CLM - R 15

CLM - R 15

This document is intended for publication in a journal, and s made
available on the understanding that extracts or references will not be
published prior to publication of the original, without the consent of the
author.

CULHAM L;-.aoamoﬂ
LIBRARY

15 MAR 1862

e

United Kingdom Atomic Energy Authority
RESEARCH GROUP

Report

MAGNETIC FIELD CONFIGURATIONS
IN RIGID TOROIDAL CONDUCTORS
CARRYING TIME-DEPENDENT CURRENTS

Part |. General Theory.

G. D. HOBBS

Culham Laboratory,
Culham, Abingdon, Berks.
1961



@- UNITED KINGDOM ATOMIC ENERGY AUTHORITY - 1981
Enquiries about copyright and reproduction should be addressed to the
Librarian, Culham Laboratory, Nr. Abingdon, Berkshire, England.

U.D.C.
538.122




UNCLASSIFIED
(Approved for publication)

MAGNETIC FIELD CONFIGURATIONS IN RIGID
TOROIDAL CONDUCTORS CARRYING
TIME-DEPENDENT CURRENTS

PART I  GENERAL THEORY

by

Culham Laboratory,
Abingdon,
Eerks.

18th December 1961,

HL62/873 (C.18)

CLit-R. 16



2o

S

4.

De’

6.

l7I‘

. Contents

Introduction

Derivation of the diffusion equations

Boundary conditions

The perturbation expansion

4.1 The equations

4.2 The boundary conditions
Integration of the equations

5.1 Zero order (cylindrical geometry)
5.2 First order

5.3 Second order

5.4 Current densities

Approximations for small and large <

6.1 Small =T
6.2 Large T

Summary of results
Acknowledgements
References
Appendix 1

Tables 12

Page

. N

o o o o o O,

12
14

15
15

20

22
23
24
20
2729



1e Introduction

It has been indicated by many authors .(e.g. Rosenbluth 1958, Copley and
Whiteman 1962) that, in any plasma pinch device, stability should be enhanced
if the magnetic field configurations give rise to currents flowing only in a
thin surface layef, or "skin". Much effort has been expended in the experimental
field to produce and observe such skin currents in both cylindrical and toroidal
pinch discharges. Theoretically it is very difficult to produce a detailed
analysis of this type of experiment, although recently a numerical solution of
the magnetohydrodynamic equations has been' obtained for 5 "theoretical plasma"
in a cylindrical tube (Hain 1981, . Ashby et al 1961). - However no such toroidal

calculations have yet been undertaken.

This report deals with magnetic field configurations in RIGID cylindrical
and toroidal conductors. Although it is probable that a plasma may never under
any circumstances behave like a rigid conductor it is believed that this problem
is still of some interest. It should prove considerably easier to understand the
origins of experimentally measured (or even numerically calculated) field con=-..
figurations if it is possible to draw a cbmparisoﬁ with some more simple system.
It is only in this way that the "non-simple” phenomena can' be separated out and
studied. Thus it must be emphasised at the outset that this report is NOT an
attempt to describe magnetic field configurations in a plasma, but is a descrip;

tion of configurations that would occur in topologically similar rigid conductors.

The report is presented in two parts under separate covers. The first part
describes the general theory and presents the final expressions for the magnetic
fields and current densities. The second part deals with a number of special

examples.-

It should be noted that the calculations in cylindrical geometry have been

done before (Haines, 1959) but are included here for completeness.

2. Derivation of the diffusion equations

The physical system to be studied is a toroidal conductor of minor radius



ro and major radius R carrying a given time—dependent current I(t).. The
torus is assumed to possess a spatially uniform scalar conductivity o(t)
which, as indicated, may be a function of time.

Using M.K.S. units, Maxwell's equations can' be written

curl B = pod, (2.1)
: oB

curl E - ==, (2.2)
‘lv‘ izt UE.,' (2-8)

divB = O, (2.4)

displacement currents having been neglected.

Taking the curl of both (2.1) and (2.8), and using (2.2) to eliminate the
electric field E,: the following diffusion equation for the magnetic field is

obtained

= - —l ’ 2-5
curl curl B HoO: = (2.5)

The coordinate system (r,6,¢) chosen is shown in Fig. 1. The radiiis r and polar
angle © are measured in the torocidal crossésectibn'(0<r<ro;;0<9<2n) relative té
the minor axis, the angle ¢{0<$<2r) being measured about the major axis

(Z-axis in Fig. 1). The derivation of the vector operators "curl" and "div" is
given in Appendix 1.- In'this coordinate system the components of equations
(2.4) and (2.5) become

aBe +'-rcose % - rsin®
90  R+rcos® ' Rtrcos 9

-8
5’;([']31') +

1 .2 9 . OB : sinf ] . OB, : 9B
— — | —(rBg) - —X£1{ ~ —_ - —Li= —TI (2,
rz ge {Br rBy) »69} r(R+rcosh) _[ar(rBe) 69} '“°°-at £ )

91/ - OB | cosb e . OB . OB
i 22 s o il 9 OB.
or r {Eh'(rBe) 69} r(R+rcos@) {’ar(rBe) "“00’_6 ,» (2.8)

where it has been assumed that B = (Br,Be,O) and that g%_E 0 (axisymmetric fields
only).” It will be noted that B¢ has been put equal to zero. This causes little

loss of generality as the only By likely to be of interest, when ¢ is a scalar,

il



is a constant vacuum field which introduces nothing further into the equations.:

At this point it is convenient to introduce dimensionless variables n-and

T where
L (2.9)

1 _di.
B cm— — (2-10) +
K HoTo? f olt)
o

If o(t) is a constant,  (2.10) reduces to
T = t/1,
where the characteristic diffusibh'time To is defined by (Adlam & Tayler 1958)
To = Bolo?0." (2.11)
Finally, by introducing the inverse: aspect ratio df the torus e, = ro/R,:

equations (2.8) — (2.8) can be written:.

e 0B - NE cose . -NEpsind.
il % T I et - IR 2 L et =0 ,. 2.18
ran(“ r) 3  1ltnegcos® T 1+neycosd Bg =0, ( ;)
13 3B,). - epsind. - B - OB |
i 0 e o B alee] ¢4 i . 3
n2 28 { (nB 6) 68} n{1+neycosd) {an(T\Be) 69} ot ' (G182
. a8 4 . OBy EoCOSH 9B, } . 9Bg
e Bl o = -~ ol 2.14
T T\{ {nBg) - a0 } n(1+ne°cose){8n(n89) 0 ot ( )

In addltlon,fto avoid unnecessary repetition of constant factors the fields,

currents, ~etc. will be measured in the following units.-

Current:,
Brit = Ly (Arbitrary)

Current Density:.

Unis = J, = Ig/nrg®.
Magnetic Field:.
I
Unit = B, = =20
2nry



3 Boundary conditions

Before proceeding to the solution of the diffusion equations the necessary
boundary conditions must be discussed.' The first and obvious condition is that
B must be finite for n € 1, all 6 and t. - Secondly it will be assumed that for
t £ 0, B:= 0 everywhere. This restricts the solution to currents I(<) satisfy-

ing the same condition;:i.e. I(t) must rise from zero at or after t = O.

In order to proceed further it is necessary to consider the properties of
the medium immediately adjacent to the toroidal surface.  For the purpose of
this calculation it is assumed that the torus is encased by an infinitely
conducting wall at r = ro{n = 1).- The usual provision of a "slii" in the ©
direction must be made to enable the By flux to enter the torus.: The boundary
condition appropriate to a surface bounded on one side by a medium of infinite
conductivity is B:ﬁ‘= 0,, where ﬁ'is the unit vector normal to the surface.  In

terms of the components of B' this yields the. third boundary condition as
B, =0 at n=1, all 6 and T.

Finally, by integrating equation (2.1) over the cross section of the torus and.
converting to a lihe integral around its perimeter,: the fourth condition is

obtained (units from 82)

n 5
Jz Bg(n=1,0,t)d® = 2rI(t).’

[¢]

Summarizing, the boundary conditions are:

(a) B finite;. n ¢ 1, all 6 and <

(b) B=0;. Tt <0, all 8 andn

(e) B, =0;: n=1, all @ and=

(a) ﬁ"se(n-- 1,0,)d8 = Zal{c);: all <.

0



4., The perturbation expansion

4.1 The equations

For a physically realizable torus the inverse aspect ratio €5 18 always lgss
than unity and .can thus be used as an expansion parameter. Following Laing et
al (1859) the magnetic field is expanded in‘ the form

Bi= By +egBy *+ gg2 By + ... - (4a)
Since the factor epncos® is always less ‘than one, “the coefficients in equations
(2.18) to (2.149 involving (1+eoncosé)—1 can be expanded as power series in eq.-
Substituting for B.and equating the .coefficients of each: power of so'the-follow;

ing sets of equations are obtained.-

Zero Order:.

Ne) 'aBeO ,
a(nBrO) +"a_e b O (4o8)
1 B o} © ®Bpg (
—{= - =0l == 4.8)
T\2 30 {an(n 90) e
c 81 : aB -0 . OBy
-5 i=nBgg)- =01 - - = (4.4)
on n {an %60 ] ot
First. Order:.
%(narl) + %91 + ncoseByg — nsindBgy = 0 (4.5)
1 32 OB sind aB) _: OB
2 31 3 "Ber)- a—eﬂ} - [—(ﬂBeo)“ = O} o i (4.8)
@ 1(79 aBrl - cosB (3 , aBrO}_- OBg1 4.7
" n {an(“ Sl 2 ]" an"Bed ) 5 > : i
‘Second Order:.
- Poz ~ncosBBLg | —nsii : =0 (4.8)
5ﬁﬁn8r2) + % +ncos® { BLq-ncosBB g | -nsind § Bg1-ncosBByg s

1 Xe, oB : 8ind B 9Bg .+ OBpo
= ae{ﬁn—(n 92)_ _r2] [ (nB 91)— —nCOSB{gn*(nBeo)— % .__.ér__r

(4.9)



(4.10)
4.2 The Boundary éonditions
The first three boundary conditions .carry over under ‘the expansion
procedure in a trivial manner, ' and the last becomes
2n _
[ Bogtn=1,8,1)0 = 2ni(x), (4.11)
0
2n 7 _
IBék(nq,e;;c)de =0; k31 (4.13)

since I(t) is a zero order quantity, independent of eg.

B. Integration of the equations

5.1 Zero order (Cylindrical geometry)

In the limit of R—» @ (eo - 0), ‘the zero order equations provide a full
description of ‘the problem and their solution gives the magnetic field.configuf;
ations obtainable in an infinitely long straight cylinder. This solution has
already been studied by other authors (Haines 1959, Adlam & Tayler 1958) but

for the sake of completeness its derivation is repeated here.

From symmetry 8

% - °
and from equation (4.3)

B0 ..

ot

However at t = 0, B,g = O and hence must remain zero for all subsequent times,

i.e.
B.g =0, alln,6 and t. (5.1)
The only equation then remaining is
910 oB
on n on e ot



Since Byp is independent of 6, equation (4.11) can be written
Bgo(n = 1,t) = I(x), (5.8)

or, on taking Laplace Transforms
Bgo(1,p) = I(p). (5.4)
In all that follows the Laplace Transform of any function f(n,0, r) will be denoted
by f(n,e,p) where
#(n,0,p) = faf(n,e,r)e drt.

Using Boundary condition (b), the transform of equation (5.2) is

or
l,B ~ L =
- —Bay = (p + = )Ban = 0. (6.5)
ﬂ an 60 P n2 00
This has a solution, finite at the origin

Bgo(nyp) = A(p)I, (Vpn) (5.8)
where I,{x) ig the modified Bessel Function of the first kind, and A(p) must be

determined from equation (5.4).:

Thus ¥~
B = I(p) =—Fr-. 5.7
go{n,p) (p) I (/5) (6.7)
By the convolution theorem :
Bgo(n,t) = 2 f I(t*)Fo(n, T’ )dt’ (6.8)
[}
where % 545 .
1 I,(Vpn) pr
F (T\ T) 'é'; f m e dp, - (5.9)
Y—i%

the contour y being to the right of all the poles of the integrand.

It is convenient now, although not essential in this case, to make use of a

Fourier—Bessel Series (Bowman 13858)



(=9
I,(/pn) ' and, (apn) :
—_— = - 5.10
21, (vp) z (ptan2)dq(ay) ( )
n=1
where the ¢, are the zeros of J,(a).
Then
4
_ o5} an Jl(ann) 1 Y 1007 1 B
Foln,t) = — o) 51 oy dp }.
n=1 Q aﬂ. Y""’im p n
The bracketed expression is just the Laplace Transform of e_anat.‘
Hence ‘
< q Jy(enn)  —an2?t
andy Lenn/
Foln,T) ;?; T (a e (5.11)
and
and, (mnn) ‘ _
Bao(n,7) = — 22 T (5.12)
where
T ——— _ N
Qqp(T) = JP I(t')e dr . (6.13)
o

That the solution (5.12) satisfies the boundary condition (5.8) is not immediat—
ely obvious due to the fact that the series (5.10) is not uniformly convergent

at n = 1. This non—uniform convergence can be removed in the following way.

Integration of (5.13) by parts gives

T .
I(r) - 1 al  —ap2(t—t’), ,
an (T) dn2 - &—1;2 f a-;' e dt
o]
and
o Jylagn) - Jdylogn)
B = -2l 10— +2 —— D
go(n,T) €3 z SRS S 5 G
n=1 n=1 (5.14)
where T . .
B lel = [

dt’

s]



It can be shown that the second series is uniformly convergent and that the non—
uniform convergence is all contained in the first series, which,written as the

limit as p - 0 of (5.10) pecomes

e
§ ol 1 .15
(Y.nJo(Cln) 2
1
Thus
4 Jy(onn)
Beo(ﬂ,‘f) I.(T)Tl + 2 L anJo(an) a ln(‘[). (5.16)

Now, at n = 1, this obviously satisfies (5.3).

Strictly these Fourier—Bessel Series should not be used at n = 1 and this
can in principle be ensured by formally applying the boundary conditions at
n=1-c¢, where € << 1. However, in practice, the non-uniform convergence can
always be removed analytically so that the problem of numerical evaluation of
fields near n = 1 does not necessarily involve the summation of a very large
number of terms.

5.2 First order

Since Bpg = 0, the first order equations (4.5)-(4.7) reduce to

3 3B
5-(nBry ) * =" - nsind By = 0, (5.17)
178 8 B sin® -3 3B g
5% {éﬁ(nBol)" 55‘"1} - B0 *-z v (6.18)
2 1(® . ®B1]  cos8 B oB

i
=eas {a_n(“Bei)’ -8-51‘} - = 5:MBe0) = - 5;91. (5.19)

Differentiating equation (5.17) with respect to n and combining the result with
equations (5.17) and (5.18) to eliminate Bgq, the following equation for By is

obtained

02 1 0 1 92 6]

—_— - — t — = - — B = B in®. (5.20

[af\" non 2 082 a’f:l e 5 )
Tt is fairly obvious, and can be confirmed by a rigorous Fourier expansion, that
B is proportional to sin® only. Hence, writing By(n,8,7) = by (n,t)siné,

taking Laplace Transforms, and substituting for Bgg from equation (575



: 18 1 = a1t T A
— = - - b = H)—L7r. 6.21
This equation has a complementary function, finite at the origin
B(p)I, (vpn)

and a particular integral

ﬂlz(@n)

1~
g 1P LR

Combining these, and determining B(p) from Boundary condition (c)

sind v . nT, (/p)L, (/pn)-, (/P)L, (vpn)

Buq(n,0,p) = I(p) . (5.22)
1 n . 2/bL,2 (V5)
Again, by convolution
. T
B g, By = SEARD f I(t')F, (n, 1’ dr* (5.23)
(o]

where

eppo. (5.24)

i

b e P ALYBNL ()L, BT, (o)
g Uy Zﬂl I_ 4@12(@)

Here 1t is particularly useful to express the integrand as a Fourier-Bessel

series, for

nl,(Vp)I, (Vpn)-I,(/p)I,(/pn) _ ©  I,(¥pn)

4vp1 ,2(vp) 3p  21,(vp) (o
and using equation (5.10)
E II('/ET\) . i ﬂnJ,_(anT\)'
9p 21, (vp) = (pten2)2do(ey) *
Hence © e " y+io -
; - Gnd 1\ OpT € :
F,(n,1) nzl Tole) {Zni ————-(p+an2)2 dp}. (5.28)
y—i®

The transform here is again well known (é.g. Carslaw and Jaeger 1959) and thus
@

F,(n,t) = :E a?fX(an;J Te—angT (5.27)
n=1 ot%n

10-



G no > J( )
B4(n,0,1) = - _n__i’nl‘_ Typ(T) (5.28)
n b} Jole,
where .
= 2 e ?
Tynl®) = / I(t’)(t—1’)e Gt i) dt’, (5.29)

(0]
Equation (5.28) does converge to the correct value at n = 1. Bgq can be derived

fairly simply now from equation (5.17).

oB ! - 9
5591 = nsinéBgp — a(“Brl)
@
J )
-Zsme[ Z Bitaithi 1(%“) QplT) + Z fl_I}J_.‘_It‘_’..E%I_‘-..T_‘_). T1p(T)
n=1 °'%n
1 o apdy(egn)
Opdalonmn:
: n=1
Integrating,

© - :
Bgy(n,0,t) = ZCOSG[ Z JJ ((:n'ﬂ) Qpp(T) + aanJ(l(_c_t)g_rl)_ T1(T)
n= n) n=1 “°°n

4l
1 o ay,l
: o o
L IR PR
n J (dn
n=1

where ¢ 1is as yet any fupction of n and -.

The boundary condition (4.12) however, together with
2n

/ cosfde = 0O
[s]

demand that g(n,t) = 0 for all n and t.

Hence

(03]
J : 2
Bgy(n,0,7) = 2ncos6 % Ja(opn) Q1p(T) + 2cos6 Z tn*Jo (enn) T1()
oo Jolap) ey Jolap)

(6.30)

2cosh Z anJ (otnr\) 7

n 1
n=1 1’1

inlt)s



It will have been noticed that equation (5.19) has not been used in the deriva—
tion of Byq and Byy, and back substitution provides a useful check on the
solution.

5.3  Second order

In many perturbation procedures much effort has to be expended in  evaluating
second order terms which can subsequently be ignored. It will be shown in later
paragraphs that the second order contributions to B and J. are in general
small and can be neglected.” In consequence, the solution of the second order
equations will only be sketched briefly and the bulk of the algebra omitted.

Differentiation of, and substitution in equations (4.8) to (4.10) yields

the following equation  for Bpo

2 193 1 92 ? 3n . . 9B
— P o e e R i - 3 .
[anz non 102 982  at lﬂBrg 5 sin 26 Bgg EoseBrl sme-a—eﬂ

‘ oB
+ | sin@ Bgy + cos 6 01 (5.81)
90
Since By{n,8,7) = b(n,t)sing
and ' Bg1(n,8,t) = bgi(n,t)coss,
o3
B.icosb — sind —rl -9 (5.82)
[6]¢]
oB
and Bgysind + cos® @@1 = 0.- (5.83)
flence, taking Laplace Transforms and writing
Bro(n,8,1) = boln,t)sin2e, (6.21)
92 19 4 ~ 3 ~ nl, (vpn)
e~ b e bg * ion Dipy oEmEOL 5.95
[@n" non  n2 J W2 z 1P} L,(vp) S

This equation has a solution, finite at the origin and satisfying the boundary

condition (c)

I, /pn)-n2I,(/pn) | 2L, (/Fn)

7T /%) oL ) (5.38)

12.



which on inversion gives

T

3

nBy(n,0,7) = = sin20 f I(t*)F,(n, v—t’)dt’ (5.87)
(]

‘where

Y+_"|_CD .
il ‘1 I,(/pn)—-n21,(vpn) 21, (vpn)
Faln, 1) = e 2 ; 2 PT4t. .
o 2 fy_j_m vVpl, (VD) ' pl, (Vp) e i

Making use of equation (5.10) the first term of the integrand can be written.

IQ(\/I;T]‘)—T‘FI'O(@T\) . f Jo logmi+n2dg(apny) ?.D..z_ : (5.39)
vplL, (VD) ) (p+an2 )Jo(ap) p

In order to evaluate the second term use must be made of a series similar to

(6.10)

LU _ S Bada(Byn) {5453
21, (/p) S o823, (By) '

where the B, are the zeros of J,(B).

Rearrangement of (5.40) gives

M) |3 ) B g,
pl,(Vp) et - BrpHBE 1L, (B p e
whence - .
a(En) Byt Z 2[J, (an)+n2dolapn)] —a 2t
Faln,t) = ji TR e e o I e 0
1 Fods Bnds (Bn) i Jo (&)
(5.42)
and (.8, 7¢) = § sin26 | 3 2J, (B :g: Jo(agn)+n2Jd, (ann) @
Bre(n, i  Bda(By) Tolog)
(5.43)
where T
Qoq () = f Teetjorth T dgr, (5.44)
(0]

Then from equation (4.8) and boundary condition (c) o

3 S 3, (Ban)— Bon I, (Ban)
Bgo(n,8,1) ZCOSZQ gg; ST

an(‘f)

13,



- ®, o (34612, (ann)*+ 1o Jy Lan)= A1412), (@ )
~ = cos20 =i i Ay ()
g n=1 JO(“n)

dan?nd ‘
+—c0329 Z ““" (““") Ty.(%). (5.44)

5.4 Current densities

In a particular problem it is often more instructive to consider the distri- -
bution of current density rather than that of the magnetic fields. This is
easily derived from the fields by use of equation (2.1). Oniy one component of
the current density is non—zero, the ¢ component, and is given by

1 9 OB ‘
"5 2n L © (nBg o0

This applies to all orders of the expansion, hence

o]

-~ op2Jo(ayn)
a = = ¥ oAl g )
¢O(T\,8,T) o Jo(aﬂ) . 111(17) (5 46)

Z oan2Jo (2 n)

Jqﬂ_(ﬂ,e,’r) = ncosQ ey (Oi) an('r)

+ cosf i —U%-wr Qqp(7)
n=1

[o0] .
—cos® ) DR 5 ) (5.am)

Ly Jola)
, 3 S B Bpn) rlncnfn nJ ,
J@(n-,e,r) = - -éc-:0528 HZ‘ —I-I-J_:ﬂ_a.r:ﬁn Ao, (1) + 0529 Z Tln(“
' 2, 70 %2J,( 0 ) ~ (3-2n2) ’Jz(a n)
- —-—-cos28 2 o 1 Tt " - Q1p (7).
n=1 n 2
(5.48)

14,



8. Aoproximations for small and larse =<

The general results obtained in the preceding section are somewhat cumber—
some and devoid of meaning in the form derived. There are however at least
three methods forrobtaining resulis of a comparatively simple nature from which
some meaning can be extracted. The first two are the subject of this section
and involve finding approximate expressions for the fields and current densities
in the limits of small and large- t. The third involves particular analytic
forms of I(t) when a certain amount of simplification can be obtained, and will

be dealt with in part II of this report.
6.1 Small =T

To all orders, the fields and current densities involve quantities of the

form ji o
f, e ™“n
n=1 .
where f_ is usually some collection of Bessel Functions. In general, if

n
@;27> 1, these series are rapidly convergent and can be evaluated without an

excessive amount of labour. However, in the limit of small T, i.e. T<< 1/
1t would frequently be necessary to take very many terms of the series in order
to obtain even an approximate estimate of its sum. It is therefore an advantage
to derive solutions to the field equations that can easily be evaluated for

small t. 3Such solutions can be obtained in the following manner.

Consider a function f(t) and its Laplace Transform ?(p). It can be

shown (Carslew and Jaegar 1953) that, under certain conditions,

Lim f(r) = L™ (Lim $(p)} (6.1)
=0 p—®

-1 _
whers L denotes the operation of inversion.

The Laplace Transforms of the sclutions derived above are:

- Yy L)
Dgo(ﬂ,p) I(p) m (6.2)

15.



X 1w VBL (V)
Jgolnip) = 5 1(p) I, 05) (8.3)

« _sind L, /B)L, (Bn)-L, (VB)L, (V)
Br.l(n,e,p) n I(P) 2‘/_1.12(]/1—))

. cosd }-(p)nl1(1/5)[@'n11(v’ﬁn)+12(fﬁn)]+leWﬁ)[fﬁnIa(w’ﬁn)*L(v/fiﬂﬂ \
Ul 2vpl,2(vp)

(6.4)

ﬁgl(n,e,p)
(8.5)

Taatn0,p) = -~ 2 Tip) /ot VBT o {21, D AL VRIJL W) (e

21,2(vp)
~ _3sin20 ~ | I, (vpn)n2I,(Vpn) 21, (/pn)
Bro(n,6,p) I( )[ 05 = (6.7)
Btie = % cos20 T(p)[sﬁ(mz InI, (vpn)+2(2n2-8)1, (/pn)
n 2oL, (Vp)

, &/m21, (Vp)T, (Vpn)-6n21, (V) I, (pn) S@nxi(@n);alz(ﬁn)}

. (6.8)
L") oL, (/D)
3;52(!1,8,1)) - = cos20 T(p)[g/g(lmﬂ)Iﬁ("/ﬁn)""loﬂli(/ﬁn)
16 o1, (/5)
/BT B 0Bn) , 8L, WEn) 6.0)
:[12(1/5) Ig("/—p—) €

The asymptotic behaviour of the Bessel Function I, (x) is given (Watson, 1944)

as x ; '
I, (x) ~ — ! [1 5 0(3).:[ (6.10)
(8nx )z X
Thus :
ORI Gen) | InOen) 1 /p(1n) (6.11)
I} (/p) /)

Using this relationship the asymptotic foms for (6.2) — (6.9) can be

18



written down:.

Boo ~ Eﬁg) /p(1n) (8.12)
%0“%3% /p eV/p(1-n) (8.13)
By ~ - 50 'f_;_i_) (1-n) ;I_)_@(M) (6.14)
Bgy ~ — CZfe i;%l (1+n) o~/B(1-n) (6.15)
gt ~ - Cffe Ié%l (1+n) vVp eVP(1n) (6.16)

~  8sin20 I(p) 1-n2 e¥P(i-n) 5 4

~ cos26 T(p) i
Bao ~ =P’ (3nez+en+ p(1-n) 6.18
02 T vy (8n2+2n+3)e ( )

T~ 29528 LD) (g 008y /5 V/B(1mn) (6.19)

J
#a 2 /A

These transforms could be inverted by using the convolution theorem but since
integrals involving the current are again the result it is still not very in-—
structive. A more useful picture is obtained by expanding I(t) in a Taylor

series about T = 0, 1i.e.

I(t) = 1(0) * <1(0) * %—, o) + ... (6.20)
whence, sincé I(0) =0
Tp) = = H10) + 2 1(0) + ... . (8.21)
p? p

and the dot denotes differentiation with respect to .
Assuming now that I1(0) is small, i.e. that over the region of Tt of
interest the current is essentially linear, and using the result (Carslaw and

Jaeger 1953)

%
j‘ —/p(1-n) 3 5

YE T} = (41)2 iPerfc (ﬂ) s oo 0,28 v (6,83)
pln/2 2Vt

17,



where iferfc(x) is defined by (e.g. Carslaw and Jaeger 1959)

Q

ilerfe(x) = f in“lerfc(y‘)dy
b

o]

i%rfe(x) = erfe(x) =1 — erf(x) = —?:f e;yzdy
VT
X
we obtain ( \
0. 1-n
Bgo(n, 0, T) —v"'T (47)i2 erfc(z——ﬁ) , (6.23)
1 1(0) 4 1-n
J¢0(n,6,1) —-——v[-ﬁ-—— (47) 1erfc<2r) (6.24)
. sin® 1(0) (1-n) % 1-n
Br1(n,8,7) ~ - = (41)° i erfc( ) 6.25
. B I
By (n,0,7) ~ — — —%)- (1+n) (47) 1?erfc( r) (6.28)
. cc;\se 1(0) %‘ ~1)
qul(n,e,'r) " = Z ?T\ (1+ ) ( 1erfc<§FT), ’ (6.27)
3sin20 1(0) (1-n2) ,, . %, 1-n
Brz(n,e,'r) ~ ) .m 2y (4'1:) 138I'fC( ﬁ) . (6.28)
_ cos29 1(0) N 1—n>
Bgo(n,0,1) o (3+2n+3n2) (4<) 1.‘~‘erfc(% , (6.29)
cos20 1(0)

. 1.
J¢2(n,8,1) ~— (8+2n+3n2) (41)% ierfc( 5%) (6.30)

3

Combining equations (6.23) — (6.80) to form B and J. correct to second order in

B.(n,8,7) = — M (1) (4—;)% iserfc(-;—;_ﬂ) [aosine— %(1**1\)5025'11129], (6.31)
T

I\ 1- 1+ 3+2n +3n 2
Bg(n,9,7)= LU (4T)i2erfc(}—;n)[l— Tleocosfﬁ ~—~?-r—1—8n— E:OECOSBGJ . (6.32)

vn 2T 2 16
1 1(0) (1-11)[ 141 eon+ane ]
(,(T\,d T) é‘ /ﬁ (4’1:) ierfc % - —2—8000.;0"‘ _16—_ Eg cos26 |. (6.33)



These formulae are only valid for 1<<1 and for n of the order of unity,
i.e. I-n<<l. This latter restriction arises from the use of the asymptotic
expansions of In(Vﬁh), which becomes invalid if n - 0. It is not, however, a
very important restriction as all the error functions fall rapidly as (1-—n) |

increases, the current being confined to a thin skin near the surface.

For large values of %52 , 1l.e. for t<<1,. nfl, the asymptotic variation
-.JT
of the error functions is given by
(1-n)2
1-n’ 1 fam \ntl T Ty
thapfe | 20 | m o [ X% e * s (6.34)
_ 2vt on/z |\ 1=

Thus, treating T as a small expansion parameter, it is seen that By is one

order, and B, two orders smaller than Ja, which itself varies as

. (1-n )2
T ¢ e 4t
In order to facilitate the evaluation of fields, equations (6.81) — (6.33)
have been written in the form
B.(n,6,7) = 1(0)T [e sind b, + e ® sin20 b o], (6.35)
Bg(n,6,1) = I(0) [bgg + €,c088 bgy + €,% cos26 bgols (6.36)
J¢(n,e,r) = i(O)T [j¢0 + &_cosd j¢1 + 502 cos26 j¢g], (6.37)

where bpq, bpg, bgy, etc. are tabulated in Table 1 and plotted in figures 3
and 4.

The maximum asymmetry in the fields due to the toroidal geometry will occur
between points on the extreme inner and outer circumferences, i.e. between the
points n=1,0 =% and n =1, 6=0. Initially, all the By lines of
force will be confined to a surface of thickness & (<<1). Since the flux

through the area A(Figure 5) must equal that through B, 1i.e.
Bg(0) X Area B = By(m) X Area A

then

["‘ ()) = = (_L: F I
_ = o]
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It can be seen that this simple argument® is in agreement with' the more
elaborate calculations, since from equations (6.82) and (6.33)

25 i
Bg(0) J4(0) l_eoréi_eog( 5 = 1-® for g5 = /3)

1
Be(n:) - de(n) _ 1'+E'0'+-2_€'0-2

(6.39)
correct to second order in e,.

It is apparent both from figures 3 and 4, and from equation (6.39) that the
second order terms will seldom contribute a correction of more than about 5°/,
of the zero order solution, for e, < 1/3.

6.2 Large T

The asymptotic form of the solutions can be obtained in a number of ways.
If t is large, that is large compared to 1/a,2, then the main contribution to

an integral of the form
T

u/h I(t’)e~ @n?(1=1") g
0

comes from the neighbourhood of t’=t. Hence an approximation to the integral
can be obtained by expanding I(t’) in a Taylor Series about T and retaining
only the first few terms. All the integrals can then be carried out, the results

substituted in the full solutions, and the various series summed analytically.

Identical results can be obtained, with far less labour, by taking the
inverse Laplace Transforms of equations (6.2) to (6.9) in the limit of p-0

(Carslaw and Jaeger 1953).

It is readily shown that, in this limit

Beo(n,0,0) & nlT(p) + 2 ol (p)] (8. 40)
jéo(n,G,p) % [?(p) 5 pf(p)] (6.41)

*This argument is due to K. V. Roberts.
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Er.l(n,e.p) & -sind ol ['f(p) 5 D2 p'f(p)] (6.42)
ggl(n,e,p) ~ —cosf l:on:l rf(p) + 71“_;36@ p'f(p)] (6.43)
3¢1(n.9,p) x —COSBT\[T(p) + 371126_1 p'f(p)] (6.44)
Brg(n,0,p) % singe 1) ((gne 1) (p) 4 20 ) (6.45)

35n*++6n2—25 ~

.geg(n,e,p) X c0s26 -i% [(3n2+2)T(p) + % pI(p)] (6.48)

~ 2 ~ 5 2...1 ~
Jge(n,8,0) x cos2e = (I(p) + I pT(p)] (6.47)

The inverse transform of f'(p) is I(t) and since I(0)=0, the inverse of

p'f(p) is ().

Therefore <
onz+1 3n2+2.
Bg(n,6,t) = I(1)[n- JB_ £oC080 + D—-(-E—E;——)- Eo2C0520]

§ n{35n4*+8n2-25)

- {n2—1) . 2_ '
I('l:)!:n(n2 1), Tn-Snt-2 £,C0SH

+ — E 2 29
8 % 8 1536 orENs
(6.48)
2_1 1-n2 2
B.(n,6,1) = I(‘c)[ﬂ €,5ind+ nil=n2)(3n 1)902311'129]
8 16
.. (2—n2)(1—n2) . 5n{1-n2)(8n2-5)
3 I(T)[ % EoSine+ 1550 €0251n20 (6.49)
1
Jqs.(n,e,'t) = I(t)[1-ne,cos6+ 5 n2eqy2cos20]
. 2n2-1  n(8n2-1) n2 (5nz-1)
- L T 2 .50
I('c)[ : T —arto cos26 (6.50)
Here again these equations can be written in the form
By = I(1)[bgp+bgreqcosbtbgge 2cos26]
+ i(T)[b(:)0+b(;lgOcose"l'bézﬁogcosze] (6-51)



B, = I(t)[bpqeosind + b o€ 0251n26]
+ 1(7)[blyeosind + brge,2sin2e) (6.52)
Jp = I(Tj[j¢0 + jgpre0c0s0 * j¢geo=cos26]
+'i(r)[jéﬂ + Jpreocost * jézsoﬁcoszel (6.53)
where bgo, bjo, bgy etc., are tabulated in Table 2 and plotted.in figures 6,
7 and 8.

The degree of asymmetry is given by equation (6.48) as

3 5
1+ = gt Eo2
g .0 71p- T0
?Qifl - 4 8 (= 1.837 for eq = 1/3)
Bg(0) 3 5
1._ - °+ — 502
16

and by equation (6.50) as

1
et 5 €0
eome - (= 1.92 for g4 = 1/3)

I—g .+ = €42
a] 0
2

J@(n)
J¢(O)

where in both cases I(t) is assumed small.

It can been seen that again the second order terms contribute less than’
50/, ‘for eo<1/3.

It is now not unreasonable to extrapolate to intermediate values of T and
suppose that for 5041/3, the second order contribution to the solution is of

the order of 5°/, and can in general be neglected.

7.  Summary of results

The distribution of magnetic field and current density in a rigid
toroidal conductor of aspect ratio 1/eq = R/r,, carrying a current I(t) is given,

to within a few percent, by the equations
Be('n,e,'t) = Beo + E'oBel + B62502!
Br(TI\'e"c) = EoBrl + EOQBI‘z’

J¢(T\,9,T) = J¢O + EOqul % Eong.z,

22.



where
i = vl

t
-1 . dt.?
T =
Bolo? f al(t’)
)

and BGO-‘Belv Bgo, Bris Bras J¢0, J¢i- and J¢2 are given by equations
(5.12), (5.80), (5.44), (5.28), (5.48), (5.48), (5.47),and (5.48) respectively.

In the limit of small =, Be; B., and J¢ can be represented by equations
(6.81) — (6.33) and in'the limit of large T by equations (6.48) — (6.50).

The corresponding solutions for an infinitely long straight cylinder are

given by Bgo,» and quO
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Arpendix 1

Derivation of the Vector Operators "Curl" and "Div".

In general orthogonal curvilinear coordinates the "curl" and "div" of a

vector V are given by (e.g. Margenau, and Murphy 1956)

|
h:_:xl hgxg haxg‘
1 6} ) G
1V = - - - (A.1)
cur hthhs aX1 ax2 axa
hﬂ.vl h2V2 h3v3
and ) s g
ot BEE o) .o .o
. - + ) [ S— 02
div E hlhzhs [a)(1 (h2h5v1) ax2 (h;hsvz) axu (h1h2V5 )] (A )
where V = (V,,V,,V;) and §1,§2,§3 are unit vectors in the directions of
the axes at the point x = (x;,X,,%X5).
The h;- are such that h,dx,, h,dX,, hysdX, form the sides of an
infinitesimal volume element dv where dv = hy.-h, hs dx; dx, dxs.
From figure 2 it can be seen that for
X (Xi:%a:Xg) = A1,0,8)
Xy = 1 h, = 1
Ez - 9 5. hy, = r
Xe = & hs = (R+ r cos®)
hence ;" I“é : (R + I"COSG)&
' - Y 2 0 0
l V L e T e e ] el L
R r(R+rcos@) or 00 ob (4.8)
Ve rVg (R + rcosd)Vg




and

(i 1 3 9 3 .
div ¥ ~Rrroosd) [a(r{ﬁ*-rcose}vr} wid- ({R+rcos6}Vy) + 5% (rVd,):}.

(A.4)

Successive use of (A.8), operating firstly on B and then on curl B enables

curl curl B to be derived.
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TABLE 1

= 0.01

b b.o . . .
n b bgq by = E J Jg1 J s

. U wlpw | fedpg O WL O

1,00 1.000 =-1.000 0.500  0.000 0.000 5.840 -5.6840  2.821
0.95 0.568 —0.549 0.268 —0.100 0.150 8.581 -8.490  1.700
0.90 0.295 -0.280 0.133 —-0.100 0.150 2,105 -2.000 0.951
0.85 - = - -0,071 0.098 - - -
0.80 0.084° -0.057 0,026 -0.041 0.065 0.559 -0.503 0.228
0.70 0,010 —0.008 0.004 —-0.009 0.011 . 0.103 -0.087  0.038
0.60 0,001 -0,001 0.000 -0.001 0.001 0,018 -0.010  0.004

T = 0,02

b b.

rl 2 . ) .
n b0 Dot Pe2  (i0s)  (x102) 0 e g2
1.00 1.000 -1.000 0.500  0.00 0.00 3.990 -8.990 1.994:
0.95 0.880 -0.6680 0.822 -0.18 0.28 2,040 -2.865 1.580
0.90 0.443 -0.420 0.200 —0.23 0.32 2.084 -1.978 0.942
0.85 - — - 5 ) 0.80 =3 = =
0.80 0.169 -0.152 0.089 -0.17 0.23 0.930 -0.840 0.380
0.70 0.058 -0.047 0.020 -0.08 0.11 0.854 -0.301 0.130
0.60 0.015 -0.012 0.005 =0.08. 0.04 0.111 -0.089 0.087
0.40 0.001 -0.001 - - - 0.008 -0.004 0.001

(Cont'd)...



1.00
0.95
0.90
0.85
0.80
0.70
0.60
0.40
0.20

1.00
0.95
0.90
0.85
0.80
0.70
0.60
0.40
0.20

1.000
0.733
0.525

0.250
0.108
0.042
0.002

1.000

0.768
0.580

0.312
0.157
0.073
0.013
0.002

-1.000
-0.713
-0.500

-0.225
-0.099

-0.084

-0.003

-0.749
—-0.550

-0.283

-0.134

-0.059
-0.009
-0.001

TABLE 1 (Cont'd)
T = 0.08
brl br2
P2 (x 102) (x 102)
0.600  0.000 0.000
0.350 -0.237 0.847
0.237 © -0.840 0.483
- -0.858 0.404
0-102—=0;926— 0929
0.040 -0.216 0.275
0.014° —=0.119 0.143
0.001 —0.024 0.038
T = (0,04
b brl br2
62 (x 102) (x 102)

0.500  0.000 0.000
0.865 -0.290  0.423
0.283 —-0.438 0.624
- -0.493 0.684
0.128 -0.483 0.653
0.058 -0.880 0.483
0.024 -0.250 0.300
0.003 -0.082 0,088
0.000 -0.048 0.043

28,

Jg0
3.260

2.560
1.960

1.070
0.520
0.229
0.031
0.002

_j¢0_
2.825

2.300
1.840

1.118
0.628
0.325
0.068
0.011

Jg1

-3.257
—2.403
-1.863

~0.960
~0.443
20.183
20,022
~0,001

Jg1

-2.825
-2.243

-1.005
-0.533
-0.260
-0.048
~0.007

J¢2

1.628

1.218

0.886

0.485
0.101
0.076
0.008
0.001

J¢2
1,410

1.083
0.830

0.465
0.230
0.107
0.026
0.002



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
01
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0l
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

b4
(x 102)

0.00
-1.24
—2.40
-3.41
—4.20
—4.,69
-4.,80
—4.46
—3.60
-2.14

0.00

-0.125
-0.1381
-0.150

—0.181

—0.225
-0.281
~0.350
~0.431
—0.525
-0.631
-0.,750

bg1
(x 102)

2.08
211
2.20
2.31
2.40
2.41
.2.26
1.88
+1.10
~0.17
—2.08

bgg

0.000
0.013
0.027
0.043
0.062
0.086
0. 116
0.192
0.126
0.249
0.313

b

(% 103)7

-1.00
-1.62
-3.21
—4.69
-5.94
—8.77
-9.74
-5.78
-2.89
+2.60
11.72

TABLE 2

bry
-0.125
-0.124
0 180
-0.114
-0.105
-0.094
-0.080
-0.064
-0.045
-0.024
©0.000

br1
(x 102)

2.08
2.05
1.96
1.81
161
1.87
1.09
0.80
0.81
0.24
0.00

(x 102)

0.000
-0.600
-1.056
~1.246
~1.002
-0.588
+0,192
1.049
1.6856
1.528
0.000

bro

(x 10°)

0.00
-1.80
-3.05
—4.20
—4.94
-5.19
—4.90
—4.10
-2.89
~1.48

0.00

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Jg1

0.0
0.1
-0.2
0.3
0.4
0.5
0,6
~0,7
-0.8
-0.9
1.0

J¢0
(x 10)

-1.25
-1.23
115
-1.08
-0.85
—0.63
-0.35
-0.25
+0.35

0.78

1.25

J¢e
0.000
0.005
0.020
0.045
0.080
0.125
0.180
0.245
0.320
0.405
0.500

Jpl
(x 10)

0.00
0.06
0.11
0.14
0.13
+0.08
-0.03
-0.21
-0.46
-0.80
-1.25

g2
(x 102)

0.00
-0.01
-0.05
-0.08
—0,05
+(0, 10

0.45

1.110

2.20
. 3.86

6.25






CLM:rR.I5.FIG.I. CO-ORDINATE SYSTEM (r,0,0)
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CLM-RI5FIG.3. SMALL T SOLUTIONS FOR USE WITH EQUATIONS (6.3515.37).
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