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Abstract

The details of the numerical methods used in codes for computing
MHD equilibria in discrete conductor configurations are described with
both code users and code writers in mind. Results produced by the
codes have been successfully verified against analytic results and
independent computatioums. The axisymmetric code has proved to be a
valuable diagnostic aid for the TOSCA experiment. The user images of

the codes are described in the appendices.
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1. INTRODUCTION

In [1], Thomas and Haas described a number of axisymmetric MHD equi-
librium computations in which either the plasma boundary shape was a speci-
fied flux surface or the plasma was surrounded by a vacuum region which was
contained within a conducting shell of specified shape. The latter computa-
tions were relevant to experiments in which the equilibrium was provided by
a conducting shell. Most present and proposed tokamak experiments have no
copper shell and the vertical field for equilibrium is provided by currents
in discrete conductors. An iron core may also be present but its vertical
field can always be simulated numerically by an appropriate set of conductors.
The absence of the shell allows windings to be used to shape the plasma cross
section and also allows divertors to be operated. There is no natural compu-
tational boundary to the problem and hence the method of solution becomes

rather more complex than in our earlier calculationms.

In this report, we describe 2 codes for computing multipole MHD equilibria;
one code treats the axisymmetric problem and the other treats the straight
problem. These codes have been under continuous development for several
years and during this time, a number of publications [2,3,4,5,6] on this
subject have appeared. Where suitable,Awe have incorporated any new ideas
from these publications into our codes. The numerical methods and facilities
of the codes are described in Section 2. 1In Section 3, we verify the results
of the codes with analytical work of Strauss [7], Papaloizou et al [8] and
Mukhovatov and Shafranov [9]. The use of the codes as a diagnostic aid for
the TOSCA [10,11] experiment is referred to in Section 4. Finally, in the

appendices we give the user images of the codes.

2 NUMERICAL METHODS FOR COMPUTING MULTIPOLE EQUILIBRIA

Numerical methods for computing axisymmetric MHD equilibria with scalar
pressure have received considerable attention recently. The first published
computations were by Callen and Dory [12]. They considered a plasma which
completely filled a conducting shell and which had a current density which
was nonlinear in the poloidal flux function ¥ . The finite difference equations
were solved by successive overrelaxation (SOR). A configuration in which the
plasma was confined away from a conducting wall by a limiter was studied by Chu
et al.[4]. They used Picard's method and solved the linear system at each step
by SOR. At each Picard step, the plasma boundary was defined as the last closed
surface which touched the limiter. The current density contained a scale factor
which was adjusted at each step so that the total plasma current was some specified

value. The first application of constraints to the calculation of axisymmetric MHD

equilibria was in fact made by Feneberg and Lackner [6]. They considered multipole







equilibria by using Picard's method with a numerical evaluation of the analytic
solution of the equations at each step. In their paper, they pointed out that
whenever a trivial solution was admissible, Picard's method without constraints
would always converge to this trivial solution. It was also stated that their
semi-analytic method was inapplicable to a straight system. This is because
their grid system extended to infinity and whereas in an axisymmetric system
the stream function y(= RA¢) tends to zero at infinity, in a straight system
¥(= A,) tends to infinity. Here R is the distance from the axis of symmetry
and A¢ is the azimuthal component of the vector potential in a toroidal system

and A, is the longitudinal component of the vector potential in a straight system.

It should be pointed out that the multipole equilibriumproblem always
admits a trivial solution. The typical formulation is

Ly

Ly

G(y) in the plasma, where ¢ < wp

0 in the vacuum, where Y > wp

with some appropriate boundary conditions. Here L 1is an operator determined
by the geometry, G(y) is determined by the plasma currents and wp is the

flux at the plasma boundary. A mathematically acceptable solution is given by
the solution of Ly = 0. Since Y > wp, the solution has no knowledge of the

first equation and hence there is mno plasma. This is the trivial solution.

Our approach to computingmultipole MHD equilibria with axisymmetry is not
dissimilar from the approaches of Chance et al [13], Lackner [5], and Cennacchi
et al. [2]. However, for theoretical purposes we have also provided a code
which computesmultipole equilibria in straight geometry in an analogous

fashion.

The user is required to specify certain data. Typically these will be
details of the external conductors, the position of the grid, the functional
form of the plasma current density, the total plasma current, the position

of the limiter and parameters related to the iterative method of solution.
We now consider each stage of the solution procedure in detail.

2.1 Specification of the Initial Data

A rectangular grid is placed with its boundary between the conductors
and the expected position of the plasma boundary. Typically the position of
the vacuum vessel will be a guide to the position of the grid, which need
not be square.
The appropriate external filamentary coils are set up. In the axisymmetric

case, the coils must be axisymmetric and in the straight case the coils also

must be straight. In other words the coil currents must be in the direction of
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the main plasma current. Filamentary coils are standard in these two codes
so finite size conductors must be represented by a number of filaments.

In both cases, the stream function due to a single filament is given by

an analytic formula which is evaluated by standard library subroutines.

In the axisymmetric case the stream function at the point (r,z) due to a
current I flowing in a loop radius E. and a distance z from the mid
plane is

: uI ,rord
w = TA = L ( L )
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and oy = 47 1077 henrys per metre. In the straight case, the stream func-
tion at the point (x,y) due to a current I flowing in a wire infinite
in the =z direction, passing through (xo,yo) is

v I
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Some initial guess for the solution is made. The fine scale details
of the initial guess do not appear to be important but a certain amount of
care is necessary. Constraints will be discussed in Section 2.2 but the
initial guess has to be considered along with these constraints. A tokamak
contains a vacuum vessel and a limiter. The limiter defines the plasma
boundary (in the absence of a separatrix) - it is the outermost surface which
touches the limiter and should lie within the vacuum vessel. Hence the
surfaces of the initial guess should be such that the initial plasma boundary
lies within the vacuum vessel, with at least one point on the boundary

defined by the limiter.

2.2 Application of Constraints

The application of constraints is an essential part of plasma-vacuum
calculations. The constrained'variables usually have precise physical
interpretations. The main constraint is the geometrical constraint, where
the plasma boundary is forced to touch some prescribed contour (limiter).
No multipole tokamak equilibrium calculation has ever been performed without
this constraint. .Papaloizou et al [8] give a strong indication for the
necessity to apply such a constraint. They show that a straight uniform

current density plasma in an external quadrupole field has a certain height

to width ratio, which is determined by the exterior field and the value of







the current density, However, in the absence of a geometrical constraint,
the actual size of the pPlasma is arbitrary. An alternative viewpoint is that
in general we have no information about the value of the flux at the plasma
boundary. Application of the geometrical constraint removes the need to
specify the flux at the plasma boundary, ¢P, since this becomes part of the
solution. wp is given by the value of Y on that ¥ = constant surface
which touches the limiter. It would be convenient if the geometrical con-
straint could be identified with the Physical limiter, but as we shall gee

below, this is not always possible.

Convergence difficulties with Picard's method and the geometrical cop-
straint alone [8,14] can be obviated by treating some parameter in the current
density (the inhomogeneous term) as an eigenvalue. The most obvious method
is to apply the total current constraint. This is also highly desirable
from an experimental point of view as the plasma current is usually known

precisely, particularly when the code is used as a diagnostic aid.

If we write our equations as Ly = AG(Y), then at each step of the
iteration, e integrate the right hand side over the plasma (with appropriate
weights if necessary). Thisg gives the latest estimate of the total plasma
current. A is then adjusted to give the required total current and the

iteration is then repeated until convergence is achieved.

Depending on whether one or both constraints are applied a number of

rules have been discovered, which should ensure convergence,

(1) When only the geometrical constraint is applied, in axisymmetric
geometry, in the form of a single point on gz = 0, the point should

be on the outside of the plasma.

(2) When both the geometrical (single point) and current constraints are
applied, in axisymmetric geometry, the fixed point should be on the

inside of the plasma.

(3) When both the geometrical and current constraints are applied ip straight
geometry or in low-8 axisymmetric situations, a rail limiter (z = constant
line) should be used for vertically elongated plasmas, and a point limiter

for nearly circular plasmas.

Rules (1) and (2) are given by Cenacchi et al [2]. These are derived
by a consideration of Shafranov's formula for the equilibrium of a circular
Plasma in a vertical field, [9]. Experience shows that for circular plasmas,
faster convergence is achieved if (1) is used rather than (2) . The first
part of rule (3) is given by Thomas and Haas [14). They show analytically

that a uniform current density plasma in a straight quadrupole field, with







specified total current and width may have 2 height to width ratios according
to the type of limiter. The method used in our codes can only give

a height to width ratio of 1.84 with a point limiter. Use of the rail

limiter gives a unique solution and essentially arbitrary height to width
ratios may be computed. Computational experience [14] shows that this

effect is present in axisymmetric geometry, at aspect ratios of 5:1 and higher.
The second part of rule (3) also comes from a consideration of Shafranov's
formula. It is easy to show that the use of a rail limiter with a circular

plasma leads to a non convergent iteration.

2.3 Treatment of the Current Density

The next step in the procedure is the computation of the current

density in the plasma. In straight geometry, the differential equation is

2 2
%;g,+ %§¢ = = FF’—UOp' in the plasma
= T ¥y
=0 in the vacuum

where F(= Bz) and p (the plasma pressure) are functions of Y. In

axisymmetric geometry the differential equation is

—B— lﬂ}- _aﬂ—_ ro_ 2.1 e
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=0 in the vacuum

where F(ERB¢) and p(the plasma pressure) are functions of V. frhrough-
out our calculations, SI units are used, where u_ = 47107 henrys/metrel.
The usual difference replacement for these equations is second order divided
differencesfor the differential operator and a point value for the right
hand side. Thomas [15] showed in a particular case that this treatment

is not convergent as the mesh size tends to zero. It appears that the
crude replacement of the plasma-vacuum interface is the cause of this
behaviour. Consideration of the integral form of the differential equation

reinforces this view. In straight geometry, the integral form is
oy _ ;
J v de = quszS (n
c s

and in axisymmetric geometry, the form is

1 3y _ .
I'ﬁ an & uol J¢ds

c 5







In each case ¢ and S are as ip Fig. J. The standard difference

replacement of (1) would be

Vootr = ¥, Voo o=y,
1)+] 17 1 17-1 1] 1
T R T 2 vy
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Note that the left hand side has the form obtainable by second order

finite differences. Since this équation is unaltered if on the right side

the interface, we are in fact replacing the interface by a step. 1p 5],
the linear equations at each Step were solved by SOR. Hence there was

No restriction on the number of difference equations, (a restriction does

arise in the method used in Section 2.5), and a thorough convergence test

with a steadily decreasing mesh size could be performed. The results with
difference replacement (2) are given in [15] and the lack of convergence

is quite obvious,

The integral form of the equation suggests that we should perform
the surface integral over the plasma alope. This makes the algorithm
cumbersome since the shape of the interface has to be represented reason-

ably accurately. The loss ip speed is acceptably small sipce most mesh

are not intersected by the interface. Hence the first step in the
algorithm is to locate those mesh cells which straddle the interface.
Since the solution y ig smooth, even though the current density ig
Possibly discontinuous we may acéurately interpolate ¥ at the corners

of the mesh cells, These 4 values tel] us whether the cell is completely
in the vacuum, completely ip the plasma or Straddling the interface. 1In
the vacuum case, the contribution to the right hang side of the difference
equation is zero. Ip the second case, we do not have ap interface to
consider, but ip order to retain uniformity of treatment we have uged

the following quadrature Fropg the values of ¥ at the corners of the
cell, we evaluate the current density at the 4 corners. The cell is then
divided into 2 triangles bya diagonal line and the surface integral of
the current density computed in each triangle using a linear interpolant
as the integrand. The cell is divided into 2 triangles by a diagonal

in the Opposite direction ang the integral Computed. We then take the
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mean of the 2 results. When the interface intersects a mesh cell we use
the ¢ values at the corners to interpolate the points where the inter-—
face crosses the cell sides. If the interface is allowed to cross each
cell side at most once, then all the possible configurations are as shown
in Fig.2. Thus we perform our integrations over either a pentagon, a
'quadrilateral or a triangle. The pentagon is split into 3 triangles in

5 possible ways. The mean of the 5 integrals is taken as the contribution
to the right hand side. The quadrilateral is treated similarly to the

rectangle and the triangle just has the one integral.

The considerable improvement in accuracy achieved by this scheme

is demonstrated in the example in [15].

2.4 Computation of the Boundary Conditions

We cannot solve the set of difference equations without boundary
conditions. From the properties of the vector potential it is easy to
show that the boundary values are determined by the coil currents and
the plasma currents. The plasma currents are given by the current

density form and are in general unknown, a priori.

An elegant method for computing the boundary values has been given by
Lackner [5]. By a simple application of Green's theorem he shows how the
flux value at each boundary grid point is obtained by evaluating a line
integral around the grid boundary. Assuming the boundary values are computed
in only the upper half plane of a N x N grid, the number of subroutine
calls is B8N2. This contrasts with the method described in  [15] where
the number of subroutine calls is 2aN3, aN? being the number of grid
points in the plasma (o < 1). As shown in Appendix I this gain in
speed is at the expense of solving Poisson's equation once for each complete
calculation of the boundary conditions. Following [16] a further improve-
ment in speed is obtained by computing the boundary conditions at, say,

every 5th step rather than at every step.

2.5 Solution of the Difference Equations

Since we always choose the grid to be a rectangle, we are able to
take full advantage of the most efficient methods. The extra computation
required to solve Poisson's equation turns out to be of the same order
as that for computing the boundary conditions. In both the toroidal and
the straight geometry codes the grid is chosen with an equal number of equi-

spaced points in each direction. Thus in straight geometry, the local

difference equation may be written
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where Sijjzij/AxAy is the contribution from the quadrature in sectiop
2.3. Ordering the points along the rows, the set of difference equations

is

[a 1 IR v, ]

I A 1 X3 Y3
| = . (3)
£ | A. I *o=3 ynLZ
3 S e [ o1

I is the identity matrix

Ay? T .

and A =2(I + _}I;) X = W2k » ¥3ks ..., Yn-2k » ¥n-1x) is the kth row
Ax

of the solution ¢ and y: is a vector of terms involving jzij and the

boundary conditions.

In axisymmetric geometry, the local difference equation may be written

- V.. s = V.. . - 2Y.. + y..
Az? ¢i+lj wz] § wl‘]] le " féj+] wl] wl]*] . g Az
Ar? r. + %ﬁr r, - %ﬂr Ty $1] “ij Ar

where Sijj¢ij/ArAz is the contribution from the quadrature in section .2.3.

Ordering the points along the rows, the set of difference equations is
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and D is the diagonal matrix
do
dn-l
_ o

with d, = = .
i
We may transform the system of equations (4) to the form (3) by setting

a=ptppt

v

o






and Xi = D_i Ei .

Hence in both straight and axisymmetric geometry, we have a set of equations
Mx = G(x) (5)

to solve, where M has the form shown in (3). If we use Picard's method
to solve (5), then the set of equations at each step may be solved using

the Bunemann algorithm [17].
The minimum requirements for this algorithm are

(a) the boundary should be a rectangle,
n

(b) the number of points in one direction should be 2" + I,

(¢) the type of boundary condition on any side of the grid should not
change on that side, although the boundary values are not restricted
in any way,

(d) any variable coefficients or variable mesh should be independent

of the direction referred to in (b).

In our implementation all these requirements are met and in addition the
number of points in both directions is 2" + 1 and we do not have a
variable mesh. Tridiagonal sets of equations have to be solveda large number
of times and this is performed using the well known special case of Gaussian
Elimination. We find a 652 x 652 matrix can be inverted on the ICL 4/70

in about 15 secs, which is some 10 times faster than optimal relaxation

techniques.

2.6 Special Treatment of Shaped Cross Section Plasmas

During our calculations on the straight quadrupole problem (see Section
3), two further aspects of the codes had to be developed. As is well known,
a plasma with a vertically elliptic cross section is unstable to a vertical
shift if the height to width ratio of the plasma is greater than 1, [9] .
Tﬁis instability occurred in our equilibrium calculations for appreciable
values of b/a when the plasma boundary was constrained to touch a rail
limiter in the upper half plane. The plasma was seen to lift itself during
the iterations until it vanished into a point on the limiter. We are able
to prevent this behaviour if we symmetrise top and bottom. This has the
effect of reflecting the limiter in the lower half plane, thus fixing the
plasma boundary both top and bottom. This remedy has also been suggested

by Cennacchi et al [2] .
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In the equilibrium equation, the plasma and vacuum regions are usually
distinguished by the value of ¢ being either above or below the interface
value. However for equilibria in which the separatrix lies close to the
plasma boundary, it is possible for points in the vacuum region to have the
same flux values as points within the plasma. Hence, examination of the ¥
values is not sufficient to distinguish between plasma and vacuum. We are
forced to introduce a partly geometric method of distinction. In the codes,
we have required the user to specify a suitable rectangle with the field zeros
of the separatrix lying outside it. This rectangle is used in the following
way; if a point lies outside the rectangle, then it is defined to be in the
vacuum region, independent of ¥, and if the point lies inside the rectangle

then the usual definition of plasma - vacuum applies.

When positioning this so called 'virtual limiter' (introduced by Suzuki
[31 ), it is necessary to consider the form of vacuum field and the limiter
(referred to as the "numerical limiter') described in Section 2.2. For
example, if the numerical limiter is a rail then a separatrix field zero
cannot lie below the rail other than on =z = 0. Hence the position of the rail
defines the 2z = constant sides of the virtual limiter. If there is a field
zeroon z =0, it is not always possible to predict its position and in this

case ' trial and error' positioning of the virtual limiter is necessary.

2.7 Summary of the Algorithm

These then are the principal features of the equilibrium calculation in
both straight and axisymmetric geometry. A typical step in the iterative loop

is as follows. We suppose that ¢ has been computed.

(1) Apply the geometric constraint to obtain the new plasma shape. In the
present version of the codes, the numerical limiter can be a rectangle, a
rail on z (or y) = constant or a point on the plane of symmetry. The limiter
is scanned for the minimum (assuming Ip < 0) wvalue of wn. This corresponds

to the outermost closed surface to touch the limiter.

(2) Taking account of the virtual limiter, the current contributions to the
right hand side of the difference equations are evaluated from the integral

form.

(3) Symmetry about the mid-plane is applied using these contributions, the
total plasma current I; is computed, and assuming the current constraint is
to be applied we appropriately adjust the scale factor in the current density.

. n . .
If the scale factor at step n is a  and the required total current 1s Ip’

we set

n+l







(4) We examine the convergence of ¢: and I:. The user is allowed to

specify the relative accuracies of these variables. The maximum residual is
also evaluated as a guide. If the convergence criteria are satisfied, we go

to step (8).

(5) If this is an iteration at which the boundary values are updated, we
follow the procedure as given in Appendix I. The boundary values are symmetrised
about the mid-plane.

(6) The right hand sides of equations (5) are constructed from the latest

boundary values and the current contributions. The equations are then solved

for wn+1 using the Bunemann algorithm,

(7) We return to step (1).

(8) Graphical output is produced together with various output variables such

as B,B; and q.

3. COMPARISONS WITH ANALYTIC AND NUMERICAL SOLUTIONS OF MULTIPOLE EQUILIBRIA

In this section we compare results produced by the codes with known
analytic and numerical results., Essentially analytic results are
restricted to the straight equilibrium analysed by Strauss [7) and the more
approximate toroidal results of Mukhovatoy and Shafranov [9]. As an example
of known numerical results we consider some results obtained by Feneberg and

Lackner [6] 1in a study of a belt pinch.

The mathematical equations of a multipole equilibrium are inherently
nonlinear because of the Presence of the free boundary. Consequently very
little analysis has been possible. However Strauss [7] has produced an
asymptotic solution for the equilibrium of a straight uniform current density
plasma in a straight quadrupole field. Papaloizou et al [8] have extended
this work, and thig problem provides an ideal test case. Indeed, the analytic
work gives a valuable insight into a number of convergence phenomena which

have been observed in other codes, see [14].

3.1 Comparison with an Asymptotic Solution in Straight Geometry

The conductor configuration is illustrated in Fig.3. We choose the
plasma current to be negative, so the cross section is elongated vertically
and compressed horizontally. The analysis shows that provided the conductors
are sufficiently far away, the plasma cross section is a perfect vertical
ellipse. Strauss shows that the value of j, the current density determines
whether, for a given external field there are no equilibria, one or two
values of b/a, b and a being respectively the height and width of the
Plasma cross section. The two values coalesce into one value when b/a = 2.92,

the bifurcation point. Furthermore since the value of j determines only the







height to width ratio b/a there is an infinite family of equilibria for

each value of b/a.

In our calculations, using the straight geometry code, we must use a
geometric constraint. We have constrained the plasma boundary to pass through
the point y = B in Fig.3, thus fixing the height of the plasma. Computations
in which we fix the width of the plasma are described in [14] . The symmetry
of the problem allows us to fix the plasma boundary on the y-axis. In general
of course we would use a rail-limiter where the plasma is allowed to touch
anywhere along the line y = B. We have taken the initial guess as an ellipse
with b/a = 2 for all the runs which we report below. Tests with other

initial guesses show that the choice of initial guess is not important.

We perform several series of computations. In each series, the positions
of the wires, the currents in the wires and the limiter position are all fixed
and the plasma shape is varied by adjusting the total plasma current. Following
the analysis, we plot b/a against j, the current density, our results being
shown as the discrete points in Fig.4. The solid curve is obtained from the

analysis of Strauss [7]. His equation (23) can be written as
Kx3 - x2 + Kx + 1 =0

which we solve numerically [18]. This equation has 2 positive roots X

and x, and one negative root. In our units

16 1077 Iy
jd?

K =

where I, and j have the same sign and b/a 1is given by

x + 1
b/a = x -1

The analytic result is obtained by assuming that the wires are a large
distance from the plasma. In practice, since feedback stabilisation is
necessary for an elongated plasma, the wires must be placed close to the plasma.
Hence our computations are performed initially with B/d = 0.5 to show the
behaviour when the configuration is of practical interest, and subsequently
with B/d = 0.025 to compare with the analytic results. Surprisingly, the
value of b/a at the bifurcation point is insensitive to the positioning

of the wires, although the curve shifts significantly to the right as the

wires are brought closer to the plasma. Some discrepancy must be expected







because as the wires are brought in, the plasma shape will suffer distortion
away from an ellipse. Calculations with B/d = 0.68 sghow a curve which is
even further shifted to the right, but still the bifurcation point is quite

close to the analytiec value.

3.2 Comparison with Predictions of Shafranov's Formula

In the design of many tokamaks with circular cross section plasmas,

considerable use has been made of Shafranov's equation [9]

v I 8 L.
- o[, R _1__3_}
Bv 4an [En a * BI * 2 2 (6)

In this equation, IP is the plasma current, Rp is the distance of the
geometric centre of the plasma from the axis of Symmetry, a 1s the minor
radius of the plasma (a circular plasma being assumed), BI is the poloidal
beta and %_ is the self inductance of the plasma. The vacuum vertical
field Bv is assumed to be uniform. In practice Bv will not be uniform
across the plasma. Nevertheless if Bv is replaced by the vacuum vertical
field at the centre of the Plasma, equation (6) is satisfied to quite

reasonable accuracy. This has been verified numerically by several authors

[6,19] .

Using the TOSCA [10,11) configuration shown in Fig.5 we have computed
equilibria with the limiter placed in several positions. 4 flat current
(uoRj¢ v A + BR?) has been used and taking Ei = }, the values given by the
code have been substituted into the right hand side of equation (6). The
resulting values of Bv are plotted against Rp, in Fig.6 in which we plot
the actual vertical field, for comparison. Agreement is within 17 for all

computed equilibria.

Incidentally, our results have been computed firstly by specifying the
total plasma current, with the limiter on the inside and secondly by specify-
ing the scale factor in the current density, with the limiter onp the outside.
The scale factor and limiter Positions in the second set of runs were the
values given by the first set. 1In each case the second method and the first

method gave identical answers, strongly suggesting a unique solution.

Cenacchi et al [2] have shown that equation (6) admits the possibility of
2 solutions with the same limiter position and current density but different
total currents. In the case of TOSCA parameters it is easy to show that this

non-uniqueness is not possible.






3.3 Comparisons with Belt Pinch Equilibria

Feneberg and Lackner [6] studied a belt pinch configuration consisting
of 2 vertical columns of 9 wires. They plotted plasma ellipticity against
current density and found bifurcation, the bifurcation point being at b/a v 2.9.
We have reproduced their results by fixing the plasma current and elongating
the plasma by drawing apart a pair of rail limiters. However, in addition to
the above bifurcation we find a further bifurcation at b/a = 1.9. This result
is found by plotting b/a against a2/1p as suggested in [14], where a quadru-
pole external field is used. Asymptotic expansion of the belt pinch stream

function in straight geometry shows that it is indeed essentially a quadrupole.

We have studied 2 further straight configurationms in which a vertically
elongated uniform current density plasma is produced. The first configuration
consists of 2 wires on the Y = 0 plane carrying equal currents which are in
the opposite direction to the plasma current. The second configuration is
similar to a belt pinch and consists of two columns of 3 wires, with all
their currents equal but in the opposite direction to the plasma current. The
first configuration produces a race track shape plasma cross section and the
second produces a doublet-like shape cross section. Nevertheless if we take
a as the maximum width of the plasma, we find that both configurations have
a bifurcation point at b/a ~ 2.9. These results strongly suggest that when
a symmetrically elongated flat current plasma is produced, the bifurcation
point is at b/a v 2.9 - the vacuum field does not have to be a quadrupole.
[Wedefine a symmetric plasma to be symmetrically placed with respect to the

conductors and to have negligible triangularity-]

4, USE OF THE CODE AS A DIAGNOSTIC AID IN TOSCA

In present experiments, it is rather difficult to measure either the
toroidal current density or the plasma shape. It is current practice
[0,21,22] to use a discrete conductors MHD equilibrium code as a diagnostic
aid for studying these parameters. The data for these codes are the experi-
mental parameters for which accurate measurements are available. Typically
these parameters will be the total plasma current, the currents and positions
of the external conductors, a point on the plasma boundary (if the plasma is
known to touch the limiter) and By The accuracy of the computed equilibrium
is given by comparing the fields measured experimentally and those computed
in the code. Poor accuracy implies that the current density profile used in

the code 1s not correct.

A complete description of the use of the code as a diagnostic aid for

TOSCA is given in [10,11] .
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APPENDIX I

IMPLEMENTATION OF‘LACKNER'S METHOD FOR COMPUTING THE BOUNDARY CONDITIONS [5]

In straight geometry, the method derives from a consideration of Green's

theorem in (x,y) coordinates

) : I(u VZy - v V2yu)ds = % (u s -1722 )di (Al)

We set u equal to the solution Y of

V2§ = -y ] in R
. ere (42)
gy =0 on aR

where R 1is the interior of the grid rectangle and 3R 1is its boundary.
We set v equal to theuflux function G of a filament infinite in the.
z direction, (G = - 3% enf(x - xc)24-(y-yc)2]i). Now since

vy = - §(x - X,y = ¥.), where (x_,y_ ) are the coordinates of the

filament, we have

- 2, — W ’
JJ GV<y dxdy { G n de + w(xc,yc)
R 3R
i.e. . (A3)
[l oui dxdy = - 66 ds + px .v) '
olz y an Ve
R 3R
theref ( ) = + EE tnl(x - x )2 + (y - )2]ﬁi ds
SEELBLE v *e2Ye 2n " ¢ y T e on
oR

To get the total value of Y on the boundary we must add in the contri-
bution from the external conductors. Computationally we compute & by
applying the Bunemann algorithm. However, the computation of w(xc,yc) is
complicated by the singularity in 2&n[(x - xc)2 + (y - yc)zli at (x.,y.).
Fortunately we are in a position to subtract the singularity. If we write

the integral in (A3) as

- Al -







J G(x,y,xc,yc) ('%% (x,y) -'%% (xc’yc))dsz'+ %% (xc’yc)JG(x’y‘xc?yc)d2
(Ad)
the application of aquadrature rule to the first integral will have
zero contribution at (xc,yc). Because of the form of G(x,y,xc,yc) the
second integral can be evaluated analytically. We have, in the notation of

Fig.7

tnlx - xc)2 + (y - yc)zlidx

X =€ x
c R

I R.n(xC - x)dx + J‘ tn(x - xc)dx]
L R e

Ry =~ inlE, = 2} %y = xIbubeg = x ) = (g =)

The integral in (A3) is performed around all 4 sides of the mesh rectangle,
but we only apply (A4) on the side containing the flux evaluation point.
Quadratures are performed by Simpson's rule with the trapezoidal rule
applied in the interval containing the singularity. The combination of
rules is necessary because the singularity splits the range of integration
into parts which may not have odd numbers of points which is a requirement

for Simpson's rule.

In axisymmetric geometry, the boundary value equation is derived in
an analogous fashion. We have

~

. G(rc,zc,r*,z*) 30
w(rc,zc) = w(rc,zc) - { =5 = (r*,z*)de* (A5)
3R
1'lo rcr* } k2
where G(r ,z ,r*,z*) = — ( ) [ (1 - = )K(k) - E(k)}
e’ e ™ K2 2
4rcr*
and k? =

r + r*)? + - 2%)2
( c ) (z, -z )

Following Fielding and Bevir [23], the singularity is subtracted by re-

writing the integral in (A5) as
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G(r,z,r*,z*)“ 2 8r
JITEE R e e )
L r n rcw [(rc_ r*)2 + (zc = z*)z]

oR
%% (rc,zc)] ds*
8r -
- ?l?'{% n [ = ) ] - ]} %% (rc,zc)ds* (A6)
R € [(r, - 1%)2 + (g, = @)

The second integral in (A6) may be evaluated analytically. When a quadrature

rule is applied to the first integral in (A6), the contribution from the

int (r i ro.
point ( C,zc) s ze







APPENDIX II

INPUT AND OUTPUT FACILITIES OF THE AXISYMMETRIC AND STRAIGHT GEOMETRY

CODES FOR COMPUTING MULTIPOLE MHD EQUILIBRIA

Provided the user is willing to study current densities which are at
most linear in ¢, each code is in an executable form and only requires
a data file. The data required to run each code are basically the same,
although the axisymmetric version has rather more facilities since it will
clearly be used much more than the straight version. Data input is in the
form of a set of NAMELISTs, the data being separated into several natural
groupings. We begin by listing the data for the axisymmetric code, with

explanations for each data item.

(1) Namelist NRSTRT:
IRSTRT

L}

0 if no restart is required.

1 if restart is required.

2 if the initial guessfor ¢ is to be takenfrom a previous

Tun

The restart facility allows the user to perform several short runs instead

of one long run.
(2) Namelist NIO:

IGRAF 0 if graphical output is not required.

= 1 if graphical output is required.

NCONT is the number of contour heights (flux values) which are
required. The number of heights must be less than 65 and
the default value is 21. The value of q, the safety factor,
is caleculated on each surface.

ISTORE

| if data is to be written to a file for a subsequent

restart

0 if a subsequent restart is not required.
The default value is zero.
(3) Namelist NGEOM:

RMINOR is the half width of the grid rectangle in the R (horizontal)
direction, measured in metres.

RMAJOR is the distance in metres from the axis of symmetry to the
centre of the grid rectangle. Hence the left hand side of the
rectangle is a distance RMAJOR-RMINOR from the axis of symmetry
and the right hand side is a distance RMAJOR+RMINOR from the
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(4)

axis of symmetry.

HEIGHT is the half height in the z direction (vertical) of the grid
rectangle, measured in metres,

INDEX determines the number of grid points in both directions. The

INDEX

actual number of points in each direction is 2 + 1, where

INDEX < 6.
Namelist NPARAM:

A,B,C,D,E, are the coefficients in the right hand side of the MHD
equilibrium equation. We have taken uoRj¢= A{[B-Pc(w-—wp)] +
uoRz[D + E(w-¢p)]}. A certain amount of care is necessary
when choosing these coefficients. In the code the sign con-
vention is Ip > 0=y > wp in the plasma, where wp is
the flux at the plasma boundary, and IP < 0= ¢y < wp in
the plasma. If we assume that reversed currents are not
present (although in principle the code will treat this
situation), then A,B,C,D,E must satisfy this convention.
Hence if IP <0 then A< 0, Band D 2 0 and C and
E £ 0 satisfies the convention. B,C,D and E are under
user control. A useful guide for selecting these parameters
has been given by Wootton [24]. He has considered the
flat current circular equilibrium studied by Haas [25],
and has shown that for given IP,BI, minor radius ,a, and

major radius Ro‘ the parameters should satisfy

AD:—LI
maR
o
IR (1 -
A5 o ML 't BI)
nal

A is adjusted by the code if the plasma current Ip is
to be constrained, but otherwise A retains the value
specified.

IPSIP1,IPSIP2,JPSIP] and JPSIP2 determine the limiter. For most
applications either a rail or point limiter is appropriate.

A rail should be used for a vertically elongated plasma.

In this case set IPSIP] = 2 and IPSIP2 = ZINDEX. JPSIPI
and JPSIP2 are determined by 2z _ ., the z-coordinate of
LI?NDEX-I
the rail where JPSIPl= JPSIP2 = 2 + 1 + zLIM/Az.
2 x HEIGHT . - g
and Az = __;Tﬁﬁfi_ . Since symmetry about z = 0 is

applied, JPSIPl and JPSIP2 take the same value. For
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a circular plasma, a point limiter on z = 0 should be
used. The convergence properties of a point limiter
calculation have already been discussed. Suppose

RLIM is the R-coordinate of the limiter. Then,

set JPSIPI = JpsIP2 = 2TNPEX™D oy oy 1psTP) = 1PSIPY -
2 x RMINOR
+ - = —
1 (RLIM RINNER) /AR where AR INDEX and
RINNER = RMAJOR-RMINOR.
TORCUR is the plasma current measured in amperes. If the total

current constraint is not to be used, this variable may be

omitted from the data.

ILIM!,ILIM2,JLIMI and JLIM2 determine the limiting box which is
necessary when a separatrix is present. If no separatrix

is expected, set ILIMI < 1, JLIMI < 1, ILIM2 > 21NPEX _

and JLEMZ = 2P0PR & §. This tells ke wode that within
the grid rectangle, the normal definitions of plasma and
vacuum apply. Otherwise suppose the separatrix field

zeros are expected to lie outside a rectangle defined by

R sRgsR,, 2z £z &gz ,, where =z = =2z ,. Then
sl s2 sl s2 s s2
set ILIMI = | + (RSI—RINNER)/AR, ILIM2 = 1| +(R52-RINNER)/AR,
(z., + HEIGHT)
JLIMI = 1 + ifil%gﬁlﬁﬂzl and JLIM2=1 + —352 =

A certain amount of 'trial and error' is necessary when
placing the box. The simple rule is that if the box allows
currents within the grid rectangle, other than in the
plasma, the calculation should be repeated with an appro-
priate adjustment to the box.

BZERO is the vacuum toroidal field at R=RMAJOR, measured in
tesla (| tesla = 10kG). This value is used in the calcula-
tion of q and B where B is the ratio of total plasma
pressure to total magnetic energy within the plasma.

(5) Namelist NSOLVE:

NSTEPS is the total number of iterative steps to be performed,
unless the convergence criterion determined by EPS below
is satisfied first. This number is problem dependent and
its default value is 50.

NOIT is the interval between computation of the boundary values,
i.e. the boundary values are up-dated every NOIT steps.

The default value is 5.

EPS is the convergence criterion. The iteration will stop
n+l n n+l n n+l n - N+ ] nj
when |I -1 e|1 + 1 and -y < ey + Y
I = oo celnpt e ] ana [T ) e e T,

are the plasma current and flux on the

O 3 A

where I: and ¢

- A6 -

N TN A R G N SR e SR AV PESRHNAS i S5 R Vi DA RO o ANl o Ui AR TS






(6)

(7)

(8)

plasma boundary, respectively, at the nth iteration. The

default value is 107°.

ICURNT = 0 if the total current constraint is not used.

= 1 if the total current constraint is used.

Namelist NSETUP:

XP,YP,RP,HP are coefficients in the form of the initial guess.
This form is under user control, see Appendix III, but the standard
version of the code assumes a circular shape for the plasma. In

this case, the equation of the flux surfaces is
¥(R,2) = HP[RP -V[(Z - XP)2 + (R - xP)3]

where R 1is measured from R = RMAJOR. Note that HP must
have the same sign as I_. The position of the limiter must be
taken into account when ensuring that the initial plasma shape
lies completely within the grid rectangle. Note that by setting

IRSTRT=2, a previous solution may be used as the initial guess.

Namelist NCOIL:

NCOILS = the number of filamentary windings (5 50)

RCOIL is the array of R-coordinates of the windings, measured
in metres from the axis of symmetry

ZCOIL 1is the array of Z-coordinates of the windings, measured
in metres.

CCOIL is the array of currents in the windings, measured in
amperes.

Namelist NPROUT:

NPRINT is the number of positions at which fields are to be
calculated. This number (< 100) may be zero.

IRZ = 1 if the cylindrical components Bp and B, are to be
computed at the requested positions.

= 0 if the polar components B, and BB are to be computed

at the requested positions. In this co-ordinate system, T
is measured from the point R=RMAJOR, Z = 0.

RPRINT is the array of R coordinates of the points at which fields

are to be calculated. R 1is measured in metres from the

axis of symmetry.

ZPRINT is the array of Z-coordinates of the points at which fields

are to be calculated. Z 1is measured in metres.







As an example we consider the data set used for the calculation

of a DITE equilibrium. The geometry and flux surfaces are shown in

Fig.8.

AN RSTRT
IRSTRT=0

&END

MI0

IGRAF=1,NCONT=21

AEN D

AN GEOM

RMINOR=0.33sHEI GHT=0. 23, RMAJOR=1.27 INDEX=5
AEND

&N PARAM

A=1.0+B=0.0,C=1. 256637D=6s D=01. Oy B=1.0,
1PSIP1=2,1PSIP2=2,J P5I Pl=17JPSIP2=17
ILIM1="']00rILIME:IUU'JLIMIZ‘I(JD'JLIHEEIOUG
TORCUR==50. 0D3» BZ ERO=1.0

&END

AN SNL VE

NSTEPS=50+NN1 T=5, EPS=1.0D-5, ] CURNT=1

~END

M SETUP

XP=1.0+YP=1.0yEP==1.0sHP=0.0

AEND

ANCOIL

NCOILS=11,

RCNOIL=1:91+1.9141.5391.5351. 582:1.582y0:903:0.903:0.85,0.85,
« 201,

ZCOII-=Dl87D"0|87' De 379=0.37 . 324!'0- 32440, 277y =0, 277
0e199=0.194 0.0,

CCOIL=20.0D3+ 20. 0D3s 3« 5D39 3« 5D3p =3 5D34 =3¢ 5D3s = 3e 5D34 =34 5D3s
3e 5D3y 3. 5D3y-839. 0 D3

AEND

NHPROUT

YPRINT=0,1RZ=1,

LEND

No restart facilities are required so ISTORE takes its default value of 0.

The current density form is

L ) - 2 -
UORJ¢——A[1.256637 107°(y wp) + u _R%(y \pp)] ;

Since BI v 0.5, the ciegficients have been chosen to satisfy the approxi-

mate relation BI = Tfﬁéﬁrii » see Haas [25]. No separatrix is expected

within the grid rectangle’and a point limiter on the inside of the plasma

is used, since the total current constraint is used. The value of the

vacuum toroidal field is | tesla, 127 cm from the axis of symmetry. 1] poloidal
field windings are used. The first 10 are the actual windings in the appara-
tus and the last winding simulates the vertical field due to the presence of

the iron core. No print out of the fields is required.

Output facilities are both graphical and printed. Graphical output

= AR =







consists of the flux surfaces. The plasma boundary is plotted as a broken
contour. Each surface has an identifying number plotted at some point along
it. This number corresponds to the number in the printed output. Other
printed output consists of some details of the iteration, the flux values

along the R and Z coordinates of the magnetic axis,

2y fpdS
s(= B ) and s(=-81—1’-—fds).
IB2ds N uy g2
P

The data required by the straight geometry code is essentially a

subset of the above data. Namelists are used in a similar fashion.

(1) Namelist NIO:

IGRAF = | if graphical output in the form of flux surface plots is
required.
= 0 if graphical output is not required.
NCONT = the number of contour heights (flux values). The default value

is 21.
(2) Namelist NGEOM:

XMINOR is the half-width of the grid rectangle in the X direction,
measure in metres.

YMINOR 1is the half-width of the grid rectangle in the Y direction,
measured in metres. The origin of the co-ordinates is at the
centre of the rectangle.

INDEX gives the number of grid points in both directions. The

number is ZINDEX + 1 and INDEX < 6.

(3) Namelist NPARAM:

A,B and C are the coefficients in the right hand side of the MHD

equilibrium equation. We have taken

Mo, =AlB + Cw-v )l .

z
We always assume the plasma current to be negative and

P < wp in the plasma. Hence a consistent choice of signs
for A,Band Cis A< 0, B30, C<0. B and C retain
values as specified by the user. A 1is adjusted internally
if the total current constraint is applied, but otherwise

retains its specified value.

IPSIP1,IPSIP2,JPSIPI, and JPSIP2 determine the limiter. Typically a

rail or point limiter should be used. A rail limiter is
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appropriate for a vertically elongated Plasma. 1In this case
set IPSIPI=2 and IPSIP2=2""""X. JPSIP] and JPSIP2 are derer=

mined by the y-coordinate of the rail, YLIM' JPSIP2 should

INDEX~] . _ 2 x YMINOR
+] + YLIM/A.L where AY = m—

and JPSIP! should be set equal to JPSIP2. Since symmetry
about Y = 0 ig applied, JPSIP! and JPSIP2 take the same

be set to 2

value. For a circular plasma, a point limiter on Y=0
should be used. Suppose xLIM is the X-coordinate of the

limiter. Then set JPSIPI = Jpstpz = pTNDEX-1 _ | IPSIP] =

IPSIP2 = 1 + (X, 1\ + XMINOR)/8X where AX = 2 X XMINOR/2INDEX.
Experience shows that, unlike the axisymmetric problem, there
are no restrictions on the positioning of the point limjiter,
CURENT 1is the total pPlasma current measured in ampéres, If the
total current constraint is not to be used, this variable

may be omitted from the data,
ILIMI,ILIM2,JLIMI and JLIM? determine the limiting box which is

necessary when a separatrix is present. 1If no separatrix

is expected, set ILIMI < |, JLIMI < I, ILIM? » 2INDEX ,

and JLIM2 »> ZINDEX + 1. Otherwise suppose the field zeros

are expected to lie outside a rectangle defined by Xsls'XsrXSZ,

YSIS'YS YsZ’ where Ys] = - YsZ' Then set

ILIMI = 1 + (XS] + XMINOR) /AX, ILIM2 = | + (st + XMINOR) /AX,

JLIMI = 1 + (YS] + YMINOR) /oY, and JLIM2 = ]+ (YSZ + YMINOR) /AY.

Again a certain amount of 'trial and error' may be necessary.

(4) Namelist NSOLVE:

NSTEPS is the maximum number of iterative steps to be performed.

The default option is 50.

NOIT is the interval between computations of the boundary values.
The default option is 5.
EPS is the convergence criterion, The iterations will stop when
n+l n n+l n n+i n n+l n
I - I | <se|I + 1 and |y —~ £ e + 9
B ol B ol lop " - 7l vy ol

where 1" and w; are as defined in the axisymmetric data.

The default option is 1075,

0 if the total current constraint is not used

ICURNT
I if the total current constraint is used.

(5) Namelist NSETUP:

XP,YP,RP,HP are coefficients in the form of the initial guess,

The standard version of the code assumes an initially circular

- AlO0 -
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plasma. The equation of the flux surfaces is

¥(X,Y) = HP[RP - /(X - XP)2 + (Y - YP)?]
Note that HP must be negative and that the position of the
limiter must be taken into account when defining the initial
guess.,

(6) Namelist NCOIL:
NCOILS = the number of filamentary windings (g 32)

XCOIL is the array of X-coordinates of the windings, measured in
metres.

YCOIL is the array of Y-coordinates of the windings, measured in
metres,

CCOIL is the array of currents in the windings, measured in amp2res.

As an example we consider a data file used in the uniform current density

quadrupole calculations of Section 3.

ANIN
IGRAF=1,NCONT=21

~AFN D

A GENM

KMINOR=0+14YMINNK=0.1, INDEA=5

2DND

AN PARAM

A=‘00011!B=1-0! C=0.0, D=0.0, E=0.0,
IPSIPI1=17,1PSIlP2=1 7y JFSI P1=25,JPSI P2=25,
ILIM1=2,TLIM2=32,JLIM1=0,JL]M2=25,

CUREN T==8. 7D3

&END

ANSHLVE

NSTEPS=100sNNIT=5, EPS=1. 0D~ 5, I POIN T=1v1CURNT=1
2END

AN SETUP

XP=0. 5 Y P=1. 5 RkP==1.0,

HP=0.0

ZEND

MCOIL

NCNILS=4,

YCﬂIL=0-11-0-0--—0.11.0-0. -
XC0IL=0. 0y=-0.11,0. Uy0.11,
CCAIL=-10.0D3+10.0D3+~10.0D3s10.0D3
ATND

The half-width of the grid is 10 cm in both directions. Since the con-
figuration is symmetric about both axes, the rail limiter reduces to a point
on X = 0. The initial guess is not taken as a circle but an alternative
subroutine which generates an ellipse is used. The form of the surfaces is
¥v(X,Y) = RrP[1 —%-%J ;
side the grid.

The external windings are placed only | cm out-
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APPENDIX III

ICL 4/70 RUNNING INSTRUCTIONS FOR THE CODES

In this Appendix we give listings of the files necessary to compose
and execute the codes. We also give listings of the special function routines

provided as standard. As in Appendix II, we begin with the axisymmetric code.

To compare and execute the axisymmetric code, the following line file

should be run.

7/ GENTJP TEMP
// SCHEDULE S/TKIALS,»10,27
/7 CONFG RSP=2E12, STOKF=170
// EXEC TROUT

// TRIALS
// COMPNSE TEMP. TOPEOLs KEMJOB/ TMPML. RKUN1

®20PTION TREE,RONT
##*INCLUDE CLTTHE: TOPEOT,« MAIN s CUKFN Ts TRIN GL» DATADs BPHI

## 5UBST LEMCAL:MAGLI B. SURBS

BB SEGMENT 01, A

#eIMCLUDE CLTTHE: TPENL+ STAKT1+ R4 Ss SCRAPEs CNOV STRs AMAL
##INCLUDE CLTTHE: TOPEOL.INI TALy CN VEKGy TEI SOL» DI RECTsNPSIB
##INCLUDE CLTTHE: TOPEOL. DATAIN» STOKEs BPCALCy CON TO Ko FLOTAF
2¢INCLUDE CLTTHE: TOPEOL. BTH ETAy CON TKA

##SUBST CLTTHE: MMPENL. GHNST

®2SEGMENT 0244

S*INCLUDE CLTTHE: TOPENL. Py BETAs ARIN Ts BPHI SQ» FI FLDS

// FNDTRIALS

The execution file TOPEOL.RUNI(S) is

// GROUP TFEMP

// SCHEDULE T™MPENL. 200, 6

// CONFL RSP=26G03 SMRF=575

// FILE DSET9 7, RAs TOPENL. DSETI 71 S0010)

// FILE GHRIDFLs RAs TEMP.HKPOLEI{NOO10)
// FILE DSET70s RA» MPENL. DSET30(20010), VOL153, T25

// FILE DSETS0s RAs MPEOL. DSETS0(Z0020), VOL159, T25
// FILE DSETS9, RA» TEMP. DSETO3( S0050)
// EXEC TEMP.DSET99( S0050)

The meanings of these statements will be obvious to the experienced user butit

is worth pointing out that the DSET70 file has been obtained as the DSET80
of a previous runm.

Running times are configuration dependent, but 150 etus is typical for
a plasma occupying 257 of the grid.

In the composition file, the user may if he wishes substitute his own

files for the following routines

..A]z...
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DOUBLE PRECISION FUNCTION START(X»Y)
IMPLICIT REAL®8 (A-H.0=2)
COMMON/SETUP/IRSTRT»AVERT+» BVERT» ALPHA» BVAL+»XPs YPs RPoHP
START=RP*(1eU=X/XP*X/XP-Y*Y/YP/YP)+KP

RETUKN

END

FUNCTION AHS{HZERUS»PSIsRsZ)

IMPLICIT RHEAL®8 (A=H,0-2)
COMMON/GEOM/NZPydnPs ISYMsNHZ o NHR» INDEL o NGxI s NREDs» NEQU
s NGM1»

1 AMINORykMAJORsHZoHRAvHEIGHT» RINNER» ROUT Ky DELTA» DELTAIL

COMMON/PARAY/IPSIP1yIPSIP2eJPSIP1+JPSIP2s ILIM1»ILIM2sJ
LIM1,
1  JLIM2+A+BsCoPSLIFvTORACUA» CALCUi» Dy Ey PIMUU s BZ ERO
COMMON/SOLVL/NSTEPS+NOIT»ITNOs ICONVS+NUPUATs ICONVP» IPO

INT,

ICUANT»OMEGA s LPS»PHI( 65065} s PHINEW(65+65) » PHIVIL(65) s

PHIVI2U65) s PHIVI1{65) s PHIVIZ2( 6512 CEIBS) s Cil 65),

CTRAANS(65)9CLsCL2+0MEGALy SOURCEIB5185) s PHITHO( 65, 65) 5

AAIB5)+331165)9CCIEB5) 5381651y nHSIDEIBS)

DATA XMUU/12.5663710=7/+P1S0/3.8696044017
IFIDMINICX=RINNEx=CILIM1=1 )¥HRy AINNEK+{ ILIM2=1 ) *Hi =,

1 CHHEIGHT=( JLIM1=1)%H2sv=HEIGHT+( JLIM2=1)1%H4=Z2) }1+444
4 DPSI=PSI=-pSIP

IFITORCUK)11911912
12 LP5I=-DPSI
11 [F(DPSI=1.0D=-6%DABSIPSIP) 129201

BN =

1 AHS=U.U

Wl 10 3
2 AhS==A*( s+C*UpP51+aZ E4IS¥*XMUU¥( D+E*DPST ) )
S AETURN

END

Users wishing to study different functional forms of j¢ need alter only
the statement with label 2.

FUNCIION P(PSIsnel)
IMPLICIT HEAL*3 (A=H»0=2)
COMMON/GEOWINZPIHHPIISY‘IHHZ!NHRIINDEKONGHIDINHED'NEQU
s HGHLy
1 RHINDR-HHAJO&-HZtHd!ﬂEIGHTvRINNEh!HOUTEﬁlDELTA-DELIAI
COMMUH/PARAM/IPSIPIvIPSI?Z-JPSIPllJPSIPZvILIMI:ILIHZ.J
LIM1,
1 JLIMZ2+AsBsCo PSIFsTORCURs CALCURY Dy Es PIMUUs BZERO
IF‘DMINI(ﬂ‘ﬂ[ﬂﬂﬂn‘(ILIHl'll*hHIRINNEH+|[LIH2'1)*HH-H|
1 Z+HEIGHT‘IJLIMI'II“Hdv'HEIGﬁT+(JLIH2‘1)“HZ'J’,1v4r4
4 DPSI=pPSI=-PSIP
IF{T04CUR}11911012
11 IF(DPSI=-1.UD=-6%DABSIPSIP)II2+241
1 P=0.0
GO TO 3
2 P=A#( D¥DPSI+U« 5% E2DPSI#DPS] )
GO 10 3
12 UDPSI==DPSI
IFIDPSI-1+0D=-6%DABSIPSIP))22,22,21
21 P=u.U
GO TO 3
22 P=A#{=D®DPS[=0. 5%E#DPSI*DPSI )
3 RETURN
END

-Al3 -







The statements with labels 2 and 22 need to be altered if a different form

of p(y) 1is used.

FUNCTION BPHI(PSIsReZ)
IMPLICIT HEAL®#8 (A-H»0-2)
COHHON/GEOM/NZP!HRP!ISYH!NHZ'FHRO[HDEKvNGHIDrNHED'NEQU
sNGM1»
1 RMINOA» HMAJON HZ sy HRsHEIGHTy RINNEx+ ROUTER» DELTA» DELTAL
COMMON/PARAM/IPSIP1sIPSIP2sJPSIP1sJPSIP2yILIM1sILIMZy]
LIM1»
1 JLIM2+AsBeCoPSIPsTOACURsCALCUH» Dy Es PIMUU» 3ZEHO
IF(UMINL(R=RINNER=(ILIM1=1)®dns RINNER+{ ILIM2=1)¥HR=R»
1 Z+HEIGHT=-(JLIM1=1)%HZy=HEIGHT+( JLIM2=-1}%*H.i=4))1+4+4
4 DPSI=pPSI=PSIP
IF{TORCUNI11+11912
11 IF{DPSI=1.0D=-6%VABSIPSIPII2s2s1
1 BPHI=BZ ERO*AMAJOR/R
GO TO 3
2 BPHI=DS5SQAT( 2. URA# B*PPSI +A#C#DPSI*DPSI+RMAJORFRMAJOR
1 #BZERO#BZERO) /A
G0 TO 3
12 DpPSI==DPSI
IF(DPSI=1.0D=-6%DABSIPSIP))22+22+21
21 BPHI=BZERO*RMAJOR/R
GO TO 3 .
22 BPHI=DSJRT(=2. 0*A®* 32 DPSI=A®CHDPSI®*DPSI+AMAJOR*RMAJOR
1 ®HZERQ#BZkn0) /1
3 HETURN
“END

The statements 2 and 22 must be altered for a different form of B¢.

In RHS, both positive and negative Ip are treated by defining ¢ > wp
or Y < wp within the plasma. The functions p(y) and F(y)(E RB¢) are
then obtained by integrating the appropriate parts of uORj¢. The constant
of integration in p(y) is defined so that p(wp) = 0 and the constant in

F(y) 1is defined so that B¢ at R=RMAJOR with ¢ = wp is the vacuum

B¢ at R=RMAJOR. The above function START is the contents of TOPEOL.STARTI (F)
and defines an elliptic cross section plasma. The file TOPEOL. START (F)

DOUBLE PRECISION FUNCTION START(X»Y)
IMPLICIT KEAL®*8 (A=H»0-2)
COMMON/SETUP/IASTRTsAVERTs BVERT+ ALPHA» BYALs KP+ YPs RPoHP
START=HP®( RP=DSURT( ( X=XP)#=2+((=YP1#22]))

RETURN

END

defines a circular cross section plasma.
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In user provided functions all the above parameters 8,C,D,E,XP,YP,RP
and HP are available for optional use. However, in RHS, the parameter A
must be the scale factor. Apart from this, the parameters may be used quite

freely.

In the straight geometry code, the composition and execution files are

// GHROUP TEMP

// SCHEDULE S/THIALS»B8,22

// CONEG HSP=2E12,STORk=170

// LXEC TROUT

// TRIALS

/7 COMPOSE TEMPeCYLIND»y REMJOB/CYLIND« AUN3

#2OPTION THEEs ROOT

#2#INCLUDE CLTIHE:CYLIND«MAIN

“HSEGMENT UlsA

®#INCLUDE CLTTHE:CYLINU«RHSsSCRAPLy CONSTH» DATAINsANALy STAXT
#HINCLUDE CLYTHE:CYLIND+CURENT» UInbCTsTRISOLsINITALy SPSI s CNVER
G

##INCLUDE CLTTHE:CYLINDL«TxINGL

“*S5U3ST LEMCAL:¥AGLI B.5UBS

HESEGMANT U294

##I4CLUVE CLTTHE:CYLIND«CONTOX

##SUBST CLITHE:CYLIND.GHOSI

// EADTRIALS

and
// GAuUP TrMP
// SCHEDULE TEMP«CYLINDsbUs3
// CONFG x52=26U39STOxk=b10
// FILL GHIDFLyxA+TE4P«STrAUSINUOULD)
// FILE DSET37snAsCYLIND.DSETOI?{SUUSY)
// FILE DSETI92HA» TEMP.DSEIS3(50220)
// ELEC TEMP.DSEI2315y220)

No P and B, function routines are provided but the standard RHS is

¢

FUNCTION RHS{PFSIsXKeY)
IMPLICIT REAL®™3 (A=H+Q=2)
COHHON/GEOM/RHINOﬁvRHAJOH!HZPINRP?HZ!HH!ISYH-NHZ;NHR
1 yHEIGHT » RINNERy ROUTEns DELTA» DELTA1
2 s INDEX s NGRIDyNgEDs HEQUaNGHM]
COMHON/PAﬁAﬂ/AvaCIPSlPlIPSIPlIIPSIPZlJPSIPIlJPSIP20
1 TORCUAs CALCURw Do EsPIMUUILIM1sILIM2sJLIM12JLIN2
COHMON/SOLVL/HSTEPSvNO[TlOHEGAuEPS!PHI(GﬁuﬁbJ!PHIHEU{G
5165)
ITNOs ICONVSsNUPDAT+ICONVPyPHIVILI(65)+PHIVIZ2(65)
PHIVJ1(65)sPHIVJI2(65) s [POINT+ICUKNT
»CHZ+»CRZUsOMEGA1»SOURCEI65+65)
»PHITWO( BS54 65)
rAAIB65) v BB1(6B5)+CCIB5)+BBI65)
v HHUSIDE(65)
DATA XMUU/12.566371D=7/,P151/9.869604401/
IF(DHIN1(X+HEIGHT‘|ILIﬂl'I)*HZl'HE[GHT+(ILIHE'I)'HZ‘Xi
1 Y=RINNER=(JLIM1=1)#HRyKINNER+(JLIM2=1)®HR=Y ) )1v4+4
4 DPSI=pSI-PSIP

(o2 % - A N I
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IF(TORCURY11411012
12 DPSI=-DpP5I
11 IF(DPSI=1.0D=-6%DABSIPSIP) 12,241
1 RHS=0.V
GO TO &
2 RHS==A%( B+C#DPSI)
3 HETURN
END

Statement 2 should be altered for a different functional form,

The 2 START files are

DOUBLE PAECISION FUNCTION START(X.Y)
IMPLICIT REAL#*3 (A=-H,0-Z)
COHMOH/SETUP/AVERT;bVEdToALPdA-BVALnKP-IP-HP-HP
STAAT=AP#( 1. 0=X*K/XP/XP-YHY/YP/YP ) +=

hETURN

END

and

DOUBLE PRECISION FUNCIION SiArT(XeY)
IMPLICIT xEAL®*8 (A=H,0-2)
COMMON/SETUP/AVEATy BYERTy ALPHAY BYALs XPr i Po AP AP
STAAT=HP*{ RP=DSIrT({X=KP)®(X=XP)+({=YP)®({=YP)))

HETUKN

EHD

Again, the parameters B,C,D,E,XP,YP,HP and RP are available for optional

use, although A must be the scale factor of the current density.
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Fig.1 Mesh cell used for constructing the difference equations.
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Fig.2 Intersections of the interface with a mesh cell.
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Fig.3 Elliptic plasma in a quadrupole field.
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Fig.4 Plots of current density, j, against plasma b/a, showing results for various ratios of plasma height to
wire separation together with the asymptotic results.
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Fig.5 TOSCA configuration used in the computations.
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Fig.6 Comparison between the TOSCA vertical field and the Shafranov vertical field obtained from the
computations.
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Fig.7 Notation for subtracting the singularity in the boundary integral.
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Fig.8 A typical DITE equilibrium showing the winding data used in the computations. The dashed
line is the plasma boundary.
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