Neutron current leaving- blanket.ratio: cellular blanket /equivalent homogeneous blanket

X Pitch = 120 cm
O Pitch = 60cm
¢
0.9 Il 1 I 1 I 1 I I | I 1 L
0 1108 210% 3108

VISy { cell radius )2

Fig.5 Inhomogeneity effect in 50cm thick blankets.

fitted by least squares analysis give the following
expressions for the inhomogeneity factor F:

1+ 1.14 x 1072 x VIS. (radius)?

Fs0) ~
for 50 cm blankets

(ii1)
=1+ 1.09 x 1077 x VIS. (radius)?

F(100)
for 100 cm blankets

(1v)
7.  PREDICTED PERFORMANCE OF PRACTICAL BLANKETS
(a)

Blankets with parallel cells

Using the above expressions (i) and (ii) for
the normalised neutron leakage from the blanket,
together with the inhomogeneity factor (iii) and
(1v), the effects of close-packed cellular con-
figurations with parallel cells can be predicted
as in Table II below.

The increase in neutron leakage of 2.4% from
the full density blanket to that in which cells of
60 cm radius and 50 cm depth are arranged in a
hexagonal lattice compares well with the estimate
of Appendix A in which duct transmission of 0.93%
of the 14 MeV neutrons and 1.15% due to neutrons
reflected from the first wall opposite combined
to give a net loss of 2.15%. The agreement is

considered to be fortuitous, however, since
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Neutron current leaving blanket. ratio: cellular blanket | equivalent homogeneous blanket
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Fig.6 Inhomogeneity effect in 100cm thick blankets.

TABLE 11

Net Neutron Leakage from Close-Packed Cellular
Blankets Per Source Neutron

e

Neutron Leakage as
Fraction of Source
Blanket "depth" 50 cm | 100 cm
Full density blanket 0.176 0.063
Homogenised blanket 90.7%
density corresponding to 0.796 0.078
cellular blanket
Cellular blanket 30 cm
radius cells 0.7965 | 0.0784
Cellular blanket 60 cm
radius cells 0.200 0.0795

Appendix A gives no consideration to reflection of
neutrons into the blanket by the iron reflector.
There is also inherent in Appendix A the unwarranted
assumption that the 14 MeV neutron flux falling on
the gap at the first wall is isotropic and, further,
no account is taken of enhanced penetration by
neutrons following paths which cross both Tithium

- 5=




blanket material and gaps. This result would be
applicable to the plane parts of the torus for a
"lobster back" model blanket. The very modest
increase in leakage does not, however, take into
account the effects of neutron leakage at the
intersections between the planes of cells where
much more severe departures from the homogeneous
ideal can be expected.

(b) Non-parallel Cells of Uniform Size

When cells with tapered gaps between them are
considered, the visibility parameter VIS (see
section 3 and Appendix F) is increased. The
effective taper, and hence the value of VIS, varies
around the minor circumference in a manner discussed
in Appendix H. The mean neutron leakage over the
cellular blanket for various cell radii and depths

is evaluated there and summarised in Table III.
TABLE III

Net Neutron Leakage from Non-parallel Cell
Blanket, Per Source Neutron

Neutron Leakage -
Fraction of Source
Blanket "depth" 50 cm 100 cm
Full density blanket 0.176 0.063
Mg?gnxgid fraction in 13.40% 17.7%
Leakage fraction homo-
geneous blanket of same 0.204 0.097
void fraction
Cellular blanket, cells
30 cm radius 0.208 0.100
Cellular blanket, cells
60 cm radius 0.219 0.109

(¢) Non-parallel Cells of Varying Size

A point neglected in deriving the values in
Table III is that mentioned already in section 3(c),
viz that it is impossible to achieve a close-packed
hexagonal array of cells of uniform size on a
toroidal surface. In Appendix H the arguments ara
further extended to the case of a hexagonal array of
touching cells on the toroidal surface, whose radii
increase around the minor circumference from the
hub to the tread side, considering the torus as a
tyre. The resulting mean neutron leakage from the
blanket is as shown in Table IV.

8. FLUX INHOMOGENEITY IN THE REFLECTOR DUE TO
THE CELLULAR BLANKET
From the standpoint of engineering of the

TABLE IV

Net Neutron Leakage Fraction from Non-parallel
Cells of Position Denendent Radius

Neutron Leakage -
Fraction of source
Blanket "depth" 50 cm | 100 em
Lg?gﬁggtfraction full density 0.176 0.663
Mean void fraction in blanket 13.4% |-17.7%
Lg?gzggtfraction, homogeneous 0.204 0.007
Rorged 50 S e T | 0.1 | 0.108
i N R T
Haoge af cel] PONEx Bl %8 | ome| oa08
: igggggsioigﬂgggﬂtgzedepth 13 em | 36 cm

* Defined as the additional depth of cells needed
to return to the full density blanket leakage
fraction.

reflector shield and cryogenic magnet system, the

effects of the gaps between cells in introducing
local hotspots are of crucial importance. A further
case (RAD 80) was run to investigate the flux varia-
tions in the reflector. RAD 80 differed from its
nearest equivalent, RAD 35, (see Table I) in that the
1ithium and niobium cladding in each cell were
homogenised to economise on computer storage.

Immediately above the 91 blanket cells was a very

thin iron layer containing iron discs (rods in the

SPECIFIC connotation). The discs were of the same
radius and on the same centres as the blanket cells.
The remainder of the 100 cm thick iron reflector lay
above that. SPECIFIC gave the fluxes in the discs
and in the iron between the discs separately, the
latter corresponding to the outer end of the gaps in
the blanket. The ratioc mean fluxes "behind" the gap

to mean flux behind the blanket cells was 2.40 £ 0.2

for 14 MeV neutrons and did not differ significantly

from this value at other energies, suggesting that

a large part of the streaming down the gaps is of

low-energy neutrons emitted by the opposite first

wall. This gives an upper Timit in this case for

the inhomogeneity of the fluxes and therefore local

heating and damage rates in the reflector. Consider-
able smoothing out can be expected for greater

penetration into the reflector and shield as a

consequence of neutron scattering and geometrical



factors.

9.  IMPAIRMENT OF TRITIUM BREEDING

A factor of considerable interest to the fusion
reactor designer is the tritium breeding ratio.
Table V shows the breeding ratios from both the
Lis(n,nT) and the L17(n,n‘uT) reactions as well as
the neutron leakage fraction for idealised fu]i
density "onion skin" blankets of 50 ¢m and 100 cm
depth. Clearly there is a 1link between these
parameters. Neutrons leaking from the blanket are
no longer avai]ab]g to it for tritium breeding. On
increasing the blanket depth the fall in leakage
fraction from 0.245 to .078, i.e..0.167, led to an
over-all breeding ratio increase of 0.23. A one
to one correspondence between neutron Joss and
breeding loss is not observed since some of the
neutrons leaving the blanket are of high energy
and could have taken part in the L17(n,n’uT) reac-
t{on which breeds tritium and leaves a secondary
neutron still able to breed via the Liﬁ(nuT)
reaction. Since the spectrum shape as calculated
at the outer end of the gaps in the blanket is
similar to that behind the cells it is reasonable
to assume that the neutrons Jost through the gaps
and by the density reduction effect are responsible
for a breeding loss in the same proportion. The
breeding loss is therefore .230/.167 = 1.38 times
the increase in neutron leakage from the blanket.

TABLE V

Neutron Leakage Fraction and Tritium Breeding, T,
in _Infinite Cylinder "onion skin" Model Blankets

Cica Blanket Neutron

No Thickness Leakage Tg T T
cm Fraction

OIL A 50 0.245 .008 | .73 | .64 | 1.38

0IL B 100 0.078 .002 | .86 | .75 | 1.61

10.  CONCLUSIONS

Calculations carried out on blankets compris-
ing lithium filled niobium cells of practical
dimensions have shown that the extra neutron losses
incurred as a result of discarding the original
"onion skin" concept for a cellular design are not
disastrously large. It is clear that for all
reasonable cell radii the effect is mainly due to
the reduction in blanket mean density. It has been
shown that for a model with cells of radius ranging
from 30 cm at the hub side of the torus to 60.5 cm
at the tread the increase in neutron loss is only
/3 greater than that resulting from the exercise

of reducing a homogeneous "orion skin" blanket to the
same mean density as the cellular one. This leads

to a fall in the tritium breeding ratio which can be
compensated by an increase in depth of the cell. On
this basis for blankets 50 and 100 cm deep with void
fractions of 13.4% and 17.7% the compensating depth
increases would have to be about 10 cm and 29 cm
respectively. These are considerable increases,
especially in the case of the 100 cm blanket, which
might be necessary if flibe were to be used as a
breeding material. Fortunately, however, it has
always been recognised that blankets would be prone
to loss of breeding performance by virtue of
inhomogeneity introduced by injectors, divertors,
etc, as well as the gaps between cells, and reference
reactor designs have always been prepared with some
allowance for this in hand. These allowances, amount-
ing to 15% (i.e. T = 1.15) in UKAEA designs, are
adequate for the examples above, which, for their
nominal depths of 50 cm and 100 cm would have

tritium breeding shortfalls of 5.2% and 5.9% res-
pectively.

A further consequence of blanket inhomogeneity
will be "hotspots" in the reflector and, to a lesser
extent, in the magnet shield. A typical case quoted
in section 8 shows a peak to mean ratio of flux and,
by inference, heat deposition rate of 2.4 across
the reflector material immediately behind the
blanket. Further calculations will be necessary to
explore the way in which this is smoothed out as a
function of depth into the reflector and magnet
shield and determine the additional depth of shield
required to keep the nuclear heating in the super-
conducting coils at an acceptable Tevel.
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APPENDIX A

Neutron Transmission between Cylindrical Blanket
Cells,

Approximate Calculation

Consider a nest of cylindrical cells comprising
a toroidal fusion reactor blanket < , which touch
each other along adjacent sides as in Fig. 1.,
leaving a three cornered cusp shaped gap between
them whose axis points towards the minor axis of
the plasma. At point A, at the centre of the eusp
on the outside of the blanket a part of the volume
of the plasma is in view through the gap. This
volume is bounded by a tapering cusp-shaped surface.
If the cells are of radius r and depth h then the
cusp shaped triangle at the first wall end of the
gap, which has an area 0,161 r2, subtends a solid
angle of approximately 0.161 r2/h2 at A. If the
plasma emits neutrons isotropically at S n cm-3 s.'_1
it can be shown that the flux at A arriving from
the plasma volume intersected by this solid angle

is given by

4 - 0161 ¥ S . 2a
- B 4

where 2a is the minor diameter of the plasma,
ie the depth of plasma as seen from A, This is
approximate, becoming in error if the tapered

volume subtends too wide an angle, in which case

the depth of plasma viewed is not constant.

In practical terms this flux is equivalent to a
current since the neutrons have been collimated to a
large extent. Since the cusps occupy a fraction
0.161/&?? = 0,0931 of the area of the outside face
of the blanket, and assuming that point A is typical
of the whole of the cusp'sarea, the neutron leakage
current by transmission through the gaps averaged

over the outer blanket surface is:-

0.161 > S a . 0.0931 )
3

2mh

J =

The neutron output of the plasma is na2$ per
unit length and in the absence of a blanket the
mean leakage current at R, the blanket outer radius,
would be nazs/éﬂRf The fraction of the neutron

output lost by direct shine along the gaps is thus

2 , .
0,161 I‘2 S a . 0.0931 . 2R = 0.00477 r2R' (Vi)
2rh ma S h2 a

Let us insert typical values, h = 50 cm and a
plasma filling 80% of the torus minor radius, giving
a = 480 and R’ = 650 cm. Then for cell radius/depth
ratios r/h = 15/50, 30/50 and 60/50 the nmeutron
losses are 0.058, 0.23 and 0.93% respectively.

So far we have examined the loss of 14 MeV
neutrons from the plasma. In addition neutrons

reflected from the front wall opposite stand a

chance of being transmitted down the gaps. The

flux at the front wall, excluding the 14 MeV
uncollided flux is~1.04m?8 n em 25”1
p

typical of a lithium blanket with a
The area of the opposite

wall.
wall visible at A is 0.161 ¥ . (2p + h)2 and

n2
assuming that the flux there is isotropic, the

niobium first

current from that area reaching A, will be

J=0.161 ©° (2p + h)2_;;Q§EEgE§_ 1

) : 4 (2p + n)?
(vii)

which expressed as a mean current over the rear

surface of the blanket, and compared with the plasma

neutron output current at that point as before,

gives leakage rates of .076,0.30 and 1.22% for

r/h = 15/50, 30/50 and 60/50 respectively.

These calculated neutron losses are
surprisingly modest, and in addition do not take
into account the effect of the reflector behind
the cells in returning some of these neutrons to
the blanket. However no account has been taken of
enhanced penetration of the blanket by neutrons
which pass partway through the blanket and then
enter the gap or alternativelj those which travel
partway down the gap before entering the blanket

material.

APPENDIX B
The Monte Carlo Code SPECIFIC II

SPECIFIC II is a Monte Carlo code written in
IBM System/360 Fortran IV for estimating the high
energy neutron spectrum from either a fission
source or monoenergetic source in cylindrical (R,Z)
geometry. It is described fully elsewhere but
the geometrical arrangements possible are briefly

described here.

The problems that can be dealt with comprise
basically a volume enclosed in a rectangular box,
square in plan with height and square dimensions
specified by the user. Neutrons can be tracked in
their travels through the materials in the box by
the programme and data must be supplied to instruct
the programme in the eventuality of neutrons
colliding with the walls of the box:- eg whether
they are to be absorbed either partially or
completely, or alternatively reflected. Within the
box, regions can be specified bounded by horizontal
plane surfaces and cylinders concentric with the
vertical centre line of the box. The materials of
which each of these cylindrical or annular regions
is comprised must be specified and a neutron source

strength can be ascribed to any of them, The

= f =



programme obtains scattering, absorption and other
neutronic data it requires for the specified
materials (generally a mixture of elements in
‘proportions as given by the user) from a comprehen-

sive library tape.

A further facility in the programme and one
that is essential for our use is the ability to
specify rods in any of the problem regions. These
rods were included originally to simulate fuel rods
in fission reactor lattice calculations., A rod
consists of a cylindrical arrangement of concentric
shells (to simulate cladding as well as the fuel)
which fits wholly within a region of the whole
problem volume. The coordinates of the axis of
each rod must be specified as also must the radii
of the cladding and contents as well as the

materials of which they are made.

Once the programme has assembled and digested
the input data, it starts neutrons from the source
region in a random manner with regard to origin
within the source volume and initial direction. It
keeps a score of track length of neutrons crossing
regions as specified by the user while within
specified energy bands. The scoring regions which
can include the rod regions, need not necessarily
coincide with the material regions. After the
tracking is completed the scores can be printed out
in a choice of formats and integration of various
chosen cross-sections over the neutron energy
spectrum in each of the scoring regions can be

undertaken.

APPENDIX C

Angular Distribution of Neutrons arriving at the
First Wall

In toroidal geometry tﬁe angular distribution
about the normal to the first wall with which the
neutrons arrive from the plasma is a function of
position around the minor circumference. The
derivation of this angular distribution has been
carried out by integration at 3 points, viz at the
tread A, at the sidewall B, and at the hub side of
the torus C in Fig 7(a). It is discussed in this
Appendix for the sidewall position B, on the top of
the torus. TFig 7(a) represents part of the torus
and the plasma inside it. BD represents the tangent
to the minor circumference at B, In order to obtain
the angular distribution with respect to ‘the normal
double integration is performed numerically. The
basic step in this is to select a vertical plane
through B at an angle ¢ to the minor section of
the torus. This cuts the torus and the plasma in

the dotted curves as shown. The actual shapes are

Angular distribution
at point B’

4= Synthesised distribution” ~=
(appendix C)

Flux per steradian - arbitrary units

0 ) N N Y (RRTI (VR |
0 10 20 30 40 50 60 70 80 S0

8 = angle 1o the normal of incident neutrons (degrees)

Fig.7 Angular distribution of neutrons arriving at the first wall.

only 2-dimensional since they lie in the vertical
plane. Fig 7(b) shows such a section. Within

the plane the shapes are given by easily derived
4th power expressions. A vector drawn at an angle
© to the normal as in Fig 7(b) cuts the torus
section in either two or four roots, while it cuts

the plasma section in zero, two or four roots.

Logical switching is used to determine which parts
of the plasma are to be included in the integration.
For instance the chords EF and JK are valid parts
while GH is not since a direct line of sight to B
passes through the torus wall. The contribution
of neutrons emitted by the element of plasma
volume along the chord EF is therefore added into
the computer storage bin appropriate to the angle
6, and the integration with respect to g carried on
by incrementing © by a small amount and repeating
the logical decisions governing the line of sight
criteria. The resulting distribution for a torus
with major and minor radii 17.8 m and 6 m respect-
ively and a plasma radius 80% of the minor radius
is shown by the solid curve in Fig 7(c).

Without carrying out extensive modifications
to SPECIFIC, it is not possible to produce an
anisotropic angular source distribution. The
shape of the required distribution can be
simulated fairly closely however, by the arrival
directions at B of neutrons emitted isotropically
by a thick disc as shown in Fig 2. It can be
shown that a disc of radius R and thickness b

situated a distance a below point B will produce
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an angular flux distribution: ¢(9) about the

normal given by

¢(g) = E;EEEEE in the range 0<8 < 1;a=_m_1;%E
and #(p) = 4% (E%;E - E%; B) in the range
tﬂn_l;% <8< ‘i.‘.euu"1 %
and 4(g) = 0 for 3>-tan—1 %

By fitting a and b relative to R the required
distribution can be approximated well, as shown

by the dotted curve in Fig 7(c).

APPENDIX D
The SPECIFIC Model

The model shown in Fig 2 has been chosen to
represent part of the blanket, embracing a large
enough number of cylindrical cells (91) to obtain
representative conditions over a central region.
Appendix C explains how the angular distribution
of 14 MeV primary neutrons incident on the first
wall has been represented. Towards the edge of
the 91 cell array the angular distribution of
arriving neutrons will depart from that produced
at the centre by the cylindrical source. In
particular while it will be accurate for neutrons
arriving normally to the first wall, the neutron
current per steradian arriving at an angle to the
normal will fall short of that required towards
the edge of the array, though there will be some
numerical compensation in that extra neutrons will
arrive at larger angles than the cut-off angle in
Fig T(c).

most of the cell array.

These shortcomings are not serious over
Having simulated the
source angular distribution adequately over most
of the cell array, the next step is to ensure that
the spectrum of lower energy neutrons at the
underside of the blanket, ie at the first wall, is
representative. To achieve this all the neutrons
leaving it must be reflected back into it with the
same angular distribution and energy spectrum. A
horizontal reflecting plane is specified as the
lower problem boundary. This reflects at the same
angle neutrons leaving the first wall close to the
normal direction which would be the most penetrating
when falling on gaps in the first wall at the
opposite side of the minor diameter of the torus.

To conserve all the neutrons leaving the first wall
of the 91 cell blanket array the sides of the square
box defining the problem space are also made
reflecting. This in turn introduces problems with
the source specification since side reflections
would bring neutrons from unwanted directions.

This was solved by writing into the data library a

medium code named FAB (EFSt Absorber) which has

the property of absorbing 14-ﬁ;V neutrons while being
transparent to all others, By placing this around
the radial boundaries of the source cylinder
unwanted 14 MeV neutrons are absorbed.

The source volume was specified with a radius
equal to the across flats dimension of the 91 cell
array. This prevented neutrons from the source
streaming up the gap as at point B in Fig 2 and
entering the sides of the outermost cells. The
region encircling the blanket is composed of an
neutrons leaking sideways from the multi-rod region .
representing the blanket cells and any neutrons
coming directly from the source region and therehy
prevents by-passing of the blanket. Below this
ABS region lies another region similar in plan but
very thin, consisting of SCAT, a material that has
a very high scattering cross-section but with zero
absorption at all neutron energies. This serves
the purpose of reflecting low energy neutrons back
into the region below the blanket, thus keeping
the first wall spectrum representative. A further
ring of ABS was placed over the multi-rod region
with an inner diameter equal to the across flats
dimension of the 91 cell array, thus sealing off
access of neutrons to the reflector other than through
the blanket cells or representative gaps between
the cells. The upper part of Fig 2 shows the
disposition of these regions, the lower part of
Fig 2 showing an isometric diagram of the source
volume and part of the 91 cell array.

The performance of a particular arrangement of
the blanket cells in breeding tritium could not'be
judged directly since radial leakage from the 91
cell array could not be accounted for accurately.

In any case as discussed in section 4 of the main

text a more sensitive parameter is the neutron

current leakage from the top of the blanket cell

array into the reflector. By integrating the
neutron absorbing reactions (nu), (np), (ny) and
—(n2n) over the neutron spectra within the iron
reflector the net number of neutrons leaving the
lithium blanket was obtained. The negative sign
applied to the (n2n) reaction is indicative of the
fact that it produces neutrons which increases the

lower energy flux and enhance the ny capture rate.

APPENDIX E

Volume of Voids in Blankets Composed of Cylindrical
Cells

Cells Around a Straight Pipe

The simple case of prismatic blanket cells of
depth h clothing a straight pipe of radius r as in

Tig 8 will be dealt with first. If the cells are
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Fig.8 Cylindrical cells fitted around a straight cylinder.

hexagonal with their ends close nested and touching
the pipe then their volume is equal to the product
of the pipe's surface area and the blanket depth

ie 27 rh per unit length of pipe. Since the
blanket volume is r (r+h)2— mr2 = w(2rh+h2) the void
fraction is given by na/% (2rh+h2) = n/(2r+n).

If the cells are touching cylinders instead of
hexagonal prisms, their ends cover 90.69% of the

pipe surface and the void fraction then becomes

wh® + 27rh(1-.9069

ﬂ(2rn+h2)
_ h + 0.1862 r (viii)
(2r+h)

V.F. =

Cells Around a Torus

When cylindrical cells are positioned end-on
against a toroidal surface, two complications
ensue. Firstly, in order for each to maintain
side contact with 6 neighbours the radius of the
cells must vary around the minor circumference. It
is assumed that in this distorted hexagonal lattice
the figure of 90.69% for the area coverage still
holds. Secondly, side contact between cells occurs
at the toroidal surface only between the tread and
the sidewall. TFrom the sidewall to the hub the
opposite curvatures of the toroidal surface lead to
side contact being made at their outer ends between
horizontally adjacent cells and at their first wall
ends for neighbours around the torus minor periphery

as in Fig 4,

For the region between the sidewall and the
tread (n/2< w<q in Fig 4) the toroidal surface has
positive curvatures in both minor and major
circumferential directions. These are réspectively
% and -cos m/(R-pcosm). Adding these we obtain the

combined surface curvature ¢ = (R-2p cos y)/(R-

pcosw) and the y dependent void fraction may be
derived by substituting % for r in the case of
cylinders covering a straight pipe in equation (viii).
Over the range g < @<m the cylindrical cells

occupy a volume given by the product of their

depths and 0,9069 times the surface area of the

toroid from sidewall to tread, viz.
+9069 | 2r(R- peos u) pdo = 5.70 1 (€ Ry + %)

(ix)

(7= P

In the range o<1w<:g the cells touch their
horizontal neighbours at the outer ends as in

Fig 4 and a gap develops at their first wall end
such that the ratio of diameter to pitch ( 1.0 at
the outer end) becomes (B-(p+n) cos w)/(R- pcosw).
Instead of a fraction .9069 of the torus surface
being covered by cell ends, it is reduced by this

diameter to pitch ratio (a function of w). Over

the range o <@<T the cells occupy a volume

A m

h x 0.9060 x 2n (R-Dcosw)(R—(P+h jeos ) pdw
(B poos w)
(x)
= 5.70 n(g Rp -pz_pn) (xi)

Combining (ix) and (xi) the total volume of
blanket cells over the range o < w< is Vﬁells
= 5.70n (nRp - ph) while that of the blanket space
ove; tze sam; range ;s Vblanket = n2R(p +h)2
- a0 Rp© = R(2ph+h ).
void fraction for different blanket depths are

Numerical values of the

given in Table III,

Improved Packing of Cells on the "Inside" of the

Torus

In the context of a hexagonal packing of
blanket cells rather than the sduare array of
Fig 4 the above assessment is pessimistic over the
range o< w<1§ since the gaps between horizontally
adjacent cells at their first wall ends afford the
opportunity to bring the neighbours in the minor
circumference or "vertical" direction closer as in
Fig 9(a). Alternatively if the "hexagonal" array
of cells is orientated as in Q(b) then the gaps
between outer ends of adjacent cells around the
minor periphery give opportunity for closing up or
"nestling" the horizontally adjacent cells. It is
clear that the angle between "vertically" adjacent
cells is greater in Fig 9(h) than that between
horizontally adjacent cells in Fig 9(a) provided
p <R -p -h. The arrangement represented by Fig
9(h) offers more scope for nestling of the
horizontal neighbours and thus will achieve a
higher packing of cells into the blanket zone. The

packing fraction of cells in the blanket volume is

- =



Plasma axis

’l:dinor circumference

Fig.9(a) Cells on a toroidal surface.

Plasma axis

‘Minar circumference

Fig.9(b) Cells on a toroidal surface (alternative orientation).

influenced by the ratio of the area of the cell end
to that of the lattice area ABCD, in which the
separation CD plays a crucial part. Consider the

plan view in Fig 9(c) in which O represents the

Locus of axis of cell C touching

Yy cells AR B
c
first “’““—“'Ei‘g‘
X
—p—
/ Axis of cell touching cells
[} A & B at first wall end

Fig.9(c) Plan view of adjacent cells.

intersection of the axes of cells A and B with
the plasma axis. Cells A and B are superimposed
on the plan. The axis of cell C which touches
both A and B is a tangent to an ellipse centred at
0 with minor and major axes equal to D, the cell

diameter and 2p respectively, whose equation is

2 2
L3 o * EE = 1 which when differentiated
(20)° D gives (xii)
2
= D
%ii - — (xiii)
4:p Yy

The tangent to this ellipse at the front wall point
P defines the axis of a cell which could be placed
against cells A and B. The poiﬁt X‘, (fig 9(c)) at
which the tangent to the ellipse intersects its

major axis is given by

1
X =x —y%$ » which for x = p (cells (xiv)
touching at the first wall)
' 402 2
givesx=p+—p—3L2=
P D
2 .
p+tp(1- P ) =4 (xv)
408

From this it is clear that for an aspect ratio
exceeding 4, cells can be arranged in a hexagonal
configuration with each cell touching 6 neighbours
at the first wall end over the whele toroidal
surface. For a lower ratio the cell C will touch
cells A and B either at the level of the rear wall
or at some intermediate point part way down the
cell.
be maintained for ¢ > ¢ where cos ¢ = o4 (g is

b P> ¥

A close-nested first wall configuration can
the aspect ratio). Over the ramue
cell C touches cells A and B at points aleng their
length and for ¥ > w™>o
wall., ¢

1
for X in (xiv) and deriving ¢ from the relation

they touch at the rear

is obtained by setting x = p + h, solving

1
cos ¢ = R/X . The values of ¢ and ¢ are given in
Table VI.
obtained by calculating the g dependence of the

The volume occupied by the cells is

'separation of horizontally adjacent cells (CD in

Fig 9(b)) and incorporating this in equations (ix)
and (x).

and B at the rear wall end and the volume of cells

In the range <@ < VY cell C touches A

is
]

vV - .9069n J 2 (R-(p+h)cosw) pdw
0 (]

(xvi)

In the range ¢ <y <g the cells touch at the front

wall (ie CD takes its minimum value) and an equation
of the same form as (ix) applies:
o i}
V> - .9060n °
¢ $

{

J 2 (R- pcosw ) pdy (rvii)
In the range < w< ¢the separation CD varies with
the point of contact of cell € with celis A and B.
The "(p+n)" term in the integrand in equation (xvi)
must be repiaced by x the distance of this point of

contact trom the plasma axis, given hy

x=de 4P s (xviii)
X
whereupon the volume occupied by cells in this range
becomes
¢ ¢ 15 cosz
vJJ = .0089h o (R- —L——WR ) pdo (xix)
L i
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The contributions from the several ranges of  in
(ix), (xvi), (xvii) and (xix) are added to obtain
the total cell volume in the torus. Table VIgives
-the voidage associated with each configuration of

cellular blanket

Table VI Voidage in Cellular Blankets

Voidage Fraction

Blanket Depth 50 cm 100 cm

Cellular Blanket, on plane

surface 9.3%

9.3%

Cellular Blanket on
cylindrical surface of
radius 6 metre

12.9% | 16.3%

Cellular Blanket on toroidal
surface, major and minor
radii 17.8 m and 6 m

13.7% 17.8%

Cellular Blanket on toroidal
surface with "improved
packing" or nestling as in
Fig 9(b)

13.4% 17.7%

Angular range over which
cells touch horizontal
neighbours at first wall

end w >

42.1 42,1

Angular range over which
cells touch horizontal
neighbours at rear wall

end w <

36.5 30.1

APPENDIX F
Calculation of Line of Sight Visibility through

Tapered and Parallel Gaps

In considering the neutron leakage through gaps
between cells in the fusion reactor blanket account
must be taken of their complicated geometry which
arises as a result of clothing a toroidal surface
with parallel-sided cells. The tapered gaps
cannot be modelled exactly with the SPECIFIC Monte
Carlo programme, which at present can only deal with
parallel arrays of cylinders, The approach adopted
is to set up such a model as in Fig 10(b) whose line

of sight gap leakage characteristics have been

Hatch area accassible
fo neulrons from point P

P ‘p ot

{a) Cells with tapering gaps (b) Parallel cells

Fig.10 Practical and representational arrangements of blanket cells.

estimated to be the same as those in the practical
case Tig 10(a). The line of sight leakage is
calculated purely from the geometrical factors

involved in the penetration of neutrons from the
first wall end of the blanket to the rear. No
account has been taken of attenuation effects on
neutrons passing part-way through blanket material
and part-way through a gap in establishing equivalent
parallel and tapered configurations. It is felt
that direct line of sight provides the most relevant
criterion since it accounts for the most penetrating

neutrons.

In estimating the line of sight leakage through
a particular gap configuration two parameters must
be specified, ie the ratio of the cell diameter to
the pitch between adjacent cells at the outer
and first wall ends of the cells y and B respectively.
The visibility or VIS is then defined as a double
integral, being the integral over the gap in the
first wall of the area of the rear wall gap visible
to it. The assumption that the neutron leakage
through a gap is proportional to the value of VIS
hinges on the twin assumptions that (a) the neutron
flux incident on the first wall is isotropic and
(b) the solia angle subtended at a point at one end
of the blanket by the gap at the other end is
proportional to the area of gap visible. This will
only be true if the gaps are small relative to the

blanket depth.

TFig 11 illustrates the configuration of
adjacent cells in plan view, as viewed along the"
axis of the tapered gap centred at 0. The full
circles represent the first wall ends of the cells
while the dotted circles represent their rear wall
ends. Strictly the plan view of a tilted circular
disk is an ellipse but for the tapers encountered in
practice.the discrepancy is small. The integration
is performed over the unit gap FGHJKL at the first
wall end of the blanket. This is sub-divided into
elemental areas rdg by dr with co-ordinates (r,e).

One such elemental area at the point A is visible to
the area ORSTUVW at the rear wall end of the blanket.
The integration is not carried out on the analogous
shapes along the other two legs of the gap (ie through
FG and KL) since by symmetry they will be included
during the integration with respect to r and a

Points R and W on the dotted
circles have co-ordinates g = * "/3 while AS and AV
If AX is the

tangent to the full circle ie the first wall end of

around the point O,
are tangents to the circles from A,

the‘cell, XV represents the line along the curved
cell wall just visible by line of sight from A. By
constructing VU parallel to AX we ensure that it

represents a line in space lying both in the plane

- 13 -



Full lines represent first wall ends
ot blanket cells while dotted circles
represent their rear wall ends.

I
[

Fig.11 Plan view of a non-parallel array of blanket cells.

of the blanket rear wall and in the AXV plane. VU
thus represents the limiting line of visibility from
The area ORSTUVW is

computed as the appropriate algebraic sum of areas

A, ST is obtained likewise.
of triangles and sectors. The numerical integration
with respect to T and @ is carried out several times
sub-dividing the dr and dp steps and repeating until

the integral converges to a specified limit.

The integrations have.been performed for a
range of values of ¢ and g, The condition ¢ = B
corresponds to parallel gaps (which can be modelled
by SPECIFIC), while g = 1 is appropriate to cells
touching at the first wall end, diverging from each
Fig 3 shows the results for

The

other at the rear.
computations embracing these two conditions.

dotted line in Fig 3 illustrates its use. An array

of non-parallel cells touching at the first wall, with

a cell diameter/bitch ratio ¢ = 0.90 at the rear
wall can be simulated by (ie has the same value of
VIS as) an array of parallel cells with a diameter/
piteh ratio of 0.945.

APPENDIX G

Normalising the SPECIFIC Results

Because of the loss of 14 MeV neutrons inherent
in the method adopted for generating the correct
incident angular distribution the absorption rate of
neutrons in the iron reflector does not give a true
picture of their penetration of the blankets when

normalised to the total source. However a normalisa-

tion is possible via the neutron current incident
normally on the first wall. Referring to Fig 2 and
the dimensions contained therein we note that the

volume strength of the cylindrical source is given by

4
S = 5 o
223.2 x 1 x (291.54)

-3
cm

(xx)

The depth of source viewed normally by the first wall
is 223.2 x 2 (because of the reflecting boundary).
The neutron current penetrating the blanket at the
centre is given by J/}(291.54)2. The current
penetrating normalised to a 1 cm depth of plasma

generafing 1 neutron per cm3 is thus

o1 223.2 x » x (201.54)% _ 1
m(291.54)% 10* 223.2 x 2
= 5x 10_5 J neutrons (2xi)

In a fusion reactor torus of minor radius 6m, with a
plasma radius of 4.8 metres, the outer surface of the
blanket is situated at 650 cm or 700 cm. from the
plasma axis for 50 and 100 cm blanket depths
respectively. The first wall views a normal depth
of 960 cm of plasma (across its minor diameter). To
maKe this equivalent to a view of a 1 cm depth of
plasma emitting at 1 n cm™ would imply a source

strength of 1/960 n i making the total source

960
The total neutron less from a 1 cm long

equal to m 4802 for a 1 em long section of the
plasma.

section of the blanket is then 5 x 10_5 Jx 27 x

= M=



(650 or 700), giving the neutron loss as a fraction

of the production in the plasma as

960 x 5 x 10°°J x 27 (650 or 700) = 2.71 x 10~ J

o x 480° for 50 cm blankets
2.92 x 1074 g
for 100 cm
blankets.
APPENDIX H

Enhanced Neutron Penetration in Cellular Blankets

In section 6 of the main text, the inhomogeneity
factors F are derived for 50 cm and 100 cm deep blan-
kets in terms of VIS the visibility factor for
tapered gaps (see also Appendix F). The taper has
two mutually perpendicular components due to the
different surface curvatures of the toroid, given by

Cmin = 1/p around the minor circumference and
Chiaj = —Z €058 ip the major circumferential

R - pcosw
direction. Both are positive between the sidewall

and tread. Adding the curvatures and dividing by
two gives the curvature of the spherical surface
equivalent in terms of the volume fraction occupied
by the tapered gaps. The radius of this equivalent
sphere is given by:

2 _ 2 p(R - pcosw)

o= (1)
Cmin + Cpaj (R - 20cosu)

For gaps between cells of depth h, touching at their
first wall end (the condition B = 1, see section 3
and Appendix F), the parameter a, the cell diameter/
pitch ratio at the outer end, is given by:

h h
orl-a-= = —
r+h T

a =
r+h .
h(R - 2pcosuw) )

2(R = pCOSu!)

(for 50 cm deep cells, R = 1780 and p = 600 cm,
1-o is approximately .04 and .05 at the sidewall
and tread respectively). The lower curve in Fig 3
shows VIS as a function of o when g = 1. For «a
in the region 0.95 to 0.96, the curve can be
approximated by the expression:

156h (R - 2pcosw)
p(R - pcosw)

VIS = 4.83 + 312 (1-a) = 4.83 + (i11)
We can define an enhancement factor A = F - 1.0 from
the inhomogeneity factors F(SO) and F(]OO) from

equations (ii7) and (iv) of section 6 in the main

text. The enhancement factor per unit area is given
by: ’
. & 1.14 x1076.vIS. (cell radius)?
v 4x2 Re i 472 R.p

N.B. The coefficient 1.14 x 1076 is appropriate to
50 cm deep cells.

Inhomogeneity Factor for Uniform Cells

Integrating this. expression over the torus wall
area, taking into account the dependence of VIS
from (iii), we obtain the area weighted inhomogeneity
factor:-

F=10+2 L: A”.27(R - pcosw)dw

, 114 x 106(cell radius)?

= 1.0 :
) " (xxii)
156 h
JO (4.83(R-pcosw) + =2 (R - 2pcosu)} du
= 1.0 + 1.14 x 10-6(cel1 radius)2
(xxiii)

. (4.83 + 156 h /,)

F is given in Table VII, with the appropriate co-
efficient substituted for the 100 cm_deep blanket
from (iv).

TABLE VII

Inhomogeneity Factor, F, for

Uniform size, non parallel cells

Inhomogeneity
Factor, F
Blanket depth cm | 50 { 100
|
Cell radius 30 cm | 1.018 | 1.030

|
Cell radius 60 cm | 1.073 1.121

Inhomogeneity Factor for Varying Cell Size

~ In order to pack a pseudo reqular hexagonal
array of cylindrical cells on the torus surface,
their radii must scale in proportion to their
distance from the major axis of the torus, i.e.
R - pcosw. Thus, for cells of radius Y at the hub
side of the torus the general w dependence of the
aell radius y(w) is:-

¥{w) = Y(R - pcosw)/(R - p) (xxiv)

Taking this expression for the cell radius and inser-
ting it in (xxii), where it must be included within
the integral expression, we obtain the inhompgenei ty
factor weighted with area, cell size and VIS over

the torus area:-

1.14 x 1078 y2

m
F=1.04+ J0{4.83(R - pcosw)3

RY.
™RA(R-e) (xxv)
v DM g o BscusidiR - seose) dy
n
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: o6 g2
= 1.0 + lﬂ"—w——;— (4.83(xR3 + > wRo
TR(R - o) 2

156h
P

+

5
(1TR3 + 7 _"sz)}

This is evaluated below in Table VIII.

TABLE VIII

2y

(xxvi)

Inhomogeneity Factor F for Variable Size

Inhomogeneity Factor, F

Blanket depth cm

Cell radii
30 - 60.5 cm

Cell radii
45 - 91 cm

50

1.052

1.117

100

1.088

1.197
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