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ABSTRACT

The diffusion equation governing the penetration of magnetic flux

into a conductor is solved for an exponentially time varying field which

is:
i} parallel to a slab of finite thickness,
ii) parallel to a cylindrical conductor of rectangular cross section

iii) parallel, and
iv) perpendicular to a cylindrical conductor of circular cross section.
In each case expressions for the eddy currents and resulting energy

dissipation in the conductor are derived.
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Introduction

Fusion reactors designed on present day technological capabilities
incorporate a cyclic sequence of ignition and shut down. In a recent
report(l) pulsed field losses were calculated for a composite conductor
which might be used in the toroidal windings of a large Tokamak experiment.
In estimating the eddy current loss in the copper matrix the need arose
to solve the diffusion equation which governs the penetration of flux

into a conductor of finite resistivity.

Eddy current problems have been usually solved for a sinusoidal
variation of the external flux and in the limit of high resistivity. In
view of this it seemed desirable to record in one report the mathematical
solution of the magnetic field diffusion problem in pulsed fields together
with the resulting energy dissipation in certain geometries for which the

diffusion eguation is readily solved.

1l - The diffusion equation.,

Maxwell's equations for a conductor are:
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Making use of the vector identity:
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VxVxE = V. (V. B) - v° B (1-2)

Maxwell's equations reduce to:
-y —= = 0 (1-3)
If the displacement current term (ME——= ) in egn (1-3) is neglected,

the equation is converted from a wave to a diffusion equation:



v B-LEZ =0 (1-4)

It has been shown(z)that the diffusion equation may be applied with
fairly accurate results for time scales greater than (T=X/C) where "X" is
a typical dimension in the direction of flux diffusion and "C" is the speed

of light. Assuming X = 1 cm then T = 10 ~'s, so that for all practical

purposes egn (l-4) is a valid approximation.

The eddy current distribution can be calculated from egn (1-1) which

after neglecting the displacement current becomes:
v ny
VxB = ud (1-5)

The average energy dissipated per unit volume of conductor is

given by:

(1-6)

o 2
o= f ap F OB
5 v v

where "p" is the conductor resistivity and the integration is calculated

for a volume "V".

For a field which is parallel to the conductor length a solution
of eqn (1-4) can be found for the following conductor geometries: a) a slab
of finite thickness, and b) a cylindrical solid with either a rectangular
or circular cross section. It is also possibie to solve egn (1-4) for
a field perpendicular to a circular cross section solid conductor. Problems
for which eqn (1-4) is not readily solved include: a) finite versions of
the above gecmetries and b) field perpendicular to a cylindrical solid

with a rectangular cross section.

In the following sections the solution of the diffusion egquation

is given for an exponential rise in the external field of the form:

B () =B (1-ePh (1-7)

The solution in this case takes the following form:

' q -pt -q t
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where fn = eigen functions of the diffusion equation,
Cn = constants,
and qn = rates of decay of transient magnetic fields in the conductor.

The solution of egqn (1-4) in the case of a sudden field disturbance can
be obtained from egn (1-8) by taking the limit p _ _:
.—qt
P n
;. B(r,t) = B-2Cf e O (1-9)
n nn
This is the more usual starting point in the solution of a diffusion
equation(3)since the solution for any other rate of change of external
(4)
field can be deduced from egn (1-9) by the use of Duhamel's theorem.
This theorem states that if the applied field varies as g(t), the solution
is:
% _ t -q (t-t")
B(X,t) = - 2C.f f g(t') q e at'  (1-10)
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Bn exponential variation of the external field is chosen in this
report because it is considered relevant to the majority of expériments

in the Culham Laboratory.



2 - Slab of thickness 2a.

Field parallel to the surface.
A
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3 - Solid conductor, rectangular

cross section (2ax2b). Field y

parallel to conductor length. 2b
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4 - Solid conductor, circular

cross section of radius (a).

Field parallel to conductor
axis.
i
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Jo and Jl are the zeroth and first-order Bessel functions.
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5 - Solid conductor, circular Az

cross section of radius (a).

a
Field perpendicular to 0
conductor axis.
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6 - Conclusions and comments.

i) The energy dissipated per unit volume of conductor can, in general,

be expressed as: 5

B z : 1
W = — An__TI— (6-1)
20 n 14 2B
P
where An is a numerical factor which depends on the shape of conductor

(slab, rectangular or circular cross section). However;Z:An depends only

on the field orientation (parallel or perpendicular to the conductor length)

% B = 1 for the parallel field case,
= 2 for the perpendicular field case.
ii) The loss in the case of a sudden field disturbance (p + =) is given
by:
82 B2
W” = — and W_L = (6-2)
2y u
iii) The energy dissipated per unit volume of conductor due to a square

pulse of duration (T) is given by:

B2 g T
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iv) A reduction of eddy current loss is achieved by ensuring that p < q,

and hence p < qn

32 pPA
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A fairly good estimate of the loss in this case is obtained if

el P
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This gives an over-estimate of the loss but is in the right direction

for design purposes.

v) In the case p > q the loss is given by:
2 ;
B P i fp
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q. n
2u i+l n qi+l

where "i" is defined by the inequality:

<
9 P <9

and = 1 for the parallel field case,
f = 2 for the perpendicular field case.
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