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STABILITY CLOSE TO THE MAGNETIC AXIS IN
A TOROID FOR VANISHING PRESSURE GRADIENT

*
D C Robinson Culham Laboratory Culham Abingdon Oxon

ABSTRACT

Localised helical instabilities, which arise due to vanishing pressure
gradients close to the magnetic axis in cylindrical and toroidal geometry, have

been investigated. The criterion for hydromagnetic stability is:

2,40+ 20 + g°/8)
o + g% 31/32

> 0

where m is the azimuthal mode number such that m + ng (o) = O, n = 1,2..., q is

the safety factor, R the major radius of the torus and o = %;-q g;%lr+o' Stability
is assured for a > o, as is thought to be the case in Tokamak, but g > 1 does not
necessarily stabilise these modes. Introduction of the next order pressure
gradient effect shows that toroidal curvature is stabilising for a > o, but de—

stabilising if a < o.
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INTRODUCTION

While studying force-free magnetic field configurations of the type associated
with diffuse pinches, it became apparent that localised instabilities could still
exist. These flute perturbations are associated with regions where the shear is
weak or zero. If such a region is localised near the central magnetic axis then
a stability criterion can be obtained, but any other region is always unstable.
Such a criterion is an extension of the generalised Suydam criterion in a toroid(l'z),

near the magnetic axis, where the pressure gradient becomes small.

Detailed measurements of the field configuration on ZETA during the quiescent
period(3), near the magnetic axis, showed that the pressure gradient, but not B,
4

was small. This is also the case on Tokamak.. It was then logical to enquire

whether such a situation could be stable theoretically, or the growth rate small.

EQUILIBRIUM FIELD EXPANSION

We are interested in the case when the pressure can be expanded as:

= (o) + 2 + 4 +
P =p p2r p4r ......

and P, = O. The force-free case can be obtained by also setting P, = O. Using
the plasma equilibrium condition Vp = JaAB, and Maxwell's equations for the co-

ordinate system:

L R i
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we obtain a set of equations governing the coefficients in the following expansions

for the field components about the magnetic axis (BB =0).
- ! 2p2
Be r Be () + r BB (8) +......
B. = rBl(8) + B2 (6) +......
X r ¥
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B = B + r B (8) +......
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P = p° 4+l (@) +.....
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These equations for the coefficients permit solutions which are not circular
magnetic surfaces close to the axis. Restricting the analysis to circular magnetic

surfaces, we find:
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These expressions agree with the more general expressions given by Shafranov
for the circular case; however, for the particular case that P, = O but Py # 0 it

is necessary to continue the expansion even further so that:
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where C,E,H are constants, g(= %g) is the stability margin coefficient for flute

and m = 1 instabilities in a toroidal system.

STABILITY

We consider the perturbed form of the equilibrium equations in the marginal

stability case and examine the behaviour of the radial displacement 7. A rapidly

oscillating g for small r indicates instability(E). These equations are simply:

b = VA(CAB)
-V (z,V9p) = JaAb + JAB
ﬁj - —c.Vp



where b,j,p are the perturbed magnetic field, current and pressure respectively.

Here we have assumed that the marginal case is characterised by Voz = 0. 1In a
cylinder this is true for p # O, and even when p = O the resulting Euler equation
is the same as for p # O. In a toroid it has also been shown that V.Z = O
minimises the energy integral(s). Initially we expand our perturbations in the
form:

b (x,6,) = b_ (£,0) e ek

because of azimuthal symmetry in {, and consider the exact equation governing the

perturbations:
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where B ' = ——}ak""— . This equation, together with
Y R+rcosf
(bsV)P + (B,V)P = O (4)

and an equation for b‘p is sufficient to solve the problem for stability close to

the magnetic axis.

Here we are interested in those perturbations which are close to the singular

surface defined by:

=7 - im6
C=on Cp
this becomes:
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v



From (3) it is possible to note the terms which govern the stability in the
cylindrical case, or when the toroidal curvature is small i.e. g << 1. Term (B)

is our differential operator at the singular surface. If the field configuration

is force-free then (D)} is the only other term of importance and stability is

; d ; ;
determined by the value of E;—%m . If Py # O then term (A) competes with this for
stability, i.e. Py < 0 is destagilising. In the usual case that P, # O then term

(C), which is proportional to Py is the dominant term.

In the toroidal case(3)becomes a coupled set of equations among the modes
. . m_ 15
b_. The behaviour of the singular mode brS is coupled to the modes bis , and so
on. In the usual case when P, # 0, considering equation (3) for modes on either
side of the singular one, we obtain the relations:
CR d m *1
D = ——— [—r +tm + b s
Pn i(m £1) dr s z r (5)
s s

and a further equation for the singular mode. For small r, br and be are related

by a stream function:

By considering the series of equations for bi it is possible to show that the
. M, . . . . .
behaviour of brs is strongly influenced only by the two modes on either side of it,
+
sgs_l. Apart from the differential operator, the only remaining significant term

is proporticnal to p2(l~q2), which must be positive for stability: a well known

result(l'z). In this case the radial behaviour of b:s is of the form ea/r cos B]r,
whereas for p, = O it has a power law behaviour r*cos (B &n ).
For p, = O equation (5) is not valid and is replaced by:
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which gives the stability criterion:
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Here D = Ji-giy as mentioned earlier, and B = £ + =

dar BlilJ B °2 c
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Defining o = - 4 H_%'Ir+o we obtain the criterion:
dr
2 4(1+20+q°/8)
m + >0 (7)

a+q-31/32

The cylindrical result is obtained if g-0.

Including pressure gradient effects, i.e. P, # 0, we find equation (6)
modified by perturbed pressure terms on the left. Eliminating these with the aid

of (4) gives a stability criterion as above, but with an additional term:

2 4(1+2a+q2/8) Bwoz 894(l—q?)
m o+ > 1 > 5 ® o} (8)
a+q 31/32 C (o+g 31/32)

DISCUSSION

These stability criteria are for localised helical modes as m = 1 is the most
unstable mode. This is in contrast to the usual localised flute instabilities
which are associated with high m numbers. In the force-free case we see that for
o > 0, i.e. increasing pitch with radius, there is stabilityr but for o § 0, i.e.
weak shear, there is instability which is stabilised by toroidal curvature (g~ 1).
For a less than - 4/9, if m = 1 is possible, there is again stability (strong
shear) but toroidal curvature is destabilising. The force-free Bessel function
model and force-free paramagnetic model both have o = -% and are therefore stable.
The inclusion of pressure (p4 # 0) produces a term which is stabilising for q>1,
as is the usual case (if Py < Q). For P, < 0 and g small, instability is possible
for both signs of o but toroidal curvature quickly overcomes this for o > 0. If
P, > O instability is only produced by strong toroidal curvature (g > 1). These

conclusions are summarised in Figures 1 and 2.

Tokamak for example, lies to the upper right of Figure 2, (g > 1 and o is
thought to be greater than zero), and diffuse pinches like ZETA lie to the lower
left (¢ < - 0.5, g and B are small). Even if these instabilities were present in
Tokamak, their growth rate would be less than that associated with the usual flute

instabilities. In ZETA this is not the case as m = 1 is possible and stabilitiy

T A 'non localised’ m=1 instability is however unstable if q < 1 and a > 0.



analysis for wave numbers close to the singular wave numbers indicates a kink
instability, whose radial extent can be a sizeable fraction of the radius of the
plasma. This is not possible in Tokamak as all kink type instabilities (m = 2,

etc.) can be shown, by examination of the energy integral, to be local in character.
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Fig.1 Stability diagram in the a, § = 8p, me /c* plane in the cylindrical limit
q(0) > o. Configurations which lie below the curve are unstable.
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Fig.2 Regions of instability, shown shaded, in the q(o)—a plane for § = 0 and

B=-1. (The region a > 0, q <1 is unstable to a non localised m =1 instability.)
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