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ABSTRACT

The great advances in MHD duct flow studies, both theoretical and experimental,
during the past few years have left earlier estimates of the pumping power required
to éirculate the liquid lithium coolant through the blanket of a nuclear fusion
reactor out of date. This report attempts to collate recent MHD research studies
relevant to fusion reactor technology. It is shown that non-uniform magnetic
fields and area changes of the pipes containing the coolant flow can dramatically
alter the flows found when the field is uniform and the pipe straight by distorting
the velocity profile, increasing pressure gradients and introduéing large pressure
drops into the system. In some situations the flow can even be confined to
extremely thin layers parallel to the magnetic field lines. Such effects could
have a detrimental effect on the heat transfer properties of the coolant and may

necessitate radical changes in the designs for some parts of the blanket.
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1. INTRODUCTION

1.1 Aim and scope of the report

If magnetic confinement fusion reactors are to be cooled by liquid metais theﬁ
the flow of the coolant through the pipework in the magnetic field will inevyitably be
very complicated, involving, for example, flows in non-uniform magnetic fields, in
pipes with changing cross-section, annular pipe flow, flows between baffles set in
pipes and flows at junctions of pipes. Previous estimates of the pressure required to
pump the liquid metal coolant were mainly based on the known pressure losses of
straight pipes situated in uniform magnetic fields (e.g. Hunt & Hancox(l)). However,
it was realised then that these estimates could be seriously in error because of the

neglect of the complexities of real cooling circuits.
This report summarises the theoretical and experimental studies of the flow of

liquid metals along pipes situated in strong magnetic fields that have been made
during the past six years or so. We emphasise the work that we have done at
Cambridge with the support of the U.K.A.E.A. and, latterly, S.R.C., but we also
review the work done elsewhere, notably the theoretical work of Walker and Ludford
at the Universities of Illinois and Cornell and of Kulikovskii at Moscow University,
and the experimental work of Carlson at Livermore and of Fraas at Oak Ridge.

These recent studies have concentrated particularly on the complexities likely
to occur in real coolant circuits. We show that if the pipe walls are electrically
insulating or, if electrically conducting are so thin that their conductance is much
less than that of the liquid metal, then the broad patterns of the flow in regions
of varying magnetic field strength or duct cross-sectional area can be predicted
quite simply by plotting the paths of 'characteristic surfaces' which are a function
of both the shape of the duct and the magnetic field. This principle is explained
in sec.2.2 and the concept is applied to flows in different types of duct in secs.
3.1, 3.2 and 3.3. Sec.3.4 looks at flows in highly conducting walled ducts and
flows in rectangular ducts are discussed in secs.3.5 and 3.6.

In sec.4.2 we describe our experimental facility for studying the flow of
mercury along several uniform bore ducts, each having walls of different electrical
conductivity, situated in transverse, non-uniform magnetic fields. Our measurements
of pressures and velocities are compared with the theoretical predictions in secs.
4,3-4.6 and 5. Comparisons are made with liquid metal MHD experiments carried out
elsewhere; on the whole our experiments appear to be unique in that there have been
no other systematic measurements of MHD duct flows in strong, non-uniform, transverse
magnetic fields.

Finally, after a short discussion on entry lengths in sec.6, in sec.7 we examine

and discuss some aspects of recent designs for fusion reactor blankets in the context

of our findings.



1.2 Typical parameters for MHD duct flows in a fusion reactor

The typical parameters for the flow of liquid metals in the cooling circuit

(1)

were set out in the aforementioned report . They are

v 1 1
(electromagnetlc stresses)z - aBo(Eoz R 35000

M = Hartmann number A o
viscous stresses av o
i s
R = Reynolds number & LIS COUD SLEesse = = A 28000
e inertial stresses _ n 5
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N = interaction parameter & - e = _— = A 44000
inertial stresses Re pvo
. ; induced magnetic field strength
R = magnetic Reynolds number & ~& . - g = "
m & y v imposed magnetic field strength Oo via. 007

Here Bo’ v and a are typical values of magnetic flux density (10 T), mean
velocity (0.5 m/s) and hydraulic radius of the pipe (0.05m) respectively while
0, M, p and u represent the electrical conductivity, viscosity, density and
magnetic permeability of the liquid metal, namely lithium.

Since the pressure gradients increase as the conductance of the duct walls
increases then ideally duct walls should be non—conducting(l). Unfortunately, at the
high temperatures which will be found in a fusion reactor, say SOOOC, non-conducting
materials which are strong enough to contain liquid metals at high pressure do not
exist and so metallic pipework with electrical conductivity o and wall thickness
t will be employed. To reduce the conductance of the wall and to avoid waste of
neutrons from the plasma, t/a must be as small as possible subject to the require-
ment that the pipe be strong enough to withstand the pressure loading. Calculations
by Hancox & Booth(z) point to t/a < 0.1 for stainless steel pipes. Thus, for the
flow of liquid lithium in such pipes the conductance ratio ¢ = th/da , which is
the non-dimensional parameter representing the ratio of the conductance of the wall
to that of the fluid, will have a value in the range 0.05-0.1 . Hoffman &
Carlson(B) suggest ¢ < 0.01 for lithium in niobium pipes. However, their value
of t/a#® 0.01 is calculated on the basis of an idealised flow circuit which might

be very difficult to realise in practice.

2. REVIEW OF MHD DUCT FLOW THEQORY WHEN M >> 1

2.1 Governing equations and assumptions

The derivation of the MHD equations for a fluid with constant properties is given,

for example, by Shercliff(é). In non-dimensional form they are
-1_2

1
av_' +v'.vv' = -yp' + Nj'AB' + R V' (2.1a)
9T = = = = e =
v.v! =0 J'=E'+v'aB' v.j' =0 (2.1b,c,d)
3B'/3t" = ~VAE'  j' =R 'VAB' V.B' =0 (2.1e,£,8)

where v', j', B', E', p' and t' represent the non-dimensional variables
velocity, current density, magnetic field strength, electric field strength, pressure
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and time respectively. The corresponding physical quantities, which are represented
by the same character but without the dash, are related to their non-dimensional

counterparts by

ov B

1<
]

v i Ji' B=Bg

N O

w <

= ' = '
E L oE P = pV P T (a/VO)T

o]

Since N and Re are so large in typical reactor pipework, we can look for
asymptotic solutions to equations (2.1) in the limits N - « and Re + o , In that
case equation (2.la) reduces to

-V(p'/N) + j'AB' =0 (2.2a)
or, by taking the curl of it
Va (1's B') = B'<MIY ~ (9B =0
This approximation only breaks down in
(1) boundary layers of thickness O(aM_l) adjacent to walls which cut
magnetic field lines (see sec.2.2)
(ii) shear layers of thickness O(aM_%) parallel to both the field lines
and the mean flow (see sec.2.6)

—1/3)

(iii) layers of maximum thickness O0(aN within the flow parallel to

the field lines but not the mean flow (see sec. 2.6)

-2/3) x O(aM_l/B) where field lines are

(5))

(iv) regions of width O0(aM
tangential to a curved pipe wall (see Roberts
Regions where equation (2.2a) holds, which includes most of the flow, are usually
called 'core flow' regions and are denoted by 'C' in Figs.la,b.
If the applied magnetic field is steady (as it would be in some kinds of fusion
reactor), BEf/BT' = 0 and equation (2.le) shows that the electric field is

irrotational. Accordingly, E' can be expressed in terms of an electric potential
g L P P

o' (= @/avOBO) as E' =-Ve¢' . Noting that Rm << 1 (sec.l.2), equations (2.1lb-g)
may now be rewritten as
v.v' =0 j' =-vd' + v'a B' (2.2b,c)
v.j'=0 VaB'=V.B' =0 (2.2d,e, f)
Equations (2.2e,f) allow B' to be defined in terms of a magnetic vector potential

A and a magnetic scalar potential ¢ as
B' =VAA' =Wy - (2.2g,h)
so that magnetic field lines are defined by lines along which A = constant.
A general solution to equatioms (2.2) for v', j' and &' was deduced by

(6)

Kulikovskii in the form of integrals of B', Vp' and their derivatives along
the magnetic field lines together with four unknown functions, one being p' ,
which are determined by the boundary conditions (see Appendix I). It follows
that the boundary layers which primarily determine the core flow are those on the

walls which cut the field lines (see Fig.2 and sec.2.2). Depending on the value



of & » the changes in v', j' and ¢' across such boundary layers vary
enormously. However, we will show that if the value of ¢ lies in one of three
ranges, namely ¢ << M-l, M_l << $ <<'1 and ¢ >> 1, then different terms in
Kulikovskii's general solution can be neglected thus enabling particular solutions
to be found in a fairly straightforward manner.

One important implication of Kulikovskii's solution is that given finite,
steady values of the flow variables at the boundaries of the core flow region, then
no instabilities can be generated in the core region. In other words, if the
boundary and shear layers are stable then the whole flow is stable and no turbulence
can develop.

2.2 Hartmann layers

Boundary layers in which there is a significant component of B normal to the
wall are known as Hartmann layers and are labelled 'H' in Fig.la. For N >> 1 the
inertial term v'.Vv' can be neglected in equation (2.1a) and the resulting
boundary layer equations are readily solved (Kulikovskii(ﬁ), Hunt & Ludford(7)).

In terms of the dimensionless normal co-ordinate to the wall directed into the

fluid, n' , and the associated unit vector § = Bf/]gj (see Fig.2), the velocity
and current density distributions in the layer are given by
v' = E;'{l - exp(—MlE'.E'I)} (2.3a)
i'a a= la a - (vIAB")A a exp(-M|Ef.§") (2.3b)

where v'! and j'! denote the core flow values of those quantities outside the

layer as n' + » ., Since v' 20 on the wall, the component of the core velocity
normal to the wall is very small; i.e.
E;'ﬁ = O(M-l) as n' + 0 (2.4)

Note that the thickness of these Hartmann lavers is inversely proportional to

the component normal to the wall of the local value of B' . The values of j' and

®' in these layers also depend on the electrical properties of the wall as will be
shown in sees.2.3, 2.4 and 2.5. '

2.3 Ducts with non-conducting walls (¢ << M_l)

At such a wall the electrical boundary condition is
j'.n=23¢"/em' =0 at n' =0 (2.5)
Thence, by applying the equation of current continuity (2.2d) to equation (2.3b) it
follows that for a continuously curving surface
it.h = sign(h.BY)M [(Vav')_.A (2.6)
or, for a gemeral surface i;.ﬁ = O(M_l) (Walker, Ludford & Hunt(s), equation (5)).
Now the core flow can be analysed using equatioms (2.2) and the boundary conditions
(2.4) and (2.6).
These conditions can be applied to Kulikovskii's general solution to obtain

solutions for non-conducting ducts. However, it is more instructive to obtain
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these results by heuristic physical arguments. Consider flow along the non-
conducting duct shown in Fig.3 where both the cross-section and B vary in the
streamwise (z) direction. Equation (2.6) tells us that the component of the core
current density normal to the wall is O(M_l) which implies that so far as the
0(1) core variables &' and v' are concerned, j' =0 1in the core. Therefore,
from equation (2.2c)

V' = v'a B' (2.7)
It is interesting to note that even though we are analysing flows in which Rm << 1,
equation (2.7) is satisfied by perfectly conducting fluids (i.e. o = @) when R = =
(Shercliff(a), sec.3.4). From equation (2.7) it may be shown that the magneticmflux
enclosed by an elemental fluid loop remains constant as it travels through the flow
(see Appendix II). The difference between this flow and that where Rm = o 1is that
in the latter case the elemental fluid loop always encloses the same magnetic field
lines whereas here it slips through them but in such a way that the flux linked is
constant.

Consider now a slim tube of fluid, spanning the duct and moving with the flow
such that at any instant the generators of its surface are coincident with field
lines (see Fig.3). At any station along the duct it has a total length So(x',z')
(this being a function of its position) and its elemental cross-sectional area G&A'
varies with s , the distance measured along the tube. Since the fluid is

incompressible and effectively inviscid and since there is no flow through the walls

(equation (2.4)) it follows that
S
J O SA'(s)ds = constant (2.8)
[e]

It may be shown that if this tube is initially aligned along the field lines then it

will continue to be so (see Appendix II). Since the flux linked is constant then

|B'(s) |6A"(s) = comstant (2.9)

and so combining equations (2.8) and (2.9) leads to

S

d

JOB_S'= I (2.10)

)
where I 1is a constant for each fluid tube.

This result was derived formally from equations (2.2) by Kulikovskii(g) and

independently, but from physical arguments similar to those used here, by Holroyd &
Walker .

Equation (2.10) is the most important equation in this report; indeed it is of
great significance in MHD duct flow literature. It implies that in the limit
N - o the flow travels along what we will call 'characteristic surfaces’, defined
as those surfaces in the duct on which I = constant . These surfaces may turn
back on themselves; they do not necessarily extend from far upstream to far down-
stream of some region where the shape of the duct and/or B' wvary. Insome cases

the surfaces may have singular and indeterminate behaviour; an example is a variable
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area rectangular duct in which the generators of the walls are parallel and
perpendicular to the field lines of a uniform magnetic field as shown in Fig.4a.
Such cases are discussed in more detail in secs.2.6 and 3.5.

In general, these 'characteristic surfaces' indicate the general feature of
‘the flow. For example, in Figs.4b and 4c there is a speeding up of the flow near
the sides of the pipe and a corresponding reduction in velocity near the centre of
the duct. Indeed, in some cases a tube of stagnant fluid can form there parallel
to the field lines. However, the actual velocity profiles and pressure variations
across a region of non-uniformity, can only be found by more detailed calculations.
The reason is that the fully-developed flow upstream does not suddenly become
transformed into flow along 'characteristic surfaces' in the region of non-—
uniformity. Inspection of the flows in Figs.4b and 4c shows that the electric
potentials across these two ducts far upstream and downstream of their non-
uniform regions, say A@i at section zi and A@é at section zé , are different;
in the former case because of the change in mean velocity and in the latter case
because of the change in field strength. There is, therefore, a tendency for
second order O(M_%) electric currents to circulate in the streamwise direction.
Order of magnitude arguments or detailed calculations show that these currents
persist for large distances, of O0(duct radius x M%), both upstream and down-
stream of the non-uniform region(lo’ll). It is these recirculating currents which
determine the pressure changes and the velocity distributions.

Detailed calculations for various ducts are given in sec.3 and some experimental

confirmation is provided in sec.4.

2.4 Ducts with thin conducting walls (M-1 << ¢ << 1)

At the surface of a duct with conducting walls the electrical boundary conditions

are ; ,
29" A %y 8¢w

continuity of component of j' normal to wall i j'n = - o Far (2.11)

continuity of component of E' tangential to wall Vé'ad = V@éz\ﬁ (2.12)

where @; is the electric potential in the wall. Equation (2.12) follows from
equation (2.2c) since v' = 0 at the wall. Since equation (2.2d) is valid in the

wall, then for a thin wall of thickness t (<< a)

o
it =-GH G e = it (2.13)
where V2 is the Laplacian operator in the surface of the duct (i.e. it does not
contain the derivative lean'z) (see Appendix I(l)). Since the electric field
parallel to the wall only changes by O(M_l) through a Hartmann boundary layer, it
follows that if &' >> M-.1 then the boundary condition on the core flow is

itd = 477" as 0 e (2.14)
Since we are assuming that ¢ << 1 , equation (2.14) implies that to first order

ila=o0 : (2.15)
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which is the same condition as on the current density in the case of a con-
conducting duct discussed in sec.2.2.

The boundary condition on the core velocity is also the same as that for a
non-conducting duct, namely equation (2.4).

Therefore, to first order, v' and j' satisfy the same equations and boundary
conditions in these two types of duct. Consequently, in a thin-walled duct the flow
must also travel along 'characteristic surfaces' as defined by equation (2.10), but
the velocity and pressure distributions are determined by the second order (0(¢%))
currents recirculating in the streamwise direction which have to match the weaker
0(¢) currents circulating in Oxy=-planes in the fully-developed flows upstream and
downstream. This is the reason for the large differences in the flows between thin-
walled and non-conducting ducts when the shape of the duct and/or B' change (see
sec.3.1).

2.5 Ducts with highly conducting walls (¢ >> 1)

If the walls of a duct are very highly conducting so that ¢ >> 1 , then
equation (2.14) implies that the potential in the wall, @é , satisfies
vzq:‘:T =0 (2.16)
Unless current is supplied to the wall from an external source, the only solution to
equation (2.16) is
éé = constant (2.17)
Since @& = o' and the potential change through a Hartmann boundary layer is only
O(M_1) , then taking the value of the constant in equation (2.17) as zero it follows
that if ¢ >> 1
o' =0 at n' =0
and so Q; =0 as n' > o (2.18)
Since the boundary condition on the core flow velocity, equation (2.4), still holds,
it follows from equations (2.2c) and (2.18) that
j'afi= (@'AB)AR  as ' > (2.19)
No general form of Kulikovskii's solution (Appendix I) has been found for
highly conducting walled ducts but some particular solutions have been found which
will be described in sec.3.2. An important general conclusion concerning the
electric potential distribution in the core from the solution (see equation (AI.3)
in Appendix I) is that if B' is uniform then boundary condition (2.18) implies
that &' = 0 throughout the flow. However, if B' 1is non-uniform such that
B'A VB'_2 #0 then &' # 0 in the core flow.
For a uniform magnetic field the general form of the solution may be derived
from the equations in Appendix I or by inspection of equations (2.2). Letting

B' = (0,B' =1,0) then &' = j'
- ¥y y

0 throughout the core and
_ 13
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] ox' v, Ix N 3z’

v

==

' 1
X z



2 2
L ] ]
vi= - 2B DBy pnr,a)
y o o7
The non-dimensional pressure p'(x',z') and the unknown function of integration

g(x',z') are determined by satisfying equation (2.18) at the boundaries of the
core flow at the upper and lower walls of the duct, say YU(x',y',z') =0 for

y' >0 and YL(xﬂyQZD =0 for y' <0 . The conditions are

2 2
8p' Y _ 3Y 3%’ . 3p! p' 3y
- T v+ 7 4 + )+ g - = =0
Ix' 9x dy - 32'2 dz' dz
where Y may be either YU or YL . Eliminating g(x',z') between these two

equations leads to a second-order linear partial differential equation for
p'(x',z") .

To avoid unphysical singularities in the pressure distribution pSlx! 2'),
conditions may have to be placed on the regularity of the derivatives of p' at
certain points around the duct wall(lz).

Detailed calculations of the flows in rectangular and circular ducts of
variable cross-sectional area with highly conducting walls situated in transverse,
uniform magnetic fields have been carried out by Walker & Ludford(12’13). From
their work, and ours in sec.3.4, it is possible to draw some general conclusions
about flows in ducts with highly conducting walls situated in transverse magnetic
fields, be they uniform or non-uniform.

(i) The fully-developed flow found in a straight pipe in a uniform transverse
field is realised within a few duct radii upstream or downstream of a
region where the cross-section of the duct and/or B wvaries,

(ii) The pressure gradient remains of O(UVOBE) even in non-uniform regions.
(iii) Changes in the velocity profile along the duct, u—lau/az, are of the
same order as the slope of the duct wall, Y_laY/az, or, we conjecture
on the basis of sec.3.4, of the magnetic field gradients B_laB/az.

2.6 Narrow layers parallel to the magnetic field lines

In the core flow analysis using equations (2.2) it is assumed that the inertial
terms and viscous terms are negligible because N >> 1 and M >> 1 and because
the velocity is assumed to vary over distances comparable with the radius of the
duct. However, abrupt changes in either the slope or electrical conductivity of
any boundary surface can lead to the development of large velocity gradients whose
magnitudes are limited by the inertial and/or viscous terms which have been
neglected in the first approximation. In other words, these discontinuities must,
in fact, be extremely thin layers of finite thickness & » the nature of which are
determined by the relative magnitudes of M and Re and by the nature and
orientation with respect to both the magnetic field lines and the mean flow
direction of the discontinuity.

If the magnetic field is large enough (a sufficient, but not always necessary,



1
condition being M? >> Re) or if there is no flow normal to the layer, then their

thickness is determined by a balance between electromagnetic and viscous stresses.

In that case equation (2.la) reduces to 82y
0= -Tp' + Ni'AB' +1-—
. e oL
for a two-dimensional layer, the normal to which is designated by ¢ . Taking j'

and v' to be O0(1) , then this equation suggests that
§/a =~ kM_é
Typically the numerical factor is never found to be more than 5 .

In the proposed fusion reactor flows, however, M% << Re and so the balance in
the layers is between inertial and electromagnetic stresses (provided there is flow
normal to the layer). Equation (2.la) now reduces to

v'.Vv' = -vp' + Nj'a B'
and inspection of it suggests that
| s/a = 1 /3 (2.20)
where k has been found to be about 5 (Hunt & Ludford(7)
& Leibovich(14)

, equation (4.28); Hunt
). These inertial/electromagnetic layers have not been analysed for
non-uniform magnetic fields but order of magnitude arguments suggest that estimate
(2.20) is still wvalid.

When there is no flow through these layers they are usually referred to as shear
layers. (For a comprehensive review of many types of these layers in uniform
magnetic field situations see Hunt & Shercliff(ls).)

In the MHD duct flows currently considered for fusion reactors the main causes
of discontinuities in the flow are

(i) changes in the slope of the pipe walls (including bends)

(ii) junctions of two or more pipes

(iii) pipes ending, say, inside a reservoir into which they discharge fluid

(iv) changes in magnetic field strength and direction
The positions of the discontinuities, and hence the layers, are easily discerned in
any design by simply noting where the 'characteristic surfaces' have discontinuities
or suddenly change direction (see Fig.lb). Examples of such layers are denoted by
'S' in Figs.la,b.
Since these layers are at least Mé times thicker than Hartmann layers the
boundary conditions on the flow in them where they meet walls at which there are
Hartmann layers are the same as for the core. The other condition on them is that
they must match the éore flows on either side as |c| -,

Generalising from those flows studied so far we find that

(i) if the walls of the duct are of uniform conductivity and have no
significant portion parallel to the magnetic field lines, then a
discontinuity in their slope with respect to the field lines produces

layers but without any significant velocity or pressure gradient excesses

9



in the 1ayer(11’12).

(ii) if some significant portion of the walls of the duct is parallel to the
field lines and is either non-conducting or poorly conducting (i.e.
¢ << 1) then changes in the field strength or cross—sectional area of
the duct produce large velocity excesses in the boundary layers on those
walls. These are one example of the class of layers where an 0(1)
change of &' 1is found across the layer. They can also generate signi-
ficant pressure gradients along the flow (see sec.3.3).

(iii) if from a pipe situated in 4 transverse magnetic field fluid is ejected
into a larger volume of fluid or if the pipe bends through a right angle
such that it becomes parallel to the field lines then, provided N is
large enough, the flow runs parallel to the field in very thin layers
of thickness O(aM-%) or O(aN_l/B)

such layers there can be a significant pressure gradient and, obviously,

rather than across it. Along

the flow pattern is totally different from that in the absence of the

field even though the flow may be in a pipe eventually parallel to the
field.

3. EFFECTS OF NON-UNIFORM MAGNETIC FIELDS AND DUCT AREA CHANGES ON PRESSURE
DROPS; THEORY

3.1 Circular non-conducting and thin-walled ducts

In this section we mainly consider flows in straight ducts placed in non-uniform
magnetic fields but we draw attention to the similarities with flows in ducts whose
cross—sectional area changes situated in uniform, transverse magnetic fields. Because
they have much in common, we concentrate here on flows in ducts with non-conducting
or thin conducting walls (i.e. walls for which ¢ << 1). Some general properties of
these flows have already been given in secs.2.3 and 2.4.

Consider a circular duct of radius a placed in a magnetic field B defined as
(O,BO,O) for z < =)a
= (Bx’By’Bz) for =-Xa <z < Aa (3.1)
(0,(1—&)B0,0) for z > Aa

1
where B is constant, A satisfies A <<M? 1in a non-conducting duct and

|® | |
|

A << ¢_% in a thin walled duct and o = 0(l) . The 'characteristic surfaces' in
the duct for such a field are sketched in Fig.4c.

Clearly, the induced potential difference across the duct when z << -}a
(==2voBoa) is greater than that when z >> )a (a=2(1-u)vOBoa) . Thus, there is a
streamwise potential gradient which induces a streamwise current flow, jz » which
extends over the length 2a of the duct. The following order of magnitude argument

shows that £ >> X . From equation (2.2¢)
ov B a=-o(l-a)v B a aov B a
= o o 0o _ oo
Iz La La
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and for continuity of current flow, equation (2.2d) implies that
. 2
] = 2 15 .
i an/ a = acvoBol {3:2)
jx , though, must be of the same order as the uniform transverse current flow in the

fully developed flows that are realised far upstream and downstream where the duct

(16)

is straight and the field strength uniform. Shercliff shows that
jx = cwc)]?:ol‘fl-l in a non—conducting duct (3.3a)
~ 0v0B0¢ in a thin-walled duct (3.3b)
Therefore equations (3.2) and (3.3) are only compatible if
L = M% in a non—conducting duct (3.4a)
~ ¢_% in a thin-walled duct (3.4b)
(Mathematical support for these arguments may be found in Holroyd & Walker(lo) and

Walker & Ludford(11’17).)

expressions (3.4) imply that the effects of even an extremely short length of non-

For the fusion reactor parameters quoted in sec.l.2,

uniform magnetic field in non-conducting and thin-walled ducts will be felt over
distances of 0(100a) and O0(l0a) respectively both upstream and downstream of
the non-uniform field region.

Having estimated the strength of the recirculating currents induced by the non-
uniform field, we can now establish more definite criteria for the neglect of
inertial stresses than simply N >> 1 . In the non-uniform field region (-ia <z <2a),
equation (2.2d) shows that

jx = ajz/la = anOBD/QA
Since o is O0(1) then the ratio of the electromagnetic and inertial stresses in
this region is
linBl 3B,y
Tev- Wl = o 2pa b
Using the definitions of & given by expressions (3.4), it follows that inertial

stresses may be neglected if

_1
NM 2 >> 1 i.e. M3/2

1
Ng? >> 1 in a thin-walled duct (3.5b)

>> R in a non-conducting duct (3.5a)

Both of these criteria are easily satisfied by fusion reactor parameters but are not
so easily satisfied in laboratory experiments.

From a practical point of view the most important effect of non-uniform magnetic
fields and changes in the cross-sectional area of the duct is that the pressure
gradients are increased enormously. These gradients can be estimated by order of
magnitude arguments and the estimates can in turn be supported by mathematical
argument(10’11’17). To appreciate their magnitudes it should be borne in mind that
in a fully developed flow (i.e. straight duct and uniform, transverse magnetic

field) the streamwise pressure gradient

dsldn < oo B4R (3.6)
o 0
(16). In

K=
Rl—

where £ is M? in a non-conducting duct and ¢ 2 in a thin-walled duct
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the regions where the fully-developed flow is disturbed by the recirculating
current, i.e. -2a <z < -la and Aa < z < fa , there is an additional pressure
gradient, say dp/dz , due to the component jx of the circulating current. Since
this jx is of the same order as the fully developed flow jX then dp/dz 1is of
the same order as dp/dz in equation (3.6), but it takes opposite signs upstream
and downstream of the non-uniform region because jX moves in opposite directions.
It follows, then, that an additional fall (or rise) in the pressure in the pipe over
the length f%a can occur, say AE » which from equations (3.4) and (3.6) may be
estimated as

AE = aongaM_% in a non-conducting pipe

e quBga¢% in a thin-walled pipe
Note that if the field rises in the streamwise direction, o < O and so Ap is
negative. Thus, for example, a large peak pressure will be found as a flow enters
a region of magnetic field.

If such peak pressure rises can occur, then the pipe may have to be strengthened.
However, the obvious method of doing this, namely by increasing the wall thickness
of the pipe, is undesirable since it will increase ¢ and hence the pressure
gradients and hence the total pressure loss.

The rise and fall in the pressure upstream and downstream of the non-uniform
field region due to the recirculating current do not exactly cancel each other out.
There is in fact a net pressure drop, Ap < |AE[ » introduced into the pressure
distribution. The pressure distributions along and the variation of the pressure

drop Ap with o in circular non-conducting and thin-walled ducts are shown in

Figs.5, 6, 7 and 8 respectively. Note how the abscissae in Figs.5 and 7 are

Ll

compressed by scaling them on M% and ¢H respectively. Thus, the non-uniform
field region, -Aa < z < Aa , is compressed into a narrow region near z = 0 . These
figures show that for a flow moving to a weaker magnetic field the negative pressure
gradient is increased upstream of the non-uniform field region where jX is
augmented by the recirculating current but just downstream of the non-uniform field
region positive pressure gradients occur. The pressure also varies considerably
across the pipe.

Theoretical velocity profiles, streamlines and streamlines of the recirculating
current in a circular non-conducting duct are shown.in Fig.9 assuming, as in
Figs.5-8, that N is large enough to satisfy condition (3.5a). If N >> 1 but is
not large enough to satisfy N >> M% then the flow will not follow exactly the
"characteristic surfaces' in the non-uniform field region. In the uniform field
region order of magnitude arguments suggest that the fully-developed flow is still
disturbed over distances of about aM% but the effects of the inertial forces will

mean that the flow develops differently and, in turn, this affects the flow in the

non-uniform field region as well,
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For a thin-walled duct condition (3.5b) is easily satisfied either in a reactor
duct or in laboratory experiments. However, in deducing that the flow travels
along the 'characteristic surfaces' in thin-walled ducts we assumed that ¢ is so

small that the ratio 2,
" EAA)
current entering wall w

1
= 2
recirculating current ¢% = ¢ << 1 (3.7

since V2®$=c 0(1). This condition is hardly satisfied by the larger values of ¢
likely to be found in fusion reactor pipework and so the flow will resemble that in
a highly conducting walled duct (discussed in sec.3.4) more closely than that in a
non—-conducting duct. '

3,2 Bends in non-conducting and thin-walled ducts in a uniform magnetic field

For non-conducting or thin-walled pipes containing bends in a plane normal to
B the 'characteristic surfaces' are not displaced relative to the pipe axis, they
follow the pipe round. Thus, no large changes in the flow or in the pressure
gradient are expected. However, the vorticity of the core flow parallel to B is
changed by the bend by an amount of O0(a/R) where R is the radius of curvature
of the bend. Consequently, when N >> 1 there will be a local change in the
pressure gradient of 0(a/R) but no significant effects will be felt upstream or
downstream of the bend.

For pipe bends in a plane parallel to the magnetic field lines the
'characteristic surfaces' are displaced towards the walls |x| = a as shown in
Fig.1l0 where the duct has turned through an angle of about 60° . 1If the bend is
incréased to 90° so that the pipe is aligned parallel to the field lines, the
flow will be confined to narrow jets of thickness ¢ at the side of the duct.

8 depends upon the relative magnitudes of M and Re as discussed in sec.2.6.
The thickness of these layers has not been determined for a circular duct but in a
rectangular duct order of magnitude arguments baéed on the theory in sec.2.6
dictate that

§/a = M
~ N'1/3

rl—

if M% >> Re
if M% “ R (3.8)
In both cases the thickness increases as the flow moves downstream.

Since the fluid is confined to these jets which grow, albeit slowly, the wall
shear stresses are large and there must be some current crossing the magnetic field.
Both these effects produce much larger pressure gradients, (dp/dy)” , along this
part of the duct than are found in hydrodynamic flow, (dp/dy)v , even though the

magnetic field is parallel to the pipe axis. From equations (3.8) it follows that

(dp/dy) J/ %
W = M if M >> Re ) (3-93)
v 2/3 }
= N if M? << Re s, N >>1 (3.9b)
It is interesting to note that in the experiment carried out by Young, Holcomb
& Fraascls) at Oak Ridge where the pressure gradient was measured in a rectangular
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duct parallel to the magnetic field just after it had turned through 90° , 1t was

observed that

1

(dp/dy) / /(dP/dy)v = 100
In their experiment, M ~ 3000 , R = 7000 so that N ~1200 . Thus M? << R_,

e
2/3 o, 100 in agreement with out estimate (3.9b).

N>>1 and N
Note also that upstream of a bend such as this the flow will be disturbed by

currents circulating axially because the downstream induced electric field is zero

(eventually) much like the flows along ducts whose area changed or the field strength

changed. Thus, there will be an additional pressure drop Ap upstream of the bend

where
7 .~1 a .
Ap = UavOBOM z in a non-conducting duct
1
n:uavOB§¢2 in a thin-walled duct

3.3 Junctions of pipes

Where junctions between non-conducting and thin-walled pipes occur the analysis
used for bends can be applied with little modification. The first step is to trace
out the 'characteristic surfaces' and the second is to consider the development of
the flow upstream and downstream of the bends that are thus located. Sudden changes
in the direction or abrupt termination of the 'characteristic surfaces' point to the
existence of shear layers in the flow (see sec.2.6 and Fig.1b).

These ideas cannot be applied to junctions of highly conducting pipes. However,
our discussions of flows in such ducts in secs.2.5 and 4.5 suggest that any
disturbance of the meeting flows will be confined to the immediate vicinity of the
junction.

3.4 Circular highly conducting walled ducts

No general or particular solution has been found for the flow in ducts with

(19)

highly conducting walls in a non-uniform field. However, Holroyd developed a

solution for cases where there are only slight changes in B' . Thus, in the
magnetic field defined by equations (3.1), a << 1 . In such a case B' and the

core flow variables can be expanded as power series:

N C e I -

B' = B(O) + aB(l) + azB(z) s SR v
where the zero order sclution (EFO),K‘O) etc.) corresponds to the fully developed
flow upstream. Substituting these series into equations (2.2) and making use of
boundary condition (2.18) leads to an inhomogeneous partial differential equation
for the first order pr?s§ure term p(l) . Holroyd then found an approximate power

1
p

series solution for in a circular duct, and thence derived expressions for

V(l) etc.

This theory shows that the disturbance to the flow is now confined to the non-
uniform field region and that the pressure gradient remains of the same order as

its fully developed flow value, namely
2

dp/dz = ov B
oo
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The fractional change in the mean velocity in the non-uniform field region is 0(a)
in line with our generalisation in sec.2.4.

Later, in sec.4.5, pressure distributions and velocity variations measured in a
highly conducting walled duct will be compared with corresponding theoretical
distributions derived from the above theory.

Since the currents in the duct are O(UVOBO) , it follows that a sufficient
condition for inertial stresses to be neglected is N >> 1 . This is a weaker
condition than those for non-conducting and thin-walled ducts analysed in sec.3.l.

3.5 Rectangular ducts with constant wall conductivity

The analysis of secs.2.2 and 2.4 and the methods of secs.3.1 and 3.2 are
applicable for a wide range of shapes of duct and non-uniform magnetic fields.
However, it is possible to envisage cases in which the 'characteristic surfaces'
are indeterminate making the previous analysis irrelevant. Fig.4a shows an example
of such a degenerate case being a non-conducting rectangular duct with its side
walls parallel to a uniform magnetic field and its top and bottom walls diverging.
If the cross-section of this duct is taken as the limit of a deformed elliptical
duct then the effect of the area change is to make the 'characteristic surfaces'
move abruptly to the side walls. 1In Fig.4a, the flow is diverted from the core
upstream to the walls in a narrow layer spanning the duct of thickness either
O(aM_%) or O(aN_1/3)
magnetic fields are not hard to find but the detailed form of the field must be

(see sec.2.6). Analogous examples with non-uniform

known to determine whether or not the previous analysis still applies.

Using this last argument for a duct with non-conducting walls leads us to
conclude that the bulk of the flow is confined to boundary layers of thickness &
adjacent to the side walls parallel to the field lines, while the core velocity is
only O(VOG/a) . Thus the velocity in these side wall boundary layers is

O(avolé) . These qualitative arguments are supported by asymptotic analysis based

on equations (2.2) as N » = (8). As was shown in sec.2.6, if
1 =il
MZ >> R, , 6/a = O(M %) (3.10a)
but if N> 1 and M <<r, , 82 = oY) (3.10b)

In either limit, the second being more relevant to fusion reactor calculations, the

boundary layers are very thin.
The only experiments that have been performed using such ducts have been for

values of N <1 . Even so, the predicted high velocities in the side wall boundary

(20)

layers have been observed (Branover & Shcherbinin Slyusarev, Shilova &

Shcherbinin(21)).
As with other ducts, the effect of an increase or decrease in magnetic field
strength 1s to provide a path for a streamwise electric current circulation (see
(8)

Walker, Ludford & Hunt' ', Fig.3). This leads to an increase in the pressure

gradient. In the limit (3.10a) for a variable area duct, the fully developed flow

15



- 1
pressure gradient of O(Uvo EZM 1) is increased by a factor of M? to
-l
O(ovoBgM 2) , and remains of the same order across the whole cross—section (unlike

that in a circular duct). Note also that the fully developed flow is only disturbed
over a few duct widths immediately upstream and downstream of the expansion. It
seems reasonable to expect that a non-uniform magnetic field would produce similar
effects,

In a variable area rectangular duct with highly conducting walls, Walker &
Ludford(13) show that the pressure gradient remains of O(GVOBE) , and it is to be
expected that it remains so in a non-uniform magnetic field.

3.6 Rectangular ducts with mixed wall conductivities

A type of rectangular duct found in many MHD laboratory experiments (but unlikely
to be found in fusion reactor pipework) has a pair of highly conducting walls
parallel to each other and the field lines, and the other walls non—conducting (see
Fig.11). Should the field be non-uniform then it must vary only in planes parallel
to the conducting walls (i.e. there is no variation across the duct). In such ducts,
should the field strength decrease along the duct or should the non-conducting walls
diverge then currents will flow along the conducting walls from regions of high to
low induced electric field, vaB , as indicated in Fig.ll. This points to a non-
uniform pressure gradient along the duct.

It is instructive to analyse this particular duct flow a priori rather than by
means of Kulikovskii's general solution. The advantage of studying this particular
type of duct flow is that the analysis is valid for the range of N and variation
of B found in our experiments. If the conducting walls are assumed to be

perfectly conducting then the electric field component E; is constant along the

duct, say E0 (which implies that E; = E; 0 , jz (in the fluid), jy and Vo
are all negligible and the remaining non-zero core variables are independent of the
X co-ordinate. It therefore follows from equations (2.2a) and (2.2¢) that

(§f.v)j; =0 so that j' = (j;(A),0,0)
where A(y',z') 1is constant along a magnetic field line (it is, in fact, part of
the magnetic vector potential A defined in equation (2.2g)). By deriving the
velocity components from a stream function ©O(y',z') so that v = -Va (0,0,0)
equation (2.2b) is automatically satisfied and the only non-zero component of

equation (2.2c) may be written as

j' =g +8' 2 (3.11)
X o as

where 090/3s is the velocity component in the Oy'z' plane normal to a field line

and s 1is the distance measured along that field line. From equation (3.11) it may

be deduced that s
0 - GyE) |

the integration being carried out along magnetic field lines. This solution

automatically satisfies boundary condition (2.4) at the non-conducting walls. An
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expression for the flow rate, along the duct, Q , can easily be derived from this

expression and this can be related to the pressure gradient dp/dz = ijy as

S -1
2-nf,+f @5}

where So is the total length of the field line between the non-conducting walls
and 2b 1is the distance between the conducting walls. To complete the solution the
value of E0 is required. This can be determined by integrating equation (3.9)

over the area of the conducting walls, Aé , and equating the term
= 1 1
fj ig dy'dz
Al

to the total current, if any, supplf%d to the walls from any external source.

In practical cases the finite conductivity of the walls invalidates these results
because the current flow along the walls leads to a longitudinal potential gradient
i.e. Eo varies with z . For a straight duct in a non-uniform field a good
approximation for the variation of E0 along it can be found by mneglecting jz
in the fluid, jy and Vy , and applying the thin-walled boundary condition at the

conducting walls (even though they are not necessarily thin). Then it may be shown

that E (z) satisfies
o 2
d Eo 2 2
5 T m E = im"v B'(2)
dz o oy )
where Bg(z) is an average value of B; across the duct and m~ = 1/¢b . Use of

the two relevant boundary conditions, namely that jz = 0 at each end of the

conducting walls, determines Eo. j; may then be calculated from the x-component

)(19).

of equation (2.1b) and thence p' from the z-component of equation (2.2a

(22)

A more detailed analysis of the problem by Holroyd , taking into account the
longitudinal current flow in the fluid and the finite thickness of the conducting

walls, but neglecting v, , justifies the assumptions made in the above analysis.

4. LIQUID METAL MHD DUCT FLOW EXPERIMENTS AT CAMBRIDGE

4.1 Aims of the experiments

The aim of the experimental programme at Cambridge has been to test the theory
of MHD duct flows when the magnetic field is effectively very large so that N >> 1.
Our main interest has been in measuring pressure, velocity and electric potential
distributions in straight ducts situated in non-uniform, transverse magnetic fields.
The application of the experimental results has been to aid the design of fusion
reactor coolant flow circuits, but, of course, it is not possible in laboratory
experiments, where mercury rather than lithium must be used, to obtain values of
M, N and Re comparable with those expected in reactor pipework such as are
quoted in sec.l.2.

However, if the theory can at least be relied upon for correct scaling of the

flow as M, N, Re and ¢ vary, then laboratory measurements should be of some value
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in designing a prototype. The scaling could be tested by taking measurements at
various values of the parameters in the experiments. We designed our experiments
to achieve values of M < 600 , N < 150 , Re <9000 and ¢ =0, 0.1 or 10 . Such
a parameter range can be realised with velocities and pressures just large enough
for measurement. Higher values of N could only be obtained by decreasing the
velocities but then in some cases satisfactory measurements become impossible.

4,2 Apparatus

A new MHD liquid metal flow circuit shown in Fig.12 had to be built for these

experiments. Basically it is similar to previous circuits used by Alty(23) at

(243 at the University of Warwick.

Cambridge and Hunt

The magnetic field is provided by an iron-core C-magnet designed and manufactured
at Culham Laboratory. Variations in the field strength along the air gap of the
magnet could be produced by attaching suitably shaped pole pieces to the ends of the
yoke. On the basis of computations at Culham, appropriate pole pieces were designed
to produce a field that decreased by 50% from one uniform value to a lower uniform
value - the step change field, Fig.13a, and a field in which a length of uniform
field was followed by a length of steadily decreasing field strength - the slow
change field, Fig.13b. In the slow change field there is a 40% decrease in the
field strength over a length of about 10 air gap widths. From Figs.13a and b it
can be seen that the maximum field strength, about 0.6 T, is obtained over a
length of about 450 mm and an area of about 100 x 100 nm?. These two fields
allow the effects of both decrease in field strength and rate of decrease of field
strength on the flow to be studied.

Mercury is used as the liquid metal because of its relative safety and ease of
handling at room temperature, as well as allowing inexpensive flexible PVC tubing to
be used. It is pumped from the lower weir tank by a stainless-steel gear pump
(loaned to us by Dept. of Engineering, Univ. of Warwick) to a similar upper weir
tank; between them they maintain a constant pressure head across the circuit and,
hence a .constant flow rate through it. Except for the overflow mercury which is
returned directly to the lower weir tank, the main mercury flow is through a
laboratory made electromagnetic flowmeter (similar to that used by Alty(23)) with a
response of 20.5 cm3/s per mV and then through the test duct to the lower weir
tank. Flowrates up to 150 cm> /s could be achieved.

Pressure differences are measured by an air-over-meths-over-mercury manometer
built to a design used by Shercliff(ls) which gives consistent readings down to about
0.1 mm meths,

The (steady) electric potential distribution within the flow is measured by a
probe similar to that used by Hunt and Malcolm(zs). In non-conducting ducts
velocities can be deduced from potential measurements using equation (2.7).

Confirmation of these deduced velocities by direct measurement, as well as velocity
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measurements in other ducts, are made with DISA hot film anemometry equipment using
their hot film probes, specially designed for use in electrically conducting
liquids. (Such probes comprise a 70 um diameter quartz rod upon which is
deposited an extremely thin layer of nickel which in turn is covered by a 2 um
thick layer of quartz to insulate the nickel from the fluid.) Reliable velocities
of down to 2.5 mm/5were successfully measured with these probes which is
significantly lower than the lower limit of 30 mm/s quoted by Malcolm(26).

Calibration of the probes was done in the highly-conducting walled circular
duct (described below) where the velocity over the whole cross—-section could
reliably be assumed uniform when the magnetic field was uniform. For velocity
measurements in this duct, it was first of all positioned so that the probe was in
the highest uniform field region about midway between the end of the magnet and the
position where the field strength changed along its length. In this position the
velocity would be uniform and so the probe could be calibrated. The duct, complete
with probe, was then moved until the probe was in’ the non-uniform field region and
the required velocity measurements were made. For velocity measurements in the non-
conducting duct the probe had to be transferred to it from the highly conducting
duct after calibration.

Four different ducts were used in the experiments, each having 14 or 15
pressure tappings along its length. All were about 1,6 times as long as the
magnet so that when moved relative to it the flow pattern, which is determined by
the magnetic field, would not be affected. Apart from the second duct described
below, all were fitted with probe traversing gear to enable hot—film and potential
probes to be inserted into the flow to measure the velocity and electric potential
distributions. Basic details of the ducts are as follows:-

(1) circular non-conducting walled duct - made from 78.2 mm ID x 5.53 mm

wall ABS (plastic) tube

(ii) circular thin-walled conducting duct - in conjunction with Culham two

ducts were designed for use with mercury with conducting walls such that
both ¢ (= cwtlca) << 1 and the contact resistance between the walls and
the mercury was zero (thus simulating the expected lack of contact
resistance between liquid lithium and niobium or stainless steel pipes in
a fusion reactor). The only suitable material is copper for which

UW/U = 60 whi;h requires t/a g 0.002 to satisfy ¢£0.1 .

In one design a length of the aforementioned ABS tube was divided
longitudinally into two halves. Each half was lined internally with
0.125 mm  copper shim and they were then clamped together. This
assembly could only be used for pressure measurements since then the
longitudinal plane of the breaks in the copper wall could be aligned with
the plane of symmetry of the magnetic field, namely the mid-plane of the
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air gap parallel to the pole faces, which is also the plane of symmetry
of the internal current flow (i.e. there is no current flow across this
plane and hence the breaks in the wall are unimportant).

In the second design a circular, slightly tapered (=0.05°) mandrel
was electroplated (externally) with copper. After lapping with fibre-
glass the mandrel can be knocked out leaving an internally plated tube
with no breaks in the wall. Such a tube can be rotated about its axis
allowing probes to be positioned almost anywhere over its cross-section.

With this plating thickness ¢ =~ 0.2 and on the basis of the
experimental results it remained so throughout the experimental programme
thus belying the fears of Glaberson et al.(27) that mercury would quickly
erode copper walls. Comparison of the measured pressure gradient in
these ducts in a uniform magnetic field with the theoretical value
derived from the theory of Chang & Lundgren(zs) suggests that contact
resistance became negligible once a proper amalgam had formed at the
mercury/copper interface.

(iii) ecircular highly conducting walled duct - made from 82.5 mm ID x 6.35mm

wall high conductivity copper pipe giving ¢ % 8.75.

(iv) rectangular duct - the highly conducting side walls of high conductivity

copper 6.35 and 9.5 mm thick were clamped to PVC non-conducting top

and bottom walls by 42 stainless steel bolts passing through the latter. By
appropriate use of washers, bushes and gaskets the duct was sealed and

the conducting walls were electrically isolated from each other.

Internal dimensions - 69.5 mm between non-conducting walls x 87.3 mms .

4.3 Measurements in the non-conducting duct

The pressure distribution along the duct for the step change field shown in
Fig.13a is plotted in Fig.14 in the dimensionless form derived from the theory in
sec.3.1. On account of the small pressure gradients in a non-conducting duct, all
six sets of readings were taken at the highest obtainable magnetic field strengihs
and so in this case there could be no verification of the theoretical scaling laws
for Ap . 1In the highest uniform field region, the pressure, p , agrees quantitat-—
ively with the theory but in the non-uniform region the variation of p has only
the same form as the theory near z = 0 . The negative peak pressure is about twice
as great as that predicted by the theory, and does not extend as far downstream as
the theory suggests. Note also the positive peak pressure, AE=¥ 2GaVOB§M_% where
the flow enters the magnetic field.

Experiments were also carried out with the slow change field shown in Fig.13b.
Then near z = 0 a negative peak pressure of about 0.40avoB§M_% was recorded.

Velocity profiles in the flow with the step change field are shown in Fig.15 and

it can be seen how in the non-uniform field region the fluid moves away from the
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centre of the duct to the walls giving rise to what some authors describe as an
M-shaped velocity profile. It is most probable that the M-shaped profile at
z/a = -5.18 was created as the flow entered the magnetic field. The growth and

decay of such profiles has been discussed by Shercliff(a) (sec.4.14), Branover(zg)

and Bocheninski et al.(BO). Upstream of the non-uniform field region the velocity
of the flow at the centre of the duct increases from its fully developed value but
in the non-uniform region the flow tends to follow the 'characteristic surfaces'
(similar to those shown in Fig.4c) and the M-shaped velocity profile develops.
Downstream of the non-uniform field region this profile slowly degenerates but the
fully-developed profile is not realised because of the relatively short length of
uniform field.

Discrepancies between theory and experiment stem from the fact that in the
experiments

mt~ 30x (5257 = 1

and so condition (3.5a) is not satisfied. Since inertial effects cannot be neglected
we can estimate an additional contribution to the negative pressure peak near z =0
and it turns out to be about —O.SGavoBiM-% for these experiments. Therefore, the
excess pressure peak is explicable.

4.4 Measurements in the thin-walled duct

Since the mandrel-plated duct only became available towards the end of the
experimental programme, experiments were restricted to pressure measurements. With
¢ ~ 0.2 the pressure gradients were about 100 times larger than in the non-—
conducting duct (see equation (3.6)) and so reliable pressure measurements could be
made over a range of field strengths; in particular N varied between 13 and 50 .
The results for the step change field are plotted in Fig.l6. In the uniform field
regions the gradients are constant and in agreement with the theoretical values
derived from the theory of Chang & Lundgren(zs) which implies that the flow is fully
developed (and, as we mentioned in sec.4.2, that contact resistance at the mercury/
copper interface is, in fact, zero).

An important consequence of these results is that since the theory has been
shown to be in agreement with measurements of liquid lithium flowing in stainless
steel tubes (Carlson(31)) then mercury flowing in tubes with thin copper walls must
be a good way of simulating liquid 1ithium flow in fusion reactor pipework.

In the non-uniform field region there is a large difference between the
theoretical predictions described in sec.3.1 and the experimental results. The
results show that the pressure can be plotted as p/oavoBi¢% against z¢%/a but

1
that the predicted negative peak pressure of about 0.240av03§¢2 is absent. In

addition, the theoretical pressure drop Ap = 0.1630av0B0¢2 whereas in the
- it
experiments Ap = O.AUavoBi¢2 . However, both theory and experiment show that the
-1
adjustment length for the pressure is about 0.6a¢p 2 . The reason for these
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1
discrepancies is that in our experiments ¢% = 0.44 which hardly satisfies the
1
theoretical condition (3.7) that ¢%? << 1 . 1In other words, the longitudinal
recirculating current is short—circuited through the conducting walls,

4.5 Measurements in the highly conducting walled duct

Even larger pressure gradients are produced in this duct and pressure differences
could be measured to an accuracy of less than 17 over the range of N » 9.5-119 ,
employed. The results for the step change field are plotted in Fig.17 and in the
uniform field regions the pressure gradients are in agreement with those derived
from the theory of Chang &'Lundgren(zs)for a circular duct with a large but
finite conductance ratio (¢ = 8.75).

In the non-uniform field region the pressure distribution has the same form,
qualitatively, as the theory, namely a steady reduction of the pressure gradient
without any pressure peaks. However, the theoretical pressure drop AE = 0.470av0B§
is greater than the experimental value of 0.250aVOB§ . A possible explanation is
that since the theory is based on the assumption that o << 1 , the value of o wused
in the calculations (0.375) is too great for the theory to be accurate. (This value
of o was chosen so as to give the correct pressure gradient in the lower field
strength region of the step change field.)

The pressure variation with N is as predicted and so these results can
confidently be extrapolated to higher values of N .

Fig.18 shows the velocity variation in the non-uniform field region. Results
and theory are in agreement to within 2% which suggests that the theory is
reasonably satisfactory and that the hot-film anemometry is reasonably reliable.

Equally good comparison between theory and experiment was found with the slow-
change field. 1In that case the pressure gradient changes gradually and the velocity
perturbations are smaller.

4.6 Measurements in the rectangular duct

Pressure measurements made in the rectangular duct described in sec.4.2 with the
step change field are shown in Fig.19. They confirm the surprising theoretical
prediction that the pressure rises in the region of lower field strength (z > 0).
The reason is that this region acts as a return path for much of the current
generated in the higher field strength region (z < 0). Since the theory is
approximate and based on the assumption that N >> 1 » it is not surprising that
there is some discrepancy between theory and experiment for the pressure
distribution where the flow enters and leaves the magnetic field since in these
regions N =+ O .

Further confirmation of the theory comes from the measurement of the potential
difference between the conducting walls of the duct along its length shown in
Fig.20. Note how this varies as the position of the duct is changed relative to

the magnetic field thus changing the current distribution in the walls and flow. 1In
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addition these distributions are little affected by changes in N .

5. PRESSURE DROP REDUCTION AND FLOW IN BLANKET CELLS

5.1 Pressure drop reduction by change of duct cross—section

In Appendix I of Hunt. & Hancox( ) it was pointed out that in thin walled ducts
the pressure gradient required to drive a given flow rate along a duct of given
cross-sectional area situated in a uniform, transverse magnetic field varied with
the shape of the cross-section. For values of ¢ found in fusion reactor pipework
this required pressure gradient should decrease as the duct is elongated in the
direction of the field, e.g. the thin diamond shaped and slim rectangular ducts’
shown in Figs.2la and b respectively.

(28)

Using the analytical methods of Chang &:Lundgren it can be shown that

ol
provided 6 >> M ? in the diamond shaped duct

; =1
+
3—2=-QEZM2 cot g LEIL D Ml (5.1)
4a i¢ sin 0 + 3
where Q is the volumetric flow rate and 6 is the angle indicated in Fig.2la.
For the slim rectangular duct analysis by Temperley & Todd(32) indicates

that velocities in the boundary layers of thickness O(aM_%) on the walls parallel
to the magnetic field will be larger by a factor of O(M%) than those in the core
(see Fig.2lc) provided that the conductance along the walls is much larger than
along the adjacent boundary layer, i.e. ¢M2 >> 1 for the side walls and ¢M >> 1

for the top and bottom walls. In such cases

-1
93:-@—M2i{1+l(1+—a)—9—2-?1b+0(M )} (5.2)
dz 434 ¢ 3b ¢2M2 a

The following table shows how these pressure gradients compare with that in a
circular duct for large values of M when the flow rate, field strength, cross-—
sectional area, wall thickness and conductivity are all equal. The values of ¢

quoted are for the circular duct.

] circular diamond rectangular
0.01 1 0.322 0.210
0.1 1 0.341 0.224
0.2 1 0.361 0.240

Experiments have been carried out using mercury in the ducts built to dimensions
specified in Figs.2la and b. They were made by lining a PVC duct with 0.125 mm
copper shim as described in sec.4.2 (subsection on circular thin-walled conducting
duct) giving ¢ =0.19 . In general, the pressure gradients measured in these ducts
with a uniform magnetic field were less than those predicted by equations (5.1) and
(5.2) by 6% and 187 respectively. In the latter case this discrepancy may be due
to the fact that the theory, which assumes that a core flow exists, is not strictly
applicable to such a slim duct because the boundary layers on its side walls are

thick enough to meet at the centre. Nevertheless, the results point to the
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existence of the predicted high velocities in these boundary layers.

In both ducts the pressure gradients decrease, possibly to an asymptotic value,
as N increases but since N § 55 in the experiments this could not be proved
conclusively. This dependence on N is interesting because in these experiments
the flow should be fully developed in which case inertial effects ought to be
absent. In the slim rectangular duct the results indicate that the pressure
gradient near the inlet end is, on average, about ' 37 greater than at the outlet
end but there is no systematic variation of this difference with N or M . However,
it does suggest that the flow may not be truly fully-developed along part of the
duct, possibly due to the disturbed flow near the inlet. The results for the
diamond shaped duct do not exhibit the same features as those in the slim rectangular
duct but that does not rule out the possibility that the flow may not be fully-
developed. So far, no straightforward relationship between the pressure gradients,
M and N , has been found.

5.2 Pressure gradient reduction in a circular pipe

The pressure drop along a circular thin walled pipe might be reduced by sub-
dividing its cross-section into, for example, a number of diamond shaped cells, as
shown in Fig.22a. In practice, a matrix of such cells could be inserted into
straight lengths of pipe. The matrix need not be of robust construction because
each of its walls is subjected to equal and opposite pressure lodads on each side.
However, to achieve a reduced pressure gradient, the electrical conductance between
adjacent walls of neighbouring cells must be much less than 0¢ so that electric
currents cannot flow between neighbouring cells. Ideally all the cells should be
electrically isolated from each other but this would be difficult to realise in
practice.

In this ideal case Fig.22b shows how the flow rate increases for a fixed
pressure gradient with the number of diamond cells of the matrix (Fig.22a shows a
matrix with five diamond cells). The conductance ratios of the circular pipe and
matrix walls are ¢ and ¢/k respectively and are based on the radius of the
former. It is assumed that M 1is large and reductions of the cross-sectional area
due to the finite thickness of the matrix walls are neglected.

5.3 Coolant flow in blanket cells

Two possible methods for controlling the liquid lithium coolant flow when at
its nearest to the plasma are shown in Figs.23a and 24a. Both aim to provide
maximum 'wetting' of the surface receiving maximum radiation from the plasma.

At the top end of the cell shown in Fig.23a (see Stanbridge et al.(33) and
Carruthers(34)), the coolant entering along the central pipe should ideally impinge
on the surface directly ahead and follow it for some distance. However, in sec.2.6

1/3

we pointed out that a shear layer of maximum thickness O0(aN ) will form parallel

to the field lines where a flow emerges from a pipe into a reservoir of fluid.
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Consequently the flow in this cell will be as sketched in Fig.23b. 1In addition
there will be a current flow along this inlet pipe; if it is assumed that it is
thin-walled but electrically isolated from the surrounding flow in the main body
of the cell then these currents will be 0(¢%GVOBO) (sec.2.3) and in the shear
layer the current density will therefore be O(N1/3¢%ovoBo) . If part of this
current flow is perpendicular to the field lines then the presence of the shear
layer will add a large pressure drop to the pressure distribution in the cell of
o/ 34t ov_ p? o= ot/ 32

The format1on of the shear layer will leave a volume of stagnant fluid trapped

¢%a x fully-developed flow pressure gradient).

in the dome of the cell as shown in Fig.23b. This might vapourise thus affecting
the heat transfer there.

A design for the inlet pipe which offers several advantages comprises two
coaxial metal tubes of slightly different radii welded together at one end,
possibly held apart by spiders in the annular gap between them, with the outer ome
attached to the main body of the cell at its point of penetration. With this
construction there would be a very high electrical resistance conmnection between
the inner and outer walls of the pipe, except near the welded end, which is highly
desirable from a MHD point of view since the incoming and outgoing flows are then
electrically isolated from each other, and thermal stresses are mitigated(33).

Exactly how this design would affect the detailed pressure and velocity

distributions within the cell must remain a matter for conjecture at present.

Aé a first step towards increasing our knowledge about the flow in the cell, we
have investigated the flow in a symmetric, circular, thin-walled annular duct. The
analytical methods of Chang & Lundgren(zg) may be used to show that the flow rate,
Q , when such a duct is situated in a uniform, transverse magnetic field is

related to the pressure gradient, dp/dz , by

_ 1 o
Qn Ldp |1+ % - sin 1r - r(l—rz)z l-r % - sin 1r
— o — — - +
434 M dz K 2 K 2 .
r (f£.+f )f
1 72771
+ —_— dX (5.3)
(;-1 84-5 l J 2 + Mf .:]
2.3 Q 20 2.3 ?
where f, = (1-x )E-F(r -x )z = ¢(1-x )2-+ ¢ (r"=x7)? , k =Mp , € = {(k+1)/

1
(K—l)}% , £ = tan(} sin_lr) and ¢ and ¢r are the conductance ratios of the tube

and rod based on their respective radii.

Experiments have been carried out using mercury in such a duct comprising a
28.8 mm diameter perspex rod electroplated with a 0.06 mm: thick layer of copper
(¢r = 0.24) mounted co-axially inside a 74 mm diameter tube with a 0.09 mm
thick copper wall (¢ = 0.138) (made by the mandrel plating technique described in

sec.4.2 (subsection on thin conducting walled duct)). Pressure gradients measured
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in this duct are up to 137 lower than predicted by equation (5.3) and for
constant values of M the gradients decrease as N increases as happened in the
experiments with the diamond shaped and slim rectangular ducts described in sec.5.1.
In this case the results show that the pressure gradient near the ends of the rod
is greater than that over its central section and this could be due to disturbances
to the flow created by the spiders supporting the rod inside the tuhe of nearly
twice its length.

In future experiments the rod will be replaced with a fibre-glass tube electro-
plated with a thin layer of copper internally, externally and at one end thus
simulating the welded connection in the actual cell entry pipe. Apart from measuring
pressure distributions in this 'cell', it is hoped to investigate the behaviour of
the flow as it leaves the entry pipe by using hot-film anemometry.

The second method of guiding the flow (shown in Fig.24a) has been proposed by
research workers at Wisconsin (Badger et al.(36), Vol.l, sec.IV). A series of
baffles, ideally aligned parallel to the magnetic field lines, force the coolant
to follow a tortuous path., Such a system would have a larger pressure drop than if
the coolant simply streamed parallel to the front face of the duct since the flow
path is lengthened. Unless the ends above and below the plane of the diagram are
highly curved then equation (2.10) implies that there will be no unusual flow
regimes in the ducting. Misalignment of the baffles resulting in there being a
component of magnetic field normal to them would radically modify the flow as shown
in Fig.24b by the appearance of the shear layers parallel to the magnetic field

lines. As in the cell described above, pools of stagnant fluid would be formed and

the pressure gradient would increase considerably.

6. ENTRY LENGTHS
The entry length is defined as the length required for an arbitrary (e.g.
turbulent) flow in a pipe entering a uniform magnetic field to become fully
developed. When N 1is small but M is large, the entry length La 1is related
to M and Re in the following way
L=~ Re/M in a non-conducting duct (¢ << M_l)
~ Re/¢M2 in a thin-walled duct (M ' << ¢ << 1) (6.1)
= Re/M2 in a highly conducting walled duct (¢ >> 1)
(Shercliff(37)). Thus L decreases as M increases.
However, when both M and N are very large, then, as we have seen in secs.3.1
and 3.2, the entry length either remains constant or increases as M increases,

i.e.

1
L~ M? in a non-conducting duct(lo’ll)
-3 ; . (10,17)
a ¢ in a thin-walled duct' ’ (6.2)
=~ 1 in a highly conducting walled duct(lz)

Therefore, by assuming that the entry lengths derived for large and small values
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of N also give the right order of magnitude for L when N = 0(1) , it follows
that we can estimate a critical Hartmann number, Mc , at which L is a minimum

(L . ) . Thus, for a non-conducting duct

min 1

L. =TR/M =M

min c' e c

2/3 : 1/3 - .
so that M =~ R and L . = R . Similarly for a thin-walled duct
1 18 e _ min 1
e 2,74 ~ b1 - o L ~ z
M Re¢ s Lmin o) and for a highly conducting walled duct Mc—v R, and

miﬁz. 1 . The M-L relationships for non-conducting and thin walled ducts are
shown in Figs.25 and 26 respectively.

For a typical length of fusion reactor pipework where M and Re are both
0(104) , M > MC for either non—conducting or thin-walled pipes and the entry
lengths (6.2) are appropriate.

These long distances for the flow to develop are caused by differences in the
induced electric field, vAB , across the duct when it changes its area or its

direction relative to B or B wvaries along its length. If for some reason the

induced electric field does not change, then the entry length is reduced.

7. DISCUSSION
During the past five years many details concerned with the simple, conceptual

(38)

model of a fusion reactor discussed by Mitchell & George have been studied in

(33, 34,35)

greater depth Allowances for MHD effects on the coolant flow have been

limited to estimating the pressure drop through the blanket and associated pipework
using formulae derived in Hunt & Hancox(l). Furthermore, these estimates have been
based on the assumption that the MHD flow behaves in a qualitatively similar manner
to hydrodynamic flow near pipe bends, pipe area changes, etc. so that the local
pressure gradient is a simple function of the local values of mean velocity and
field strength perpendicular to the flow. Our present summary of MHD research
studies relevant to fusion reactor technology carried out during this same period
suggests that the assumed coolant flow in these reactor designs will not be realised
in practice and that the pressure drop estimates may be much too low due to the
effects of non-uniform fields, variable area pipework (including bends) and the
formation of the very narrow shear layers.

We have already discussed some aspects of the flow in a blanket cell, namely

(34)

the flow out of the inlet pipe (see sec.5.3). Carruthers envisages arrays of
such cells (25, divided into three adjacent rows of 8-9-8) supplied from a single
feed pipe and emptying into a flat outlet header chamber which is drained by a
single discharge pipe (see Fig.23a). By aligning this part of the feed pipe and the
header tank parallel to the magnetic field lines he assumes that the pressure drops
in those parts of the flow circuit will be negligible. Our work shows that in the
header tank the flow around the mouth of each cell and the discharge pipe will be

-1/3

confined to thin layers of maximum thickness O0(aN ) (see Fig.23b) which implies
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that there will be much larger pressure gradients. However, we cannot yet say how
the fluid moves between the layers on opposite walls of the tank and so the stream—
lines indicated in Fig.23b are only a tentative sketch of a possible flow. In the
feed pipe there are numerous bends which will create large pressure drops and
pressure peaks (see secs.3.l and 3.2) and it is just conceivable that this could
lead to different flow rates in each cell, ‘

In passing from outside the magnetising coils to the blanket and back again the
flow will be at right angles to the magnetic field lines (e.g. in part of the feed
pipe and in the discharge pipe referred to above). An intentional overestimate of
the pressure drop in these pipes has been made by calculating the pressure drop
along the path of the highest magnetic field(33) and more recently a method of
minimising this pressure drop by routing the pipes away from the blanket in two
horizontal (but not vertical) directions rather than one has been proposed(34). In
fact the most significant pressure drop along these pipes will occur where they
cross the magnetising coils and immediately upstream and downstream of them since
only in such regions will the field strength gradients be large enough to give rise
to the disturbed flows, pressure peaks and pressure drops discussed in sec.3.1.

At present the magnetic field strength outside of the magnetising coils is taken
as zero(34) but, depending on the configuration of the coils around the toroid, there
could be a significant amount of magnetic flux surrounding it to a depth equal to the
minor radius of the toroid. However, before its effect on the total pressure drop

can be assessed, this fringe field will have to be described in more detail.
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APPENDIX I - KULIKOVSKII's EQUATIONS(A)

The following five equations constitute the general solution of equations (2.2)

which govern the effectively inviscid, inertialess core flow when M >> 1 and

N> 1

feil= B'"ZE'AV(p'/N) (AI.1)
fb o B0 J B'_ZV(p'/N).(E'AVB'_?')de + B'P, (&) (AL.2)

y 9 -
o' = - UO B'-29(p"/M) . (B' A V8 Zyap'dy + yB (&) + P,(8) (AL.3)
gt = v; = B'_2 {Bave' - V(p'/N)1} (AI.4)
v! =B I 32512, v2(p' /N) + VB' 2.V(p" /M) +_B_'.(VB"2A ve') }dy + B'P,(4) (AI.5)

o}

A and ¢y are the magnetic vector and scalar potentials respectively, Pl’ P2 and P3
are functions of integration with respect to Y and the subscript s indicates

the component along a magnetic field line.

APPENDIX II
In non-conducting and thin-walled ducts we have shown (sec.2.2) that to 0(1)
ve' = v'aB'
Now using Stokes' theorem
[ (VA V8).dA"' = 0 = [ ve'.dg

where 6% is an elemental part of the perimeter of 6A' (which is the cross-—
sectional area of a surface in the fluid). It follows, then, that
J (v'a B').dL = [ (deav').B' =0
(62 av).B represents the rate at which &% crosses the field lines and since there
is no net gain or loss of flux enclosed by the loop then
B'.6A' = constant

Consider now a line of moving fluid particles, 6s , aligned at some given instant

along a magnetic field line such that B' = kés where Kk is a constant. Now
DB' 3B’
= _—_ 4+ y'.VB' = =VAE' + v'.VB' = VA (v'AVB') + v'.VB' = B.Vv
Dt &t == = TI= LAY -2 ==
and DB’

D_ = D_ = 1T = " = T =
o (kés) = k BT (6s) = kév kés.Vv B'.Vv e
Similarly, it may be proved that the same relationship holds for higher derivatives.

Hence, the line of fluid particles will continue to lie along a magnetic field line.
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NOTATION

Vector quantities

Physical Dimensionless

quantity quantity

A magnetic vector potential

B B' magnetic field

E E' electric field

k| N electric current density
il value of core variable j' at duct wall
n' co-ordinate normal to wall into fluid
a unit vector parallel to n'

v v' velocity
v! value of core variable v' at duct wall

X x' position vector with components X,y,z
A’ elemental area in fluid
s elemental part of perimeter of A’

Scalar quantities

Physical Dimensionless

quantity quantity
Aé total area of conducting walls in rectangular duct
a hydraulic radius (general), radius of circular duct,
semi-height of rectangular duct (i.e. parallel to B)
Bo reference value of flux density
b semi-width of rectangular duct
dp/dz extra pressure gradient due to circulating current
(dp/dy)” pressure gradient of flow in pipe aligned with uniform
magnetic field
(dP/dY)v pressure gradient of hydrodynamic flow
EO equiga}ent tg E§ in rectangular duct analysis
f1 (1-x ;21+ (r —xz)z2 |
f2 $(1-x7)?% + ¢r(r —x“)*
glx =t arbitrary function of integration
I value of integral © ds/B along a field line
k numerical comstant °
La L entry length
Lmin minimum value of L
fa ) length over which a fully-developed flow is disturbed
n (§b) 72
P(A) Pl’PZ’PB arbitrary functions of integration
P p' pressure



Q volumetric flow rate

R radius of bend in pipe
T radius of pipe (or rod) inside a duct
o total length of field line inside duct
s distance measured along a field line
t thickness of duct wall
v mean velocity of flow
Y(x") duct wall
o fractional decrease in field strength
Ap net pressure drop due to circulating current
AE extra pressure rise or fall due to dE/dz
Ad potential difference across duct
8 thickness of shear layer
. {(e+1)/ (k1) }2
z co-ordinate normal to shear layer and B
n viscosity
S] velocity stream function
0 semi-apex angle in diamond shaped duct
K M¢
Aa A extent of non-uniform magnetic field
u magnetic permeability (of free space)
3 tan(} sin—lr)
o) density
g electrical conductivity of fluid
0. electrical conductivity of duct wall
T Tt time
0] o' electric potential
@% electric potential in duct wall
! value of core variable &' at duct wall
P magnetic scalar potential
Dimensionless groups
M Hartmann number aBOVE7H ’
N interaction parameter UBga/va = M2/Re
Re Reynolds number avop/n
Rm magnetic Reynolds number cuavo
) conductance ratio cwt/Ua



Magnetic field lines

Fig.1b Plan view of ‘characteristic surfaces’ (- —-) near a

junction of two pipes in above duct showing how shear
layers (S) are located. C indicates core flow.

Hartmann
layer

1-

O(aM/cos @)

Wall, electrical
conductivity oy

CLM-R169 .

Fig.1a Prototype ducting showing regions for analysing flow
when M, N, R. > 1

C. core
H. Hartmann layers
S. shear layers.

OMagnetic field directed 0
out of plane of paper

Fig.2 Notation for analysis of Hartmann layer.



Elemental tube of
fluid initially

Fig.3 Elemental tube of fluid moving along duct such that
(i) it always contains the same volume of fluid, (i) its cross-
section always encloses the same amount of magnetic flux,
(iii) its surface generators are magnetic field lines.

%rne luvb'::| of fluid when it
s moved alongduct, S
weaker and areg of 'du?ci %

lai - hence {ube fatter
bur?ﬂﬂ'brl«

Layer across duct
of maximum Lhickness O
(aN1)

Shear layers of Thickness 0

By (uniform)

Slreamlines,
of flow

Fig.4a Streamlines of flow and current flow on centre plane
in a rectangular duct with ¢ < 1 and increasing cross-section.

Current density sireamlines

Streamlines of flow (following
‘dharactenstc surlaces * in region
where oss - seciion ol duct vares)

By (uniform)

Fig.4b Streamlines of flow and current flow on centre plane
in a circular duct with ¢ <1 and increasing cross-section.

Current density sireamhines
(followng charactenstic surfoces
N region where (Toss - sechion
2=, of ducl varies)

~

= T
Streamiines of flow (talowirng /\
‘characterislic surlaces ' in regon o
of non -uniform magnetc l-ﬁul P

>

Region of non-uniform
mognetic tield

Fig4c Streamlines of flow and current flow on centre plane
in a uniform bore circular duct with ¢ < 1 when the field
strength decreases.

TTTCurrent density grramines.

{tiowing ‘chorocteriste surtaces”
in regon of nen-uniform
magnelic field |
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pmlaavoag

0.5

Fig.5 Theoretical pressure distribution along uniform bore, circular, non-conducting duct when
By= 1forZ <0, By=0.5 for Z > 0.

£

4p
0.6}o0%E

i

Fig.6 Variation of pressure drop Ap defined in Fig.5 with

reduction in flux density (1—a = By(Z > 0)/By). i
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_O‘a.lf

Fig.7 Theoretical pressure distribution along uniform bore, circular, thin-walled duct M <2< 1) when
By =1 forZ <0, By =0.5for Z> 0.

Fig.8 Variation of pressure drop Ap defined in Fig.7 with
reducation in flux density (1—a = By(Z > 0)/B,).
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Velocity profiles Stagnant fluid Jrapped eddy Streamlines
\ o/

0"

Streamline of Magnetic field Electrically
- b By
current flow directed out of insulating

plane of diagram < Bo wall of duct
A .

Fig.9 Theoretical streamlines, velocity profiles and current streamlines on centre plane in a uniform bore,
circular, non-conducting duct, when the field strength decreases.

B (uniform)

: Variable
lae—— area
1 region

I
1
i

e T

T |
Transition flow from Streamlines Transition flow to
fully -developed flow of flow fully - developed flow

Fig.10 Bend in non-conducting or thin-walled pipe in the
plane of a uniform magnetic field. Plan view shows effect
on streamlines of flow in vicinity of bend.
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?Vo By

z

: —>
(®By Magretic field directed out of plane of diagram By ®

NN TN ST T T T T TS T
\ i i P ] I | 1 | )
: BRI I |

I !
|' . - ! A | Highty 1
conducting

* 4 + ‘I * v f + + 4 4 f para“el Y
| | b | R | side-walls |
'l I : l | i | | | | | | |I
[ T ' L ! i |
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Fig.11 Recirculating electric currents (- - -) due to variations in induced electric field Vo By in a rectangular duct
with very highly conducting walls (¢ — <) parallel to magnetic field lines and non-conduc ing walls top and
bottom which may diverge. Changes in VoBy may be caused by changes in B or area of duct (and hence Vo)

Cooling water Power su‘PpIy for magnet
; coils (60V, up to 300A) ;
vaves 5= for magnet coils 1 P .
upper
-
| [
Overflow from }
Lower upper weir tank
bl Arrows indicate .
direction of flow | 4—H
-—-—"———_-
r—"'——‘_—/ Heat exchanger
Gear pum),
~ Fluid level with by siRerits
circuit at rest
J Flowmeter
Grill of Magnet
ventilation (in section)
Y ducing JJ Manometer
Duct L
ural
2 P—beam Storage tanks
L4
Windi ear
% for lrcrl?lgeg.'g E
- H
v : R H
ane[sturd —C>] Tro[ley \--""-:J
[

Fig.12 Elevation of rig built for experiments at Cambridge. The electromagnet is sectioned to show duct and
duct supporting grear. Weir tanks are sectioned to show how they maintain a constant pressure difference
across circuit and hence constant flow rate through the duct.
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Fig.13a Step-change field — variations of By along centre-line of air gap. End elevation and plan half-views of
pole pieces shown on right with principal dimensions in mm.
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Fig.13b Slow change field — variation of B along centre-line of air gap. End elevation and plan half-views of
pole pieces shown on right with principal dimensions in mm.
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Fig.14 Pressure distribution along non-conducting duct at A for step-change field (Fig.13a) (theory and

experiment). (L symbols referred to in Fig.15.)

Fig.15 Velocity profiles of vy/¥g across non-conducting duct
on centre plane for step-change field (Fig.13a). - - - theory,
——experiment (from potential and hot film probe readings).
Over the range 4.25 > z/a > —0.17 the exact theoretical
profile cannot be determined but the flow is confined to that
part of the duct between the vertical dashed lines with arrow
heads. Positions of profiles are indicated by | in Fig.14.
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Fig.16 Pressure distribution along thin-walled duct at A for step-change field (Fig.13a) (theory and experiment).
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Fig.17 Pressure distribution along highly-conducting walled duct, ¢ = 8.75 for step-change field (Fig.132) (theory
and experiment).
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Theoretical curve

1.05f Yo

Fig.18 Velocity distribution along
(Fig.13a) (theory and experiment
M=603,N=96.7, R, = 3765.

Fig.19 Pressure distribution along rectangular duct at A for
step-change field (Fig.13a). Z, and Z, represent the positions
of the downstream and upstream ends of the conducting walls
respectively (theory and experiment).
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Fig.20 Variation of potential difference between conducting walls, A®, along rectangular duct for
step-change field (Fig.13a) (theory and experiment).
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Fig.21a. Thin-walled diamond shaped duct with dimensions. Fig.21b. Thin-walled slim rectangular duct
with dimensions. Fig.21c. Typical velocity profile across slim rectangular duct.
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4 Flow rate with matrix

20 F
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Electrical
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Fig.22a. Matrix of 5 diamond cells inserted in a circ

of diamond cells,

Streamlines of
——flow assumed in
present designs

O

o by

25

ular pipe. Fig.22b. Increase in flow rate due to matrix

Stagnant ftuid

\=—Double shear layer
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Possible streamlines of
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Fig.23a Required motion of liquid metal coolant in blanket cell (arrows indicate streamlines of flow).
Fig.23b Actual flow of coolant in blanket cell caused by MHD effects.
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WL

B directed out of plane of diagram

PrRe— . P—
@ @ @ © 000 Shear layers Stagnant {luid

| I
Shear layers Stagnant fluid

(a) (b)

Fig.24a Zig-zag path of coolant in blanket proposed in
research studies at University of Wisconsin. Magnetic field
lines are parallel to thin metal baffles.

Fig.24b Effect of misalignment of magnetic field and baffles.
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Fig.25 Variation of entry length L with M and Re in a
non-conducting duct.
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Fig.26 Variation of entry length L with M and Re in a
thin-walled duct.















