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TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE

Turbulence in magnetohydrodynamic systems is of interest in a
number of fields, notably astrophysics, geophysics and plasma physics.
Here we examine a particular situation which is relevant to all these
fields. We consider a strictly two-dimensional system, for which it
is possible to prove, from a generalised Ohm's law, that the trans—
verse magnetic field fluctuations (transverse to the direction of
symmetry) cannot be maintained by an arbitrary velocity field but
must decay away with time (provided there is no current source term) .
Two-dimensional here is taken to be a system with a preferred axis of
symmetry, such as the direction of a mean magnetic field, in whose
direction the gradients of all quantities vanish. Under more restric-
tive conditions it is also possible to establish that the parallel
magnetic field fluctuations also decay away. The result is related
to Cowlings two-dimensional dynamo theorem', but uses real plasma

properties and is concerned with a turbulent situation.

We consider a system which may possess a mean field, has zero
gradients in the field direction, and which is governed by the genera-
lised Ohm's law
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where ¢ 1is the conductivity, n. the electron density, Pe the
electron pressure, J the current and E the electric field strength.
The third term on the right hand side is the Hall effect term and
fourth one is due to the electron pressure gradient. These represent
the specific plasma properties. From the component of (1) in the
symmetry direction we can derive an equation for the component of the
vector potential A, where B = curl A, in the symmetry direction -

say ¢ = Az.
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Then as V B =0 we have B, = X B, = x| where 1 and
2 are the two directions normal to the direction of symmetry
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( g q/. The equation for ¢ is
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This equation, if we omit the Hall effect term, is analogous to the
heat conduction equation in a moving medium. If we consider the
behaviour of ¢ in the 1-2 plane, where it may be bounded by a sur-
face and possess a surface value, then at some point in this plane 0
possesses a maximum with respect to x, and x, (i.e. By, By = 0).
Hence at this point and instant of time %% is negative and ¢ will
ultimately decay to the surface value.

That ¢ cannot be maintained by the arbitrary velocity field can
be demonstrated for a compressible but homogeneous system by consider—

ing the 'energy' equation derived from (2)
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where a is an element of area, p is the mass density, B =BY +B3,
and we have used the continuity equation in obtaining (3). The sur-
face integrals vanish if the normal companents of velocity, current
and field vanish at the boundary, if the boundary tends to infinity,
or if there are no external fields and ¢ - O at the surface. As
right hand side is negative then p@g decreases regularly to zero
‘over the whole space. Because p¢2 goes to zero it does not immedia-
tely result in By, B, going to zero - for it might be possible for

the scale lengths of ¢ to decrease even more rapidly leading to an



actual growth in the magnetic field; however these lengths are limited
by dissipation and the field will eventually decay to zero, as is

manifest from the right hand side of (3).

The equation for the parallel component of the magnetic field

(including the mean), using the result that B , - 0, is
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where we have assumed ne and o to be uniform.

Forming the energy equation for B§ in this case yields
0 2
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in this case the fifth term on the left is not zero unless the system
is incompressible, because lines of force are only perturbed by com-
pressible motions in this situation. Thus if the surface terms vanish,
either throuéh the normal components of velocity and current being
zero at the boundary or B, vanishing at the boundary, then the per-
furbations in B; decay to zero only if this term is positive or the
system is incompressible. The decay of B, alsb occurs in an inhomo—.
geneous incompressible situation if we ignore the Hall and electron
pressure gradient term in (1). The results also hold in the presence
of a stationary uniform applied field in the 3-direction, in addition
the transverse components still decay if the field is non-uniform,

A simple conductivity tensor having two components o3 ,0L , Wwhere
the first is parallel to the symmetry direction and the second trans-

| verse to it does not affect the result. A more generalised Ohm's law



including finite Larmor radius terms does not allow us to reach the

above conclusion?®.

Even if our boundary condition assumptions are incorrect, in any
.practical situation for times greater than 4moL® - where L is a
typical length scale, we would expect to see only fluctuations which
were well correlated in any cross section, and closely connected with

the boundary values.

Considerations such as these are relevant when considering the
turbulent fluctuations in the Zeta discharge®*. Perturbations in‘a
plasma where the particle pressure is much smaller than the pressure
due to the magnetic field are close to two-dimensional and observa-

tion on the transverse and parallel correlation lengths (L , L)

« L
1= 20

mean energy density of the transverse magnetic field fluctuations is

confirms this (L L ). In addition, experiment shows that the
substantially less than that of the velocity fluctuations. Equipar-
tition of energy between these two types of fluctuations might have

been expected in a three-dimensional situation®s7,

Magnetohydrodynamic turbulence in two-dimensions, apart from
transient effects, thus reduces to two—dimensional fluid turbulence
i.e. an arbitrary velocity field cannot independently maintain magne-
tic field fluctuations, in a two-dimensional situation, This form of
turbulence has rather different properties from ordinary three-
dimensional fluid turbulence®’® and will be the subject of a further

publication.
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